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Abstract: Formetapopulation management problems with small state spaces, it is typically possible to model
the problem as a Markov decision process (MDP), and find an optimal control policy using stochastic dynamic
programming (SDP). SDP is an iterative procedure that seeks to optimise a value function at each timestep by
trying each of the actions defined in the MDP.

Although SDP gives the optimal solution to conservation management questions in a stochastic world, its
applicability has always been limited by the so-called curse of dimensionality. The curse of dimensionality
is the problem that adding new state variables inevitably results in much larger (often exponential) increases
in the size of the state space, which can make solving superficially small problems impossible. A large state
space makes optimal SDP solutions computationally expensive to compute because optimal SDP techniques
require the value function to be updated for the entire state space for every time step. The high computational
requirements of large SDP problems means that only simple population management problems can be analysed.

In this paper we present an application of the on-line sparse sampling algorithm proposed by Kearns, Mansour
& Ng (2002), which can be used to approximate the optimal solution of a MDP for a given starting state.
The algorithm is particularly attractive for problems with large state spaces as it has a running time that is
independent of the size of the state space of the problem.

We apply the algorithm of Kearns et al. (2002) to a hypothetical fish metapopulation where we define the
management objective to be to maximise the number of occupied patches during the management horizon.
Our model has multiple management options to combat the threats of water abstraction and waterhole
sedimentation. We compare the performance of the optimal solution to the results of the on-line sparse sampling
algorithm for a simple 3-waterhole case. We find that the approximation algorithm out-performs a random
strategy for almost all combinations tested. In this case, the on-line algorithm gives the best approximation to
the optimal SDP solution with three look-ahead steps and just two samples per approximation step. For this
simple problem there does not appear to be much benefit in increasing the number of samples, although deeper
simulation is required to confirm this. If only limited computing power is available, these results suggest that
the best approximation will be obtained using three look-ahead steps and two samples per approximation step.

General results for management are hard to obtain from this theoretical model, as the results are highly
dependent on the arbitrary parameters used to generate the results. However the results obtained suggest that
the continued presence of water in the system is critical to the survival of the metapopulation, and that for this
parameter set, prevention of water abstraction is more important than catchment management for this system.
Further work needs to be done to properly parameterize this model before general results can be drawn with
more confidence.

This paper introduces a new algorithm to conservation management that provides a way to avoid the effects
of the curse of dimensionality. The work has the potential to allow us to approximate solutions to much more
complex metapopulation management problems in the future.

Keywords: Markov decision processes; Stochastic dynamic programming; Metapopulation; Optimal
management; On-line sparse sampling algorithm
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1. INTRODUCTION

Markov Decision Processes. Many conservation problems can be thought of as sequentially trying to
make ‘good’ decisions when the dynamics of the system are stochastic, where ‘good’ refers to maximising
or minimising a specified conservation objective (Possingham et al. 2001, Shea et al. 1998). Thinking
of conservation problems this way makes them amenable to solution using Markov Decision Processes
(MDPs). A MDP provides a formal framework for making sequential decisions under uncertainty and has five
components: i) the state space (we assume that this is finite and discrete), ii) the set of management actions
that can influence the system, iii) the time frame of interest, iv) the transition probability matrix, and v) the
immediate costs (or rewards) associated with being in a given state and taking a given action. The solution to a
MDP is an optimal policy. The policy associates each state with an action so that if the policy is followed, the
objective will be achieved with maximum probability. For more in depth discussion on using Markov decision
theory in ecology and conservation management, see Mangel & Clark (2000), or Possingham et al. (2001).

Generating the optimal solution: stochastic dynamic programming.
For Markov Decision Processes (MDP) with small state spaces, it is possible to use stochastic dynamic
programming (SDP) (Puterman 1994) to compute an optimal control solution. SDP is an iterative procedure
that optimises a value function at each timestep by trying each of the actionsa defined in the MDP. The set
of all possible actions for a states is defined asA(s). The value function represents the global value of being
in a state relative to the objective. The optimal value functionV ∗(s) for a states ∈ S at any timet can be
computed iteratively using the infinite-time version of Bellman’s optimality equation (Puterman 1994) and the
estimate of the value function from the previous time step:

Vt(s) = min
a∈A(s)

[rt(s, a) + γ
∑

s′∈S

P (s′|s, a) · Vt−1(s
′)], (1)

wherert(s, a) is the local cost paid for being in states and taking actiona at timet, γ is a discount factor
(0 < γ ≤ 1) that discounts the importance of future states because they are uncertain, andP (s′|s, a) is the
probability of transition from states to states′ after taking actiona. The discount factor can be thought of as
how much we value future rewards compared to immediate benefits. Systems with higher values ofγ place a
greater value on future rewards, whereas systems with lower values ofγ place a greater emphasis on obtaining
immediate rewards. For discount factors less than unity (γ <1), equation 1 converges to the optimal value
functionV ∗(s).

Once the value function has converged, the optimal policyπ∗(s) for states is the action that minimises the
value function:

π∗(s) = arg min
a∈A(s)

[r(s, a) + γ
∑

s′∈S

P (s′|s, a) · V ∗(s′)]. (2)

The applicability of SDP is limited by the curse of dimensionality, which is the problem that adding new state
variables results in exponential increases in the size of the state space. This ‘curse’ makes computing even a
simple optimal SDP solution computationally expensive for many realistic models. The reason that the SDP
algorithm is time-consuming for large state spaces is that optimal SDP techniques require the value function to
be updated for the entire state space for every time step. The resulting high costs mean that only very simple
models can be analysed.

Dealing with large state spaces : an on-line sparse sampling algorithm.
When the state space for a conservation management problem is large, true optimal SDP solutions become
simply too difficult to calculate. In this section we describe an on-line sparse sampling algorithm proposed
by Kearns et al. (2002), which can be used to approximate the optimal solution for a given starting state. The
term ‘on-line’ means that the policy is evaluated one step at a time based on the current state of the system.
The algorithm is particularly attractive for problems with large state spaces as it has a running time that is
independent of the size of the state space of the problem.

The Kearns et al. (2002) algorithm requires both an input state and a generative model which is able to predict
transition probabilities from the current state (for this paper the generative model is equivalent to the transition
probability matrix because the underlying dynamic is a discrete-time Markov chain). The algorithm calculates
a near optimal policy for the input state in the next timestep using the generative model to sample states in the
vicinity of the starting state. The algorithm “looks ahead” a defined number of time steps and carries out a
smaller sub-MDP calculation on the states that are likely to be visited in the future. Because the algorithm only
looks at states in the neighbourhood of the current state, the policy obtained will only approximate the optimal
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solution for the current state. This means we sacrifice the computationally expensive global optimal solution
for a faster local approximation that can be computed for any sized state space.

In practice, the Kearns et al. (2002) algorithm means trying every actionC times from each states. For each
new states′, the generative model is used to again try each actionC times. The recursion is repeated for a
defined number (H) of look-ahead steps. The process is best visualised as a tree diagram of depthH and
branch widthC (Figure 1). The total size of the tree isO(|A|C)H .

Figure 1. The Kearns et al. sparse look-ahead tree for
an initial states0, with C=3 samples and two actions
a1, a2 (modified from Ṕeret & Garcia (2004)).

Using the states generated by the model, the
value function for the current state can be updated
according to (Ṕeret & Garcia 2004):

VC,h(s) =















Ṽ (s) if h = 0
mina∈A(s)Qh(s, a) otherwise
where Qh(s, a) =
[r(s, a) + γ

C

∑

s′∈S(s,a,C) VC,h−1(s
′)],

(3)

whereh ∈ {0, 1, ..,H} is the iteration index and
S(s, a, C) is the set ofC states that are sampled from
initial states after carrying out actiona. Equation 3
is an iterative equation where each step is denoted
using the indexh. The approximately optimal value
function Ṽ (s) is computed for the current state (h= 0) by simulatingC daughter statess′ and computing the
value function for each daughter state. The Q-function is zero for all actionsa whenh = 0 (i.e. Q0(s, a) = 0),
and so all future values can be derived iteratively from this. The best action for the current time step is the
action that results in the minimum value ofQH(s, a). For further explanation of the algorithm, refer to Kearns
et al. (2002).

In this paper we follow the work of Ṕeret & Garcia (2004) and demonstrate the use of this algorithm
in metapopulation management. A metapopulation is a collection of spatially separated populations of a
single species with some degree of movement between populations (Levins 1969, Hanski & Gaggiotti 2004).
We investigate the performance of the algorithm by computing the optimal solution for a spatially explicit
metapopulation management problem with three patches and comparing it to the predictions of the Kearns
et al. (2002) approximation for different values ofH andC.

2. METHODS

An application: an arid-zone fish metapopulation. To illustrate how the sparse sampling approximation
can be used to solve more complex conservation problems, a spatially explicit metapopulation model (Day &
Possingham 1995, Ovaskainen & Hanski 2004) was constructed to solve an optimal management problem for
fish populations in a series of waterholes in a hypothetical semi-arid zone river. For most of the year the river
does not flow, restricting fish species in the river to remnant waterholes. Infrequent large rainfall events cause
the river to flow, and allow the fish to disperse to other sites in the river. We assume that there are two major
threats to fish in the river: sedimentation of the waterholes due to poor land practices causing erosion in the
riparian zone; and abstraction of water from the waterholes by local land owners for use on agricultural land.
To test the algorithm, we modelled a simplified 3-patch system. Because this system is relatively small, we
can calculate an optimal solution using SDP which can be compared to the results of the on-line solution. The
initial state of the system is shown in figure 2.

Figure 2. Initial state of the hypothetical river system. The water
capacity of each patch is 3 units. Patches 1 and 2 are occupied and
at full water capacity. Patch 3 is unoccupied, partly sedimented,
and has 1 unit of water.

The metapopulation model. Each
patch in the metapopulation is allowed
to have three state variables: patch
occupancy (n= 1 or 0 if occupied or
empty respectively), current water depth
of the pond (d∈ {0,1,2..x}), and total
depth (i.e. top of bank to deepest point)
of the pond (x∈ {0,1,2... xmax}). In
this paper we setxmax = 3. The units of
depth are not specified but can be thought
of as relative units (e.g. empty, low,
medium and high water levels). For a
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system withM patches, the size of the state space will be[2(xmax + 1)(xmax+2
2 )]M . The system is modelled

as a discrete-time Markov chain (e.g. Akcakaya & Ginzburg (1991), Day & Possingham (1995), Possingham
(1996)). This section describes the model and records how to define the transition probability for the Markov
chain.

In the absence of management, there are five independent processes that may occur: sedimentation of one
or more of the waterholes, water abstraction from the waterholes, a rainfall event, and fish colonisation and
extinction events. It is assumed that evaporation reduces the water level in the ponds on a much slower timescale
than sedimentation and abstraction, and so we neglect evaporation from the model.

Sedimentation of a waterhole is assumed to occur with probabilityδ and, if it occurs, has the result that the
total depth of pondi is reduced by one unit (xi → xi − 1, wherexi is the pond depth of theith pond).
To define the transition probability after sedimentation for a system ofM ponds, we first define a vector
X̃ = (x1, x2, ..., xM ). The effect of sedimentation in theith patch in the next time step is determined by the
random variableX̃ ′(i), which has observed valuexi ∈ {0, 1, 2, ..., xmax},∀i ∈ {1, 2, ...,M}. The probability
distribution of a transition in theith pond from stateX̃(i) to a new state determined bỹX ′(i) is: P(X̃ ′(i) =

X̃(i) − 1|X̃(i), X̃ ′(i) ≥ 0) = δ, P(X̃ ′(i) = X̃(i)|X̃(i)) = 1 − δ, and otherwise the probability of transition
is zero. Each pond may undergo a transition independently of the others, so the probability of transition from
X̃ to a stateX̃ ′ is:

P(X̃ ′|X̃) =

M
∏

i=1

P(X̃ ′(i)|X̃(i)). (4)

Similarly, abstraction may occur with probabilityκ, in which case it reduces the depth of water in pondi
by one unit (di → di − 1, wheredi is the depth of water in theith pond). We define a vector of depths
D̃ = (d1, d2, ..., dM ). The effect of abstraction in theith patch in the next time step is determined by the
random variableD̃′(i), which has observed valuedi ∈ {0, 1, 2, ..., xi},∀i ∈ {1, 2, ...,M}. The probability
distribution of a transition due to abstraction is given by: P(D̃′(i) = D̃(i)−1|D̃(i), D̃′(i) ≥ 0) = κ, P(D̃′(i) =

D̃(i)|D̃(i)) = 1 − κ, otherwise the probability of transition is zero. Analogous to the sedimentation case,
the probability of transition fromD̃ to D̃′ is given by the product of the per-patch conditional probabilities:
P(D̃′|D̃) =

∏M
i=1 P(D̃′(i)|D̃(i)).

The system is assumed to be driven by occasional very large rainfall events that completely fill the ponds, so
we neglect small rainfall events. Rainfall can occur with probabilityp and is assumed to fill all ponds to their
maximum water depth (xi) simultaneously. The transition probability to stateD̃′′ resulting from a rainfall
event using the vector of water depths after sedimentation and abstractionD̃′ is p, if D̃′′ = X̃ ′, and1 − p if
D̃′′ = D̃′. If neither condition is satisfied, the transition probability is zero.

We can combine the probabilities of abstraction and rainfall to get the probability that the water depth changes
in one time step:

P(D̃′′|D̃) = P(D̃′′|D̃′)P(D̃′|D̃). (5)

The processes of colonisation and extinction are obtained using a modified incidence function model (Hanski
1994). For a waterhole to be colonised, there needs to be a sufficient depth of water in the river for neighbouring
waterholes to be connected by a continuous stream of water. We denote the waterhole depth at which connection
occurs with the parameterd∗, and we let the nearest upstream waterhole from a waterholei that has a depth
less thand∗ be at positionv (v ∈ {i, i + 1, ...,M}), and the nearest downstream waterhole with depth less than
d∗ be at positionu (u ∈ {1, ..., i}). If there are no waterholes downstream or upstream with depth less thand∗,
u andv respectively are not defined by this notation, and we define the connected region explicitly. If there are
waterholes with depth less thand∗ above and below patchi, thenu andv are already defined, and the stream
around waterholei is connected from waterholesu + 1 up tov − 1. We define this connected stream segment
using the indexj, such thatj ∈ {u + 1, ..., i − 1, i, i + 1, ..., v − 1}. When all upstream patches have depth
greater thand∗ (i.e. whenv is not defined), the connected section is fromj ∈ {u+1, ...,M −1,M}, and when
all downstream patches have depth greater thand∗ (i.e. whenu is not defined), the connected segment is from
j ∈ {1, 2, ..., v − 1}.

For a stateÑ = (n1, n2, ..., nM ), we define a random variablẽN ′(i) representing the occupancy state of the
ith waterhole, which has observed valueni ∈ {0, 1},∀i ∈ {1, 2, ...,M}. The probability of colonisation
of the ith waterhole is given by: P(̃N ′(i) = 1|Ñ(i) = 0) = ci, P(Ñ ′(i) = 0|Ñ(i) = 0) = 1 − ci, and
P(Ñ ′(i)|Ñ(i)) = 1 if neither of these conditions are satisfied. We defineci = 1

1+( y′

Si
)2

, if Si > 0, andci = 0

1777



otherwise. The parametery′ is a fitting parameter that describes the colonisation ability of the species (smaller
y′ values correspond to better dispersal (Hanski 1994)) andSi =

∑

j 6=i nj exp(−αρij)(dj − d∗). The depth
of the jth waterholedj serves as a measure of patch quality and causes deeper waterholes to have a higher
probability of sending colonists to other waterholes. The distance between waterholesi and j is ρij , nj is
the occupancy of thejth waterhole, andα is a constant that represents the survival rate of migrants. For the
illustrative case study in this paper, we make the simplifying assumption that the waterholes are connected
whenever there is water in the system (d∗ = 0).

The probability of extinction of theith waterhole from the new occupancy statẽN ′(i) is determined by
a random variableÑ ′′(i), which has observed valueni ∈ {0, 1},∀i ∈ {1, 2, ...,M}. The probability
of extinction is given by P(̃N ′′(i) = 0|Ñ ′(i) = 1) = ei, P(Ñ ′′(i) = 1|Ñ ′(i) = 1) = 1 − ei, and
P(Ñ ′′(i)|Ñ ′(i)) = 1 if neither of these two conditions are satisfied. We defineei = min [ θ

d
β
i

, 1], wheredi

is the depth of theith pond, andθ andβ are two constants that scale the extinction probability to the depth of
water in the waterhole.

The colonisation and extinction probabilities can be used to define the probability that the waterhole occupancy
changes in one time step:

P(Ñ ′′|Ñ) =

M
∏

i=1

P(Ñ ′′(i)|Ñ ′(i))P(Ñ ′(i)|Ñ(i)). (6)

We are now ready to define the transition probability. We can represent a state(Ñ , D̃, X̃) as a vector of
the vectorsÑ , D̃ and X̃ defined above. Thus the probability of transition to a new state(Ñ ′′, D̃′′, X̃ ′) is
P (Ñ ′′, D̃′′, X̃ ′|Ñ , D̃, X̃), which we can simplify to:

= P(Ñ , D̃, X̃ ′|Ñ , D̃, X̃)P(Ñ , D̃′′, X̃ ′|Ñ , D̃, X̃ ′)P(Ñ ′′, D̃′′, X̃ ′|(Ñ , D̃′′, X̃ ′)
= P(Ñ ′′|Ñ)P(D̃′′|D̃)P(X̃ ′|X̃).

(7)

Using equations 4, 5, and 6, the value of equation 7 can be determined. The order of events in a timestep is
sedimentation-abstraction-rainfall-colonisation-extinction.

Problem formulation as a Markov Decision Process. We define the management objective to be to
minimise the number of waterholes that do not have fish present each year throughout the management
horizon. We have already defined the state space of the system in the metapopulation model section above. For
a system ofM patches, we defineM + 3 management actions. The metapopulation model allows managers
to reduce sedimentation by improving catchment management practices (i.e. decreaseδ → δ′), or by direct
intervention by dredging one of theM waterholes to deepen it sufficiently for fish to re-colonise it during
the next rainfall event (i.exi → xmax). To manage abstraction, managers may directly police waterholes to
prevent illegal water removal (reduceκ → κ′). Finally, if no management is required, managers may choose to
take no action. It is assumed that managers can carry out only one action per time step, and we do not consider
the cost of management actions. The transition probabilities for the MDP assuming no management are defined
by the metapopulation model of section 2. When a management action is selected, the transition probabilities
have the same form, but the parameter corresponding to the selected action is changed as described earlier in
this paragraph.

The cost functionr(s) for being in a states is simply equal to the total number of waterholes minus the number
of occupied waterholes in that state (i.e.M −

∑M
i=1 ni, ni ∈ {0, 1}). The management objective is equivalent

to minimising the cost function over the management period. For this paper, we set an infinite time horizon for
management, and evaluate the optimal solution until it reaches an equilibrium strategy.

Algorithm evaluation. The optimal solution for the problem is given by evaluating equations 1 and 2
using the transition probability from equation 7, where the states = (Ñ , D̃, X̃), ands′ = (Ñ ′′, D̃′′, X̃ ′). The
cost is given byr(s, a, t) = r(s), and the action is chosen from the setA(s) = 1, 2, ...,M + 3, where each
number inA(s) refers to one of the management options.

To evaluate the Kearns et al. (2002) algorithm, we use equation 3 and a set value ofH andC to find the
optimal action for the current time step. The approximation is used to generate a trajectory of states over the
management period by carrying out the algorithm to find the best action, simulating the next state by applying
the best action to the current state, then repeating the approximation process to find the best action for the new
state. This is repeated for the desired trajectory length.
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3. RESULTS AND DISCUSSION

Performance of the approximation algorithm. The results of carrying out the on-line sampling algorithm
are compared against the optimal solution for the 3-patch (M= 3) metapopulation in figure 3. The total cost
plotted in figure 3 is the total number of instances that a waterhole was unoccupied over the full management
period. The solid black line gives the cost of carrying out the optimal solution until an equilibrium policy
is reached (11 timesteps). The random solution is the result of randomly choosing a management option for
each timestep. Both of these scenarios are evaluated 500 times to obtain the average result in the figure.
The remaining three lines on the figure show the results of the on-line approximation algorithm forC=2, 6,
and 10 samples respectively, plotted against the depth of the look-ahead algorithm (horizontal axis). Each
approximation was run for the same length of time as the optimal solution (11 timesteps) and the process was
repeated 30 times to give the average values plotted in the figure.
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Figure 3. Performance of the Kearns et al. sparse look-ahead algorithm against the optimal solution and a
random management strategy. The trajectories are run until equilibrium is reached (11 steps). The vertical axis
shows the average cost over the full 11-step trajectory after multiple trials (see text). Parameters used for this
simulation were:δ= 0.05;δ′= 0.0005;κ= 0.2;κ′= 0.02;p= 0.3;α= 0.01;y′=0.1;θ= 0.1;β= 0.3;γ= 0.8.

The approximation algorithm out-performs a random strategy except whenC=2, H=1. In this case the
algorithm only chooses one more new state from the next-state distribution than the random strategy and looks
no further ahead than the random strategy, so the result should not differ greatly from the random strategy. The
approximation was simulated just 30 times (the random strategy is simulated 500 times) so there is likely to
be uncertainty in the approximation since so few samples are taken at each step. It is likely that the cost of
approximating with just one look-ahead step should in fact be roughly equal to a random strategy (as is the case
whenC= 6 or 10).

Péret & Garcia (2004) found the existence of an optimal number of look-ahead steps when the number of
samplesC is fixed. In figure 3, there appears to be a minimum cost at three look-ahead steps in the case
whereC=2, although deeper simulation should be carried out to lend this claim more credence. However
where computer power is limited, best results for the approximation will be obtained by using 3 look-ahead
steps. Interestingly there does not seem to be much gain in using more than two samples to look-ahead, since
the results forC=6 andC=10 do not result in average costs that are noticeably lower than theC=2 case.
This is probably caused by this particular model, which has a high probability of visiting only a few states
in any one time step. It would be very interesting to see if this applies more generally to metapopulation
models, as removing the need to sample a large number of states in each timestep will increase the speed of
the approximation.

Lessons for River Management. The system is highly dependent on the presence of adequate water
in the system. This means that whenever a state is reached where the remaining occupied patches have low
water, the optimal action is always to prevent water removal from the stream. Where only one patch was
occupied and had sufficient water, deepening the nearest patch was the best option. In general, catchment
management was only a good option if there was no advantage to preventing abstraction (i.e. remaining
waterholes full/empty). However this finding reflects the parameters used in this model (the probability of
abstraction is much greater than the probability of sedimentation). The results intuitively make sense, however
since the parameters were not based on empirical data, it is hard to generalise management lessons from this
hypothetical model. More work needs to be done to properly parameterise the model.
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4. CONCLUSIONS

The on-line approximation algorithm of Kearns et al. (2002) provides a relatively efficient way to solve Markov
decision problems with very large state spaces. In this paper, we demonstrated that the algorithm performs
well against the optimal solution to a small but complex metapopulation problem. We also showed that
the approximation out-performs a random strategy. This is the first time this method has been applied to a
metapopulation problem and provides a powerful tool for solving complex conservation management problems
in the future.

The greatest limitation to the algorithm is that although the algorithm is state space independent, it still has a
state space that increases exponentially with the number of look-ahead steps (Kearns et al. 2002). Consequently
the algorithm still has a long running time. An interesting question for further research will be to consider at
what sized state space it is worth moving from a conventional SDP solution to an approximation algorithm such
as this.

Other than being state space independent, the other benefit of this algorithm is that it is calculated on-line.
This means that each update is calculated based on the current state of the system and is based on the current
generative model. This means that the algorithm could potentially be used to evaluate optimal solutions when
the generative model changes with time. This adaptive approach differs from off-line approaches like SDP,
which need to evaluate the full optimal solution assuming a static generative model. Another problem for
future research is to attempt to use an on-line approach to solve partially observable MDPs in conservation.

This paper introduces a new algorithm to conservation management. This method theoretically enables us
to solve optimal management problems with infinitely large state spaces. Greater complexity in decision
making models means we can better represent the real world, leading to more realistic decisions and improved
conservation management.
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