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Abstract: The term ‘metapopulation’ is used to describe individuals of a species living as a group of local
populations in geographically separate, but connected, habitat patches (Levins 1970, Hanski 1999). Patches
may become empty through local extinction and empty patches may be recolonised by migrants from other
local populations. A balance between local extinction and colonisation may be reached which allows the
metapopulation to persist (Hanski 1999). The relationship between these two processes is therefore an
important consideration when formulating mathematical metapopulation models. We suppose that events of
the same type occur in seasonal phases, so that extinction events only occur during the extinction phase and
colonisation events only occur during the colonisation phase, and that these phases alternate over time. They
may correspond to two parts of an annual cycle, for example, where local populations are prone to extinction
during winter while new populations establish during spring.

We assume that a census takes place either at the end of the colonisation phase (. . . -extinction-colonisation-
census- . . . ) or at the end of the extinction phase (. . . -colonisation-extinction-census- . . . ), and thus fits
naturally within a discrete-time modelling framework. If extinction and colonisation events were to occur
in random order, then a continuous-time model would of course be preferred. Here we use a discrete-time
Markov chain whose state nt is the observed number of occupied patches at the t-th census. Its transition matrix
is the product of two transition matrices that govern the individual extinction and colonisation processes. This
approach has been used previously and several models have been proposed (Akçakaya and Ginzburg 1991, Day
and Possingham 1995, Hill and Caswell 2001, Klok and De Roos 1998, Tenhumberg et al. 2004, Rout
et al. 2007). Each model accounts for local extinction in the same way, but different methods are used
to model the colonisation process, reflecting the differing breeding habits and means of propagation of the
particular species under investigation. Whilst they account for a range of colonisation behaviour, the models
were examined using numerical methods and simulation, and few explicit analytical results were obtained.
Furthermore, only the extinction-colonisation-census scenario was considered. Whilst it is certainly true
that timing of the census is arbitrary in that it does not affect the dynamics of the metapopulation (Day and
Possingham 1995), its timing may affect the efficiency of any statistical procedures used to calibrate the models
and successful implementation of management actions.

We present a new and quite general approach to modelling the colonisation process, one that permits explicit
expressions for a variety of quantities of interest. We concentrate here on a mainland-island configuration:
the patches (islands) receive migrants from an external source (the mainland), assumed to be immune from
extinction. We evaluate the distribution of nt at any census time t. We then establish a law of large numbers,
which identifies a deterministic trajectory that can be used to approximate (nt, t ≥ 0) at any time t when the
number of patches is large. We also establish a central limit theorem, which shows that the fluctuations about
this trajectory are approximately normally distributed. These results are useful in understanding the patch
occupancy process when the parameters of the model are known. For example, the mean and variance of nt,
and the expected time to first total extinction, can be exhibited explicitly. We describe briefly much finer results
that can be used for model calibration.
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1. INTRODUCTION

Stochastic patch-occupancy models (SPOMs) which assume that extinction and colonisation occur in distinct
phases in discrete-time can be categorised as (i) heterogeneous SPOMs (Akçakaya and Ginzburg 1991, Day
and Possingham 1995) or (ii) homogeneous SPOMs (Daley and Gani 1999, Hill and Caswell 2001, Klok and
De Roos 1998, Rout et al. 2007, Tenhumberg et al. 2004).

Heterogeneous SPOMs use a vector of size N to describe the presence/absence of occupants in an N -patch
metapopulation, the k-th component being 1 or 0 according to whether the k-th patch is occupied or empty.
Local extinction and colonisation event probabilities can be patch-specific, such as in Akçakaya and Ginzburg’s
(1991) 3-patch model for the endangered Mountain Gorilla (Gorilla gorilla beringei) metapopulation in
Uganda, or vary according to patch size and position as demonstrated in Day and Possingham’s (1995) 8-patch
model for the malleefowl (Leipoa ocellata) metapopulation in South Australia. Since there are 2N possible
states, the analysis of these models quickly becomes computationally expensive as N increases. Homogeneous
SPOMs on the other hand simply record the number of occupied patches and therefore have only N+1 states for
an N -patch metapopulation, entailing computationally inexpensive analysis even for large (N = 50) networks.
Whilst patches are assumed to behave in the same way, these models can account implicitly for spatial
arrangement by allowing the colonisation probabilities to depend on the number of occupied patches. They
have additional appeal because, as we shall see, they can be analytically tractable. Two-phase homogeneous
SPOMs are usually based on the following approach to modelling the extinction and colonisation processes.

Extinction and colonisation. Occupied patches are assumed to go extinct independently, each with the same
probability e. Hence, given i patches initially occupied, the number that survive the extinction process follows
a binomial B(i, 1 − e) law. With j patches remaining after the extinction phase, the N − j empty patches
either remain empty or are colonised during the subsequent colonisation phase. In modelling the colonisation
process one must consider how individuals disperse through the metapopulation network. Hill and Caswell
(2001) assume implicitly that propagules arrive at each patch according to a homogeneous Poisson process
with rate βi/N , where i is number of patches currently occupied and β is the expected number of propagules
produced by each occupied patch. Thus, the probability that one or more propagules arrive at any given patch
is ci = 1 − exp(−βi/N), and so, given i patches occupied, the total number of colonisation events follows a
binomial B(N − i, ci) law. Their model goes one step further in allowing only a fixed subset of the N patches
to be suitable for habitation.

Klok and De Roos (1998) suppose that colonisation comprises two separate processes: (i) reproduction, which
determines the number of juveniles born to adults that survive the preceding extinction phase (each adult
occupying one patch or ‘territory’), and (ii) settlement, which determines how many patches are colonised
by juveniles. Each process is governed by its own transition matrix and these are multiplied to produce the
overall transition matrix for the colonisation phase. Their model was designed to study the common shrew
(Sorex araneus L.), which exhibits the three-phase (extinction-reproduction-settlement) behaviour described.

Tenhumberg et al. (2004) and Rout et al. (2007) model a single population of individuals with an assumed fixed
population ceiling. Their models track the number of female individuals, each producing either a maximum
of one offspring (Tenhumberg et al. 2004), or a number of offspring (Rout et al. 2007) determined by the
binomial distribution. The total number of females resulting from the colonisation process is then determined
by a recursive formula.

These Markov chain models are often referred to as chain-binomial models (Daley and Gani 1999, Hill and
Caswell 2001), because the numbers of patches/individuals remaining after each phase is determined by a
binomial distribution whose parameters are determined by the result of the previous phase.

Timing of the census. Whilst the choice between taking the census after colonisation or after extinction
does not affect the dynamics of the metapopulation, it is certainly important from an empirical perspective.
For example, Klok and De Roos (1998) chose to census after the colonisation phase because the real shrew
population was known to be more stable at this time.

In this paper we introduce a homogeneous stochastic patch-occupancy model of a similar design to those
described, but with a new and quite general approach to modelling colonisation. We study both census scenarios
and present analytical results for both, concentrating here on the mainland-island configuration.



2. THE MODEL

Suppose there are N patches. Let nt be the observed number occupied at census time t ∈ {0, 1, . . . } and
suppose that (nt, t ≥ 0) is a discrete-time Markov chain that takes values in S = {0, 1, . . . , N} with transition
probabilities P = (pij). The colonisation and extinction processes are governed by their own transition
matrices, E = (eij) and C = (cij), respectively, so that P = EC (the EC model) if the census is taken
just after the colonisation phase or P = CE (the CE model) if the census is taken just after the extinction
phase.

Extinction phase. Occupied patches are assumed to go extinct independently, each with the same probability e
(0 < e < 1). Thus, given i occupied at the start of the extinction phase, the number that survive extinction
follows a B(i, 1− e) law. Therefore, eij =

(
i
j

)
(1− e)jei−j for j = 0, . . . , i, and eij = 0 for j > i.

Colonisation phase. Suppose that, given i occupied patches at the start of the colonisation phase, the empty
patches are colonised independently, each with probability ci (0 < ci < 1). We call ci the colonisation
potential (of i occupied patches). Thus, given i occupied (and hence N − i unoccupied), the number of empty
patches colonised during this phase follows a B(N − i, ci) law. Therefore, cij =

(
N−i
j−i

)
(1 − ci)N−jcj−i

i for
j = i, i + 1, . . . , N , and cij = 0 for j < i. This general setup accommodates (among other choices):

(i) ci = 1 − exp(−βi/N), which is Hill and Caswell’s (2001) specification with β being the propagation
rate;

(ii) ci = (i/N)c, where the colonisation potential is proportional to the number of occupied patches up to a
fixed maximum colonization potential c ∈ (0, 1], the (hypothetical) probability that a single unoccupied
patch would be colonized by the fully occupied network;

(iii) ci = c∗(1 − (1 − c1/c∗)i), so that a ‘law of decreasing returns’ operates (the colonization potential of
the occupied group increases by less and less with each addition of an occupied patch), and c1 ≤ c∗

(≤ 1) where c1 is the probability that an empty patch will be colonised given there is one patch occupied
(i = 1) and c∗ is the limiting colonisation potential (cN → c∗ as N →∞);

(iv) ci = c, the same for all i = 0, . . . , N (in particular i = 0), which corresponds to there being a ‘mainland’
providing overwhelming colonization potential, the potential of colonized patches being insignificant in
comparison;

(v) A combination of (iv) with any of (i)–(iii), for example ci = c0 + (i/N)c, which would correspond to
there being a mainland, but with a significant internal colonisation process operating according to (ii).

If desired, we can evaluate P elementwise using pij =
∑min(i,j)

k=0 eikckj for the EC model and pij =∑N
k=max(i,j) cikekj for the CE model. Notice that E is lower-triangular and C is upper-triangular, but that

P is dense. Notice also that pi0 = ei(1 − c0)N for the EC model and pi0 = ei(1 − ci(1 − e))N−i for the CE
model, and that p0j =

(
N
j

)
(1 − p0)N−jp j

0 , where p0 = c0 for the EC model and p0 = c0(1 − e) for the CE
model. Thus, in cases (i)–(iii), we have p0j = δ0j , implying that 0 is the (sole) absorbing state (corresponding
to total extinction) with {1, . . . , N} being a communicating class from which 0 is accessible. We will content
ourselves with a detailed analysis of Case (iv).

In Case (iv) it is useful to think of the patches as being islands that receive migrants from a mainland:
hence the term mainland-island model. Now S is irreducible and aperiodic, and so the Markov chain has
a unique stationary (and hence limiting) distribution. We will evaluate this below in Corollary 1. We begin
by exhibiting explicitly the distribution of nt, the number of occupied patches at time t. We then establish a
law of large numbers, which identifies a deterministic trajectory that can be used to approximate (nt), and then
a central limit theorem, which shows that the fluctuations about this trajectory are approximately normally
distributed. With ci = c, our model can be reinterpreted as a chain-binomial SIS (susceptible-infected-
susceptible) epidemic model that incorporates immigration-emigration episodes; see Section 4.4 of Daley and
Gani (1999). Our results apply equally to their model, with nt interpreted as the number of susceptibles.

3. RESULTS FOR THE MAINLAND-ISLAND MODEL

The simplicity of the mainland-island model is exemplified by the following lemma. We see that the behaviour
of both models (EC and CE) can be summarized in terms of a single pair of parameters (p, q): for the EC
model p = 1− e(1− c) and q = c, while for the CE model p = 1− e and q = (1− e)c. It will be clear from
the statement of Lemma 1 that p and q can be interpreted as ‘effective’ survival and colonisation probabilities.



Lemma 1 Given nt = i, nt+1 has the same distribution as the sum of two independent binomial random
variables, B1 and B2, with B1 ∼ B(i, p) and B2 ∼ B(N − i, q).

Remark: It is as if each of the i currently occupied patches remains occupied with probability p and each
of the N − i currently unoccupied patches becomes occupied with probability q, all patches being affected
independently.

Our main result gives the distribution of nt at any time t, conditional on the initial (t = 0) number of occupied
patches. Set a = p − q = (1 − e)(1 − c), being the same for both models, and q∗ = q/(1 − a), noting that
0 < a < 1 and 0 < q∗ < 1. It will be clear from the statement of Theorem 1 that q∗ is the equilibrium expected
proportion of occupied patches, and that a is the rate of (geometric) approach to equilibrium.

Theorem 1 Define sequences (pt) and (qt) by qt = q∗(1− at) and pt = qt + at (t ≥ 0). Then, given n0 = i,
nt has the same distribution as the sum of two independent binomial random variables, B

(1)
t and B

(2)
t , with

B
(1)
t ∼ B(i, pt) and B

(2)
t ∼ B(N − i, qt).

Remark: It is as if each of the i initially occupied patches remains occupied with probability pt and each
of the N − i initially unoccupied patches becomes occupied with probability qt, all patches being affected
independently.

We may conclude that E(nt|n0 = i) = ipt+(N−i)qt and, since B
(1)
t and B

(2)
t are independent, Var (nt|n0 =

i) = ipt(1 − pt) + (N − i)qt(1 − qt). Note also that the sequences (pt) and (qt) satisfy p0 = 1 and q0 = 0,
p1 = p and q1 = q, and, both have limit q∗. Theorem 1 is therefore consistent with Lemma 1 and, furthermore,
the equilibrium behaviour of our model is very simple to describe. It is as if each of the N patches is occupied
independently with probability q∗:

Corollary 1 Given n0 = i, nt converges in distribution to a binomial B(N, q∗) random variable as t →∞.

This is illustrated in Figure 1, along with a simulation of the EC model. It is important to realise that it is
the equilibrium observed occupancy that follows the binomial B(N, q∗) law, and that the expected equilibrium
observed proportion q∗ depends on when the census is taken; it is smaller for the CE model than for the EC
model by a factor of 1− e. Indeed, because the extinction and colonisation processes are assumed to occur as
distinct phases, the long-term proportions fluctuate between high and low.

Next we examine the proportion X(N)
t (= nt/N) of occupied patches at time t, and consider what happens for

fixed t as N gets large. The following law of large numbers shows that the (random) proportion of occupied
patches can be approximated using a deterministic process (xt). Here and henceforth D→ denotes convergence
in distribution.

Theorem 2 Let (iN ) be a sequence of initial states such that iN/N → x0 as N → ∞. Then, for any t ≥ 1,

X(N)
t

D→ xt as N →∞, where xt = ptx0 + qt(1− x0) = q∗ + at(x0 − q∗).

The limiting (t → ∞) proportion of occupied patches for the deterministic process (xt) is q∗. Indeed, the
limiting expected proportion is also q∗. Thus, for both models (EC and CE), the proportion of occupied patches
converges to the same limit regardless of the order in which limits are taken. However, note that q∗ is different
for each model. Indeed, q∗ is uniformly greater for the EC model, which is not surprising because even in
equilibrium the process is observed immediately after colonisation.

We also note a connection with the incidence function model of Hanski (1994), which describes the occupancy
of a single patch using a two-state Markov chain. Hanski uses the term ‘rescue effect’ to describe the deleterious
effect of colonisation on extinction when colonisation is frequent, and intuits that the extinction probability
should be (1 − c)e rather than e (in our notation). However, Lemma 1 (above) establishes that, for the EC
model, (1 − c)e is the effective extinction probability resulting from our assumed two-phase behaviour, and
Corollary 1 establishes that the expected equilibrium observed proportion is q∗ = q/(1−a) = c/(c+(1−c)e),
being precisely Equation 7 of Hanski (1994). Furthermore, our Theorem 1 gives a more detailed interpretation
of the rescue effect. The ‘effective’ extinction probability at time t is 1− pt = (1− q∗)(1− at), which for the
EC model is 1− pt = (1− c)e(1− at)/(1− a), being (1− c)e when t = 1 and (1− e)c/(c + (1− c)e) in the
long term.

The following central limit theorem establishes that, for large N , the fluctuations about the deterministic
trajectory determined by Theorem 2 have an approximate normal (Gaussian) distribution.



Theorem 3 In addition to the conditions of Theorem 2 suppose that
√

N(x(N)−x0) → z0, as N →∞, where

x(N) = iN/N . Let Z(N)
t =

√
N(X(N)

t − xt). Then, for any t ≥ 1, Z(N)
t

D→ N(atz0, vt) as N → ∞, where
vt = pt(1− pt)x0 + qt(1− qt)(1− x0).

Notice that the approximating variance given in Theorem 3 is consistent with the exact variance given by
Theorem 1: VarZ(N)

t = N VarX(N)
t = pt(1 − pt)x(N) + qt(1 − qt)(1 − x(N)) → vt as N → ∞. They will

be identical if x(N) = x0. This is illustrated in Figure 2, along with a simulation of the EC model.

We can also assess the fluctuations about the deterministic equilibrium q∗, provided that the initial proportion
occupied is sufficiently close to q∗, thus giving a much simpler distributional approximation that is appropriate
once equilibrium is reached. On setting x0 = q∗ in Theorems 2 and 3 we obtain the following result.

Corollary 2 Let (iN ) be a sequence of initial states such iN/N → q∗ as N → ∞. Then, for any t ≥ 1,

X(N)
t

D→ q∗ as N → ∞. Let Z(N)
t =

√
N(X(N)

t − q∗). If
√

N(iN/N − q∗) → z0, then, for any t ≥ 1,

Z(N)
t

D→ N(atz0, q
∗(1− q∗)).

Remarks. Afficionados will realise that strong laws of large numbers hold, because convergence in Theorem 2
and the first part Corollary 2 can be strengthened to convergence almost sure. Theorem 3 and the second part of
Corollary 2 allow us to assess the quality of the deterministic approximation. For example, Theorem 3 implies
that, for N sufficiently large, Pr(|X(N)

t − xt| > εt) ' 2(1 − Φ(εt

√
N/vt)), where Φ is the standard normal

distribution function.

4. DISCUSSION

Our results are useful for understanding the patch occupancy process when the effective survival and
colonization parameters p and q are known. Much finer results would be needed for model calibration, because
data would typically be collected at successive census times, and thus observations would be dependent (even in
equilibrium). We have been able to show that the finite-dimensional distributions of the scaled process (Z(N)

t )
defined in Theorem 3 converge to those of a Gaussian Markov chain (Zt) defined by Zt+1 = aZt + Et

(Z0 = z0), where the ‘errors’ Et (t ≥ 0) are independent random variables with Et ∼ N(0, σ2
t ) and

σ2
t = xtp(1− p) + (1− xt)q(1− q). A similar result holds for the scaled process defined in Corollary 2, but

now Et ∼ N(0, q∗(1− q∗)(1− a2)), and so (Zt) is a standard (autoregressive) AR-1 process with identically
distributed errors. Thus, standard time-series methods can be used to estimate p and q. These results will be
reported elsewhere.
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Figure 1. A single simulation of the EC model
with N = 20, e = 0.01 and c = 0.05, starting
with n0 = 2 patches occupied. The number
nt of occupied patches is plotted at times
t = 0, . . . , 200. The bar graph in green is the
B(N, q∗) stationary distribution (q∗ = 0.84034).

Figure 2. A single simulation of the EC model
with N = 20, e = 0.01 and c = 0.05,
starting with n0 = 2 patches occupied (x(N) =
x0 = 0.1). The proportion X(N)

t of occupied
patches is plotted at times t = 0, . . . , 100.
The solid curve joins points on the limiting
deterministic trajectory. The the dashed curve is
± 2 standard deviations as predicted by the normal
approximation.



In addition to the present mainland-island model (Case (iv) above), we have studied Cases (i) and (iii),
evaluating the expected time to total extinction, extinction probabilities, and quasi-stationary distributions. For
models with ci = g(i/N) for some function g, we have developed limit laws which allow one to approximate
the proportion of occupied patches over time by a discrete-time Gaussian (autoregressive) process. These
results, which are based largely on the analytical methods introduced in this paper, will be reported elsewhere.

5. CONCLUSION

We have presented a two-phase discrete-time Markov chain model that describes the dynamics of a
metapopulation network. A new and quite general approach to modelling the colonisation process was
presented, one that substantially subsumes earlier models. Despite its generality, explicit results can be obtained
for several quantities of interest. We concentrated here on the mainland-island case, where the colonization
probability was constant. The distribution of the observed number of occupied patches after the extinction
and colonization phases was obtained (both the time-dependent and equilibrium distribution) and a law of large
numbers and a central limit law were established that permit these distributions to be approximated by a normal
distribution whose parameters were given explicitly.

6. APPENDIX

Proof of Lemma 1. Suppose that nt = i. We will use conditional expectation to evaluate G, the probability
generating function (pgf) of nt+1. For the EC model, nt+1 = U + Z, where U ∼ B(i, 1 − e) and Z ∼
B(N − U, c), and so

G(z) = E(zU+Z) = E
(
E(zU+Z |U)

)
= E

(
zUE(zZ |U)

)
= E

(
zU (1− c + cz)N−U

)

= (1− c + cz)N E
(
(z/(1− c + cz))U

)
= (1− c + cz)N (e + (1− e)z/(1− c + cz))i

= (e(1− c) + [1− e(1− c)]z)i(1− c + cz)N−i.

For the CE model, nt+1 ∼ B(i + Z, 1− e), where Z ∼ B(N − i, c), and so

G(z) = E (E(znt+1 |Z)) = E
(
(e + (1− e)z)i+Z

)

= (e + (1− e)z)i E
(
(e + (1− e)z)Z

)
= (e + (1− e)z)i(1− c + c(e + (1− e)z))N−i

= (e + (1− e)z)i(1− c(1− e) + c(1− e)z)N−i.

Therefore G(z) = (1 − p + pz)i(1 − q + qz)N−i, where p = 1 − e(1 − c) and q = c for the EC model, and
p = 1− e and q = (1− e)c for the CE model. The result follows.

Proof of Theorem 1. Suppose that n0 = i and let Gt be the pgf of nt. Then, G0(z) = zi and, from Lemma 1,

Gt+1(z) = E
(
(1− p + pz)nt(1− q + qz)N−nt

)
= (1− q + qz)N E

((
1− p + pz

1− q + qz

)nt
)

= (1− q + qz)N Gt

(
1− p + pz

1− q + qz

)
, (1)

for all t ≥ 0. The proof will be complete if we can show that

Gt(z) = (1− pt + ptz)i(1− qt + qtz)N−i (2)

for all t ≥ 0, where (pt) and (qt) are the given sequences. Recall that qt = q∗(1−at) and pt = qt +at (t ≥ 0),
where a = p− q = (1−e)(1− c) and q∗ = q/(1−a). Clearly (2) is true for t = 0 because p0 = 1 and q0 = 0.
But, if (2) is true for some fixed t ≥ 0, then a simple calculation involving (1) shows that

Gt+1(z) = (1− (q + apt) + (q + apt)z)i (1− (q + aqt) + (q + aqt)z)N−i

= (1− pt+1 + pt+1z)i (1− qt+1 + qt+1z)N−i
,

and so the result follows by Mathematical Induction.

Proof of Corollary 1. Suppose that n0 = i. Then, Theorem 1 states that nt has the same distribution as B
(1)
t +

B
(2)
t , where B

(1)
t and B

(2)
t are independent random variables with B

(1)
t ∼ B(i, pt) and B

(2)
t ∼ B(N − i, qt).



We have already remarked that (pt) and (qt) have common limit q∗. Therefore, it is clear that B
(1)
t

D→ B(1) ∼
B(i, q∗) and B

(2)
t

D→ B(2) ∼ B(N − i, q∗), as t → ∞, because the corresponding sequences of characteristic
functions converge point wise to the appropriate limits. Then, since B

(1)
t and B

(2)
t are independent (for each

t), so are B(1) and B(2), and, moreover, B
(1)
t + B

(2)
t

D→ B(1) + B(2). But, clearly B(1) + B(2) ∼ B(N, q∗),
and the result follows.

Proof of Theorem 2. From Theorem 1, X(N)
t has the same distribution as K(N)

t + L(N)
t , where K(N)

t and
L(N)

t are independent random variables given by K(N)
t = B

(1)
t /N = x(N)B

(1)
t /iN and L(N)

t = B
(2)
t /N =

(1 − x(N))B(2)
t /jN , where jN = N − iN and x(N) = iN/N . We are told that x(N) → x0 as N → ∞, and

so iN →∞ and jN →∞. It follows from the standard Weak Law of Large Numbers that B
(1)
t /iN

D→ pt and
B

(2)
t /jN

D→ qt. Hence, K(N)
t

D→ x0pt and L(N)
t

D→ (1 − x0)qt, and so K(N)
t + L(N)

t
D→ ptx0 + qt(1 − x0)

(= q∗ + at(x0 − q∗)), which is the stated result.

Proof of Theorem 3. Again we exploit the independence exhibited in Theorem 1. First notice that

X(N)
t − xt = x(N)B

(1)
t /iN − x0pt + (1− x(N))B(2)

t /jN − (1− x0)qt

= x(N)(B(1)
t /iN − pt) + (1− x(N))(B(2)

t /jN − qt) + (x(N) − x0)(pt − qt),

and so, on multiplying by
√

N and noting that pt − qt = at, we find that

Z(N)
t =

√
x(N)

√
iN (B(1)

t /iN − pt) +
√

1− x(N)
√

jN (B(2)
t /jN − qt) + z(N)at, (3)

where z(N) =
√

N(x(N)−x0). By the standard Central Limit Theorem
√

iN (B(1)
t /iN−pt)

D→ N(0, pt(1−pt))
and

√
jN (B(2)

t /jN − qt)
D→ N(0, qt(1 − qt)). Therefore, the first and second terms of (3) define independent

sequences that converge in distribution to N(0, x0pt(1 − pt)) and N(0, (1 − x0)qt(1 − qt)) random variables,
respectively. But, we are told that z(N) → z0 as N → ∞. Therefore, Z(N)

t
D→ N(z0a

t, vt), where vt =
pt(1− pt)x0 + qt(1− qt)(1− x0).

ACKNOWLEDGEMENT

We thank both referees for their helpful comments. We also acknowledge the financial support of the Australian
Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems.

REFERENCES
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