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Abstract: Many species live in ecosystems where resources are distributed patchily within the landscape.
Furthermore, an ever-increasing number of species are forced to live in fragmented landscapes due to the destruction
of their habitat, generally caused by anthropogenic disturbance. These metapopulations are consequently drawing
much attention in both the theoretical and applied ecology literature (Levins (1969), Gilpin and Hanski (1991),
Hanski (1999) and Dobson (2003)).

Habitat fragmentation caused by habitat loss, in combination with other factors such as climate change, is placing
many species at high risk of extinction, and ecologists and conservation biologists must attempt to limit this risk.
With less funding than is required to protect all species, triage becomes necessary, and hence the need to efficiently
evaluate extinction risk in order to determine a priority for allocating funding (Hobbs and Kristjanson (2003)).
Additionally, in order to use the resources available most efficiently, it is necessary to determine the optimal
investment that minimises the threat of extinction.

We present here two ‘rules of thumb’ for metapopulation management, which are established using a simple
metapopulation model. The first rule [R1] identifies an explicit formula for the persistence time of the population,
and thus enables the population manager to form a priority species ranking by identifying those species most at risk
of extinction. The second rule [R2] identifies an optimal management strategy that gives direction on how to alter
the colonisation ratec (creation or improvement of habitat corridors) and local extinction ratee (restoring habitat
quality or expanding habitat) in order to maximise the persistence time under a budgetary constraint.

We employ a stochastic version of the Levins (1969) metapopulation model. In order to use our rules of thumb it
is necessary that this simple model first becalibratedto a spatially-realistic model. Thus we propose an explicit
method for calibration for a general spatially-realistic model.

Rule [R1] is based on exact and approximate formulae for the expected time to extinction starting from a given
initial number of occupied patches. Rule [R2] defines an optimal management strategy in terms of a total budgetB
and costsKc andKe for respective (per unit) changes inc ande:

Invest in reducinge to its allowable minimum, unlessB < Kee−Kcc, in which case invest in increasingc.

We conclude by testing our rules on computer-generated patch networks from a spatially-realistic metapopulation
model and a model for malleefowl (Leipoa ocellata) in the Bakara region of South Australia. These result suggest
that our rules of thumb, derived from the stochastic Levins model, are robust. This, as well as optimal methods
based on approximations for other spatially-realistic models, will be explored fully elsewhere.
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1. INTRODUCTION

The metapopulation paradigm has proved to be useful for studying species dynamics; many species exist naturally
in a network of geographically separated patches, and many others have suffered modification of habitat, generally
due to anthropogenic disturbance, resulting in their occupying a mosaic of patches (Levins (1969), Gilpin and
Hanski (1991), Hanski (1999) and Dobson (2003)). Such habitat fragmentation, in combination with other factors
such as climate change, is placing species at high risk of extinction. Ecologists and conservation biologists must
attempt to limit this risk. With less funding than is required to protect all species, they must rank extinction risk in
order to determine priority in allocating funding (Hobbs and Kristjanson (2003)), and determine the optimal way
to invest available funding to minimise extinction threat.

This paper provides ‘rules of thumb’ for ranking metapopulation extinction risk, allowing a rapid evaluation
of species priority rankings, and for determining optimal management strategies under constrained conservation
funding. Their best feature is simplicity; the formulae canbe evaluated quickly, yet they are sufficiently accurate
to be of benefit to the conservation community. We investigate this accuracy by testing our rules on computer-
generated patch networks for a spatially-realistic metapopulation model, and data for an Australian species of
concern to conservationists.

2. RULES OF THUMB

We will use a stochastic formulation of the classical Verhulst (1838) model for population growth, which first
appeared in the metapopulation context in the much-cited paper of Levins (1969). There areN patches, which
are always suitable for occupancy. Propagules (individuals) emanate from each occupied patch (and survive to
reach another patch) at ratec (commonly called thecolonisation rate) and each occupied patch becomes vacant
(through extinction and migration) at ratee (commonly called thelocal extinction rate). If n(t) denotes the number
of occupied patches at timet, thenn ′(t) = c(n/N)(N − n)− en. Our stochastic formulation is a continuous-time
Markov chain whose transition rates are given in Table 1. Thespatially-realistic model we use as our gold-standard
(for the purposes of this paper) models individual patch positions, affecting migration rate between patches, and
patch areas, affecting the local extinction rate; the precise transition rates are given in Table 2.

Event Transition Rate
from n to

Colonisation n + 1 c n
N (N − n)

Extinction n − 1 en

Table 1. Transition rates: simple model

Event Transition Rate
from n to

Colonisation n + 1i g(1 − ni)
∑

j 6=i nj exp(−β
√

dij)

Extinction n − 1i κni/Ai

Table 2. Transition rates: spatially-realistic model

In our spatially-realistic model the state isn = (n1, n2, . . . , nN ), where theith entry equals1 if patchi is occupied,
and0 otherwise,1i is used to denote a vector with a1 in the ith entry and0s elsewhere,g is the base migration
rate,β is the exponential dispersion parameter,dij is the distance between patchesi andj, κ is the local extinction
rate parameter, andAi is the area of patchi. Thus we assume that the rate of colonisation decreases withdistance
between patches, and the rate of local extinction decreaseswith patch area.

Both models have absorbing states, corresponding to total extinction of the metapopulation, but ifc > e (for our
simple model) the population settles down to a ‘quasi equilibrium’ that may persist for long periods (Pollett (2001)).
The expected time to extinction is a frequently used measureof persistence, which we now evaluate for our simple
model.

Species priority ranking [R1]. In the static landscape case the expected time to extinction starting fromn(0) = i
occupied patches is

τi =
1

e

i
∑

j=1

N−j
∑

k=0

1

j + k

k−1
∏

l=0

(

N − j − l

Nρ

)

, [R1]

whereρ = e/c. This may be evaluated rapidly. We also consider two approximations. The first is

τA1
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1

c(1 − ρ)

{

EN
ρ

(

1 − ρi

1 − ρ

)

√

2π
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−
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(1 − ρi−k)

k

}

, [A1]



whereρ < 1 andEρ = e−(1−ρ)/ρ. Its accuracy improves asN increases, and reduces some computational expense,
in particular if the initial number of occupied patchesi is small. The second approximation is

τA2
i =

1

c(1 − ρ)
EN

ρ

(

1 − ρi

1 − ρ

)

√

2π

N
−

γ + ln(i − 1)

c
, [A2]

whereγ is Euler’s constant. The accuracy and robustness of the approximations is illustrated in Figure 1. We
can see from (a) that populations of species most likely to beof conservation concern correspond to the black and
dark-grey regions of the subplot: most concern black to least concern white. Plots (b) and (c), corresponding to
to approximations [A1] and [A2], respectively, show that both are reasonably accurate, with accuracy generally
improving as both the number of patchesN and the colonisation rate parameterc increase. Both approximations
are highly accurate in those parts of the parameter space corresponding to species of limited conservation concern.
In the rest of the parameter space they are sufficiently accurate to discern which species are of limited conservation
concern, thus leaving only those requiring more precise evaluation of threat. We note that, with the exception of
very smallN andc, the approximations underestimate the expected time to extinction (a general feature) and thus
provide a conservative assessment of risk.
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Figure 1. Expected time to extinction and approx-
imations: (a) log expected time to extinction [R1],
and relative error of (b) first approximation [A1] &
(c) second approximation [A2]. The initial number
of occupied patches isn(0) = i = N/5 ande = 1.
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Formulae [R1] forms our first rule of thumb; comparison of [R1] for different species, having different colonisation
ratesc, extinction ratese, numbers of patchesN , and initial numbers of occupied patchesn(0) = i, aids species
priority ranking. Additionally, if there is a wide variety of species to be compared, then either of the approximations
[A1] or [A2] provides a criterion upon which to determine if more precise evaluation using [R1] (and subsequently,
perhaps via simulation of a spatially-realistic model) is required. We emphasise the simplicity of our rule—the
formulae may be evaluated rapidly for a host of species.

Whilst [R1] provides rapid species priority ranking, it tells us nothing about optimal strategies for those species
most at risk. This is addressed by our second rule of thumb [R2].

Optimal management strategy [R2]. The management options available are to increase the colonisation ratec,
say via creation or improvement of habitat corridors, or decrease the extinction ratee, say by restoring habitat
or expanding patches (Etienne and Heesterbeek (2001)). Thebudgetary constraint can be expressed asKc(c

∗ −
c) + Ke(e − e∗) ≤ B, whereKc andKe are the respective costs for changes inc ande with B, the total budget,
fixed (all evaluated over the same management period) and(c∗, e∗) is the optimal choice ofc ande we seek to
determine. Since any increase inc or decrease ine will always increase the expected extinction time, we will
always expend our entire budget. Thus, the inequality in ourbudget constraint will be satisfied with equality:
δc = (B − Ke δe)/Kc, whereδc = c∗ − c andδe = e − e∗. We therefore choose the(c∗, e∗) combination that
maximises the expected extinction time. From the exact formula [R1] it can be seen that we must chooseρ as small
as possible, being equivalent to maximising the expected (quasi-)equilibrium number of occupied patches in the



metapopulation network. Thus, assuming there is a minimum level that the extinction rate can be reduced to, our
rule of thumb is:

Invest in reducinge to its allowable minimum, unlessB < Kee−Kcc, in which case invest in increasingc.

Spatially-realistic models. To use our rules for spatially-realistic models, we need tocalibrate our simple model
(Table 1) to the more complex model (Table 2). We propose and adopt the following calibration, obtained by
matching the colonisation and extinction rates (weighted by area in the spatially-realistic model, which is a good
proxy for occupancy probability) when there is only a singlepatch occupied:

c :=
gN

(N − 1)
∑N

k=1 Ak

N
∑

i=1

Ai

N
∑

j=1
j 6=i

exp(−β
√

dij) , e :=
κN

∑N
k=1 Ak

. (1)

For testing this calibration in concert with [R1] and [R2] werandomly generated, in each case, 100 metapopulation
networks and species parameters. In all casesN = 8, a size chosen so that the exact expected time to extinction
may be evaluated (as opposed to requiring simulation to estimate the time), and because it corresponds to the size
of our application species. Furthermore, for each simulation and patchi = 1, 2, . . . , 8, we sampled as follows:
Ai ∼ U(10, 500)(km2), Positioni ∼ [U(0, 20), U(0, 20)](km), g ∼ U(0.05, 1), β ∼ U(1/5, 3/5), κ ∼ U(15, 50)
andn(0) ∼ [Ber(1/2), . . . , Ber(1/2)], whereU(a, b) is the uniform distribution on the interval(a, b) andBer(p)
is the Bernoulli distribution with success probabilityp.

For evaluating Rule [R1] we accepted only those generated networks for which the exact expected time to extinction
was less than500 (years) and also with the calibratedρ = e/c less than or equal to1, corresponding to a species
of (some) conservation concern, but needing to be assessed to determine the extinction risk. Additionally, we
restricted attention to species withρ > 1/5, noting thatρ ≤ 1/5 typically corresponded to species near the upper
limit of extinction time equalling500 years, as our approximation method was found to consistently over estimate
the expected time to extinction by a sizeable margin whenρ ≤ 1/5; we note that this condition may be determined
simply fromc ande, and thus poses no impediment to use of our methodology. Finally, we also ensured that at least
two patches were initially occupied. Our results are presented in Table 3, in the form of mean, median and variance
of theRelative Error(RE) between the exact and approximated extinction time, and also the mean and median of
theAbsolute value of the Relative Error(ARE).

Statistic Value

mean(RE) 0.0747
median(RE) 0.0512

var(RE) 0.0234
mean(ARE) 0.1159

median(ARE) 0.0748

Table 3. Spatially-realistic extinction time test results.

The statistic of most interest from Table 3 is the median absolute relative error (0.0748), which demonstrates that
the approximation method typically performs well, with an over- or under-estimate of typically around7.5%. From
the median relative error, of0.0512, we can see that typically we over estimate the extinction time.

For evaluating Rule [R2] we setB = 1 (without loss of generality) and then randomly generated changes,δc and
δe, to the colonisation rate and local extinction rate (so bothwere less than the minimum ofc ande); these were then
used to determine the cost parametersKe = 1/δe andKc = 1/δc. We then evaluated the optimal policy using [R2],
and compared this to thetrue optimal policy by evaluating the exact expected extinctiontimes with colonisation
rate increased byδc and local extinction rates decreased byδe. Rule [R2] was found to give the correct policy90%
of the time. We note that out of the100 randomly-generated metapopulation systems, the optimal policy was to
increase the colonisation rate in only13 systems, and our procedure correctly identified these casesin all instances.
Thus, in10 of the remaining87 cases our procedure incorrectly recommended increasing the colonisation rate when
in fact decreasing the local extinction rate was optimal.

Finally, we considered a species of conservation concern inAustralia: malleefowl (Leipoa ocellata) in the Bakara
region of South Australia. The species occupies an8-patch network with patch areas and positions as detailed in



Table 4. We assume parameter values used in an earlier study (Day and Possingham (1995)):g = 0.005, β = 1/5
andκ = 13. We calibrated our simple model to this spatially-realistic model using (1), thus givingc = 0.0216
ande = 0.0168. The exact expected time to extinction for this malleefowl population, starting from all patches
initially occupied, is327.5 years, and our estimate using [R1] is (an impressively accurate)323.3 years. Obviously
from Figure 1 we can see that withN = 8 patches the approximations [A1] and [A2] should clearly notbe used;
for interests sake, the estimated expected time to extinction using [A1] and [A2], respectively, are529.5 and791.3
years. Note that the error in these estimates is close to those for similar sized patches as illustrated in Figure 1.

Patch Area (km2) x-coordinate (km) y-coordinate (km)

1 2700 6 17
2 100 14 16
3 750 18 14
4 550 11 13
5 100 19 10
6 400 6 8
7 1200 14 7
8 400 3 5

Table 4. Patch areas and positions for malleefowl habitat in the Bakara region of South Australia.

3. METHOD

For a general Markov chain with transition ratesQ = (q(m, n), m, n ∈ S), whose state spaceS includes a subsetA
which is reached with probability1, the expected timeτi it takes to reachA starting in statei is the minimal non-
negative solution to

∑

j∈S q(i, j)τj + 1 = 0, i 6∈ A, with τi = 0 for i ∈ A. This result, which can be found in most
texts on Markov chains, reduces the problem of computing persistence times to that of solving a system of linear
equations, for which there is a host of numerical methods available. For any stochastic birth-and-death process,
with sets of (population-size dependent) birth rates{λj} and death rates{µj}, τi is given byτ0 = 0 and

τi =
i

∑

j=1

1

µjπj

N
∑

k=j

πk (1 ≤ i ≤ N), (2)

where the “potential coefficients” (πj) are given byπ1 = 1 andπj =
∏j

k=2(λk−1/µk) for j ≥ 2 (see Norden
(1982)), valid in the infinite state case, replacingN by ∞. For the present static landscape model we arrive
at [R1]. Whilst [R1] does not pose any significant numerical problems, a simpler (asymptotic) expression can be
derived. Using [R1] we obtain the explicit asymptotic (large-N ) formula [A1], which is valid whenρ < 1. Further
approximation can be made to obtain formula [A2]. (Full details can be found in the Appendix.) The optimal
management strategy rule of thumb [R2] was derived by simplychoosing the option that maximised the expected
number of occupied patches in quasi equilibrium. As reported above, to apply our rules to spatially-realistic models
we adopted the calibration detailed in the previous section(definitions given in (1)). They were obtain by matching
the colonisation and extinction rates (weighted by area in the spatially-realistic model) when there is only a single
patch occupied. We emphasise that this provides an explicitprocedure for approximating the spatially-realistic
model by way of the simple model. Finally, the200 metapopulation systems were generated by sampling, for
each simulation and patchi = 1, 2, . . . , 8, as: Ai ∼ U(10, 500)(km2), Positioni ∼ [U(0, 20), U(0, 20)](km),
g ∼ U(0.05, 1), β ∼ U(1/5, 3/5), κ ∼ U(15, 50) andn(0) ∼ [Ber(1/2), . . . , Ber(1/2)]. We then used the exact
expected time to extinction, and policy, to compare with ourrules using the above mentioned calibration (1) in
concert with [R1] and [R2], respectively.

4. DISCUSSION

We note that in assuming equal costs of increasingc and decreasinge, that isKc = Ke (and in fact whenever
Kc ≥ Ke), it is always optimal to invest in decreasing the extinction rate (first) if c > e (Rule [R2]). This
conclusion broadly supports the conclusion of Etienne and Hesterbeek (2001). Our result advances their finding by
incorporating the costs of the two management strategies, meaning that for certain costs it may be optimal to invest
in increasing the colonisation rate first.



We have assumed that costs are linear in the relevant variables. In reality it is likely that increasing costs will be
associated with increasing changes in parameter values—small changes can be made cheaply, but further changes
cost substantially more. Additionally, we have assumed that all patches are equally modified, that is, all colonisation
and extinction rates are varied. With a limited budget, we may wish to target only a subset of the patches, or it
might be optimal to spread the changes across patches in a weighted manner. Future research should consider these
realistic modifications.

Our results provide encouragement for using rules of thumb based on simple models calibrated to more complex
ones, particularly in light of previous studies reporting similar findings, for example Etienne and Heesterbeek
(2001), Keeling (2002) and Ovaskainen (2002). However, therobustness of our calibration methodology and rules
needs to be explored fully, for larger metapopulation systems and for other spatially-realistic models. Despite
this, it appears that our methods can be used, at the very least, to greatly reduce the number of species requiring
more detailed analysis, and to provide a rapid indication ofthe optimal management policy. We recommend that
whenever feasible exact methodology be used.

5. APPENDIX

Our static landscape model is a birth-death process(X(t), t ≥ 0) taking values inS = {0, 1, . . . , N} with birth
and death ratesλn = (c/N)n(N − n) andµn = en, wheree > 0 andc > 0. Thus,S consists of an irreducible
classC = {1, . . . , N} and an absorbing state0 which is accessible fromC. It is well known that ife > c the
process is absorbed quickly, but, as noted earlier, ife < c the population settles down to a quasi equilibrium that
may persist for a long period. In this latter case, the carrying capacity is(1−ρ)N , whereρ = e/c. We are interested
in the expected timeτi(N) it takes for the process to reach0 starting in statei for a given ceilingN . For a general
birth-death processes onS with birth rates{λn} and death rates{µn}, τi = τi(N), for i ≥ 1, is given by (2).
For our model, it is given by [R1]. Several authors have derived asymptotic expansions like our [A1]. Kryscio and
Lefèvre’s (1989) formula (2.4) (for the caseρ < 1) is at variance with our formula [A1].

In what follows,aN ∼ bN meansaN/bN → 1 asN → ∞.

Theorem 1. If ρ < 1, then asN → ∞,

τi(N) ∼
1

c(1 − ρ)

{

(

1 − ρi

1 − ρ

) (

e−(1−ρ)

ρ

)N √

2π

N
−

i−1
∑

k=1

(1 − ρi−k)

k

}

.

Proof. The plan is to evaluate the factorials implicit in [R1] as gamma integrals and then invoke standard asymptotic
results. We use Laplace’s method (see Section 12.2.5 of Olver (1983)) to estimate the integrals. Letσj be the
expected first-passage time to statej−1 from statej, so thatτi(N) =

∑i
j=1 σj . Then,

σj =
1

µjπj

N
∑

k=j

πk =
wj(N − j)!

eN !

N
∑

k=j

(

N

k

)

(k − 1)!

wk
,

wherew = ρN , this being true forj = 1, . . . , N . Now, evaluating the factorial as a gamma integral gives

σj =
wj(N − j)!

eN !

N
∑

k=j

(

N

k

)
∫ ∞

0

e−wxxk−1dx =
ρj

e

N j

N(N − 1) · ·(N − j + 1)

∫ ∞

0

e−ρNx

x

N
∑

k=j

(

N

k

)

xkdx. (3)

Since
∑N

k=j

(

N
k

)

xk = (1 + x)N −
∑j−1

k=0

(

N
k

)

xk, the above integral becomes (after substitutings = Nρx)

∫ ∞

0

e−s

s

{

(

1 +
s

Nρ

)N

−

j−1
∑

k=0

(

N

k

) (

s

Nρ

)k
}

ds.

We now use Laplace’s method to estimate the integral in (3), which can be written

∫ ∞

0

e−ρNx

x

{

(1 + x)N −

j−1
∑

k=0

(

N

k

)

xk

}

dx =

∫ ∞

0

eNrN (x)q(x) dx,

whereq(x) = 1/x andrN (x) = −ρx + (1/N) log
(

(1 + x)N −
∑j−1

k=0

(

N
k

)

xk
)

. For all x > 0 andj ≥ 1,

limN→∞

(

(1 + x)N −
∑j−1

k=0

(

N
k

)

xk
)1/N

= 1 + x, and sorN (x) → r(x), wherer(x) = −ρx + log(1 + x).



However, we get no useful information if we base our approximation on an estimate of
∫ ∞

0 exp(Nr(x))q(x) dx,
because this integral is divergent for anyN . Instead, we estimate

∫ ∞

0
(e−ρNx/x)

{

(1 + x)N −1
}

dx =
∫ ∞

0 eNsN (x)q(x) dx, wheresN (x) = −ρx + (1/N) log
(

(1 + x)N − 1
)

. First, sincer ′(x) = 1/(1 + x) − ρ
andr ′′(x) = −1/(1 + x)2, it is clear thatr achieves its maximum ata = 1/ρ− 1. We deduce thatsN(x) achieves
its maximum neara = 1/ρ− 1. So, employing Laplace’s method, we get in the limit asN → ∞,

∫ ∞

0

eNsN (x)q(x) dx ∼ q(a)eNr(a)

√

2π

−Nr ′′(a)
=

1

1 − ρ

(

e−(1−ρ)

ρ

)N √

2π

N
.

Therefore,
σj ∼

ρj

c(1 − ρ)

(

e−(1−ρ)

ρ

)N √

2π

N
−

ρj

e

j−1
∑

k=1

ρ−k

k
.

Summing overj from 1 to i, and using an earlier calculation, gives the stated result.

Approximation [A2] is then achieved using
∑i−1

k=1(1 − ρi−k)/(k(1 − ρ)) ≈ γ + ln(i − 1), by taking the ratio
(1−ρi−k)/(1−ρ) ≈ 1 (noting that this ratio is in fact less than or equal to1) and taking a first-order approximation
to the digamma function in the resulting(i − 1)th harmonic number.
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