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EXTENDED ABSTRACT

Many populations have a negative impact on their
habitat, or upon other species in the environment, if
their numbers become too large. For this reason they
are often managed using some form of control. The
objective is to keep numbers at a sustainable level,
while ensuring survival of the population.

One such population is the koalas (Phascolarctos
cinereus) of Kangaroo Island, South Australia.
Between 1923 and 1925, 18 koalas were introduced to
the island as a conservation measure to protect them
(they were classified as a threatened species). Today,
the Kangaroo Island koalas are considered to be a pest.
Their overabundance has had a significant negative
impact on the health of the Rough-barked Manna-
gum (Eucalyptus viminalis cygnetensis), along with
other high-quality koala habitat. As a response to
poor and insufficient habitat, numbers are predicted to
decline sharply, and, because of the increased risk of
extinction of the koalas and of other species, control
and management programs have been proposed.

Here we present models that allow population
management programs to be assessed. Two common
control regimes will be considered: reduction
and suppression. Under the suppression regime
the population is maintained close to a particular
threshold through near continuous control, while
under the reduction regime, control (for example
culling or sterilisation) begins once the population
reaches a certain threshold and continues until it falls
below a lower pre-defined level.

We discuss how to best choose the control parameters,
and we provide tools that allow population managers
to select reduction levels and control rates. Additional
tools will be provided to assess the effect of different
control regimes, in terms of population persistence
and cost. In particular we consider the effects of
each regime on the probability of extinction and the

expected time to extinction, and compare the control
methods in terms of the expected total cost of each
regime over the life of the population.

The usefulness of our results will be illustrated with
reference to the control of the koala population. We
select a suitable reduction level based on a specified
probability of persistence, the genetic diversity of
the population and the expected time between control
phases. All are important in the management of native
fauna. Firstly, while we are aiming to control the
population, we wish to ensure the survival of the
species without introducing risk additional to that
faced prior to control. Next, genetic diversity, which
is often overlooked when managing populations, is of
utmost importance. The aim is to avoid inbreeding
depression and to allow for evolutionary change. We
must select a minimum reduction level that ensures
a high probability of persistence, while maintaining
an adequate level of genetic diversity. We find that a
reduction level larger than that derived through these
considerations will often be allowable in practice. To
aid in selecting the reduction level, we also provide
an explicit formula for the expected time between
culling phases. Population managers can then select a
reduction level so that the time between implementing
successive controls is larger than some stipulated
minimum (necessitated, for example, by resource
constraints). The optimal rate of culling is then
obtained by minimizing the cost of each culling phase,
before finally selecting the optimal regime for control
in terms of the expected cost of control over the life
of the koala population.

Our results can be easily extended to various control
types (for example, sterilisation and translocation),
and birth and death rates other than the ones
considered here (for example, we may employ logistic
birth rates). Consequently, we anticipate that our
approach will be useful in a variety of population
management contexts.
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1 INTRODUCTION

Many populations have a negative impact on their
environment once their numbers become too large.
This impact may be so great that extinction is
predicted. This is true of the koala population on
Kangaroo Island, South Australia, which is having
a significant negative impact on the health of the
Rough-barked Manna-gum and other high-quality
koala habitat. The high koala density has resulted
in degradation of habitat, which is predicted to lead
to a sharp population decline and thus an increased
risk of extinction of the koalas and of other species
(see Masters et al. (2004)). Populations with this
characteristic—negative impact on the environment
or other species—are often controlled. Additionally,
for many populations of this type (such as the koalas
on Kangaroo Island), while we are aiming to control
them, we also wish to ensure the survival of the
species without introducing risk additional to that
faced prior to control. The management objective is
to keep numbers at a sustainable level, while ensuring
survival of the population. We consider the control
option of culling to present our work, but many forms
of control may be accounted for in the model. In
reality, for the koalas on Kangaroo Island, culling
would most likely be a one-off event followed by
a strict sterilisation program. Our approach can
be easily modified to accommodate such situations.
We study two common control regimes: reduction
and suppression. Under the suppression regime the
population is maintained close to a chosen threshold
through near continuous control, while under the
reduction regime culling begins once the population
reaches a critical threshold and continues until it falls
below a lower pre-defined level. Yamauchi (2000)
uses a diffusion approximation to investigate the
economic cost and reduced persistence under both
regimes. Our models have the advantage of a discrete
state space, thus providing a more accurate description
of real populations. Additionally, we consider some
of the problems faced by management teams. In
particular, we provide methods for selecting suitable
thresholds and culling rates. We model the controlled
population using a continuous-time Markov chain.
The basic model, without control, is the linear birth-
death process. However, our methods extend easily to
any birth-death process.

Under the reduction regime we are able to select a
minimum reduction level based on three quantities:
a specified probability of persistence, the level of
genetic diversity and the expected time between
culling phases. The selection of the culling rate
is also investigated in terms of minimizing the cost
of culling. We assess the total cost of each policy
over the lifetime of the population by employing a
method developed by Pollett and Stefanov (2002),
where formulae are derived for the distribution and the
expectation of the total cost of any Markovian model

over its lifetime. Finally, we examine the problem of
choosing an optimal management policy in terms of
these costs and population persistence.

2 THE MODELS

2.1 Birth-death Processes

Denoting the population size at time t by x(t), a
birth-death process is a continuous-time Markov chain
(x(t), t ≥ 0) taking values in S := {0, 1, . . .}
governed by non-zero transition rates

q(x, x + 1) = λx and q(x, x− 1) = µx,

being the birth and the death rate, respectively, when
the population size is x.

A special case of the birth-death process, which we
use here, is the linear birth-death process. This has
λx = λx and µx = µx, where λ and µ are the per
capita birth and death rates, respectively. We might
have used the more common logistic birth rate λx =
λx(1−x/N), with a population ceiling N , but, as we
anticipate that culling will occur at population sizes
much smaller than the ceiling, a linear rate will suffice.

2.2 Control Models

Suppression Regime. This management policy
dictates the removal of individuals from a population
when at or above a particular threshold M , to keep
the population size maintained around that level.
Therefore when the population size reaches or exceeds
the chosen threshold M , the death rate is increased to
a value larger than the birth rate. Thus, our linear
birth-death process with suppression has the same
state space S, but non-zero transition rates q(x, x +
1) = λx, for all x, and

q(x, x− 1) =
{

µx, x ≤ M
(µ + κ)x x > M,

where κ is the rate of culling, required to be larger than
λ − µ. We assume here per-capita culling, reflected
in the form of the death rate (µ + κ)x. In many
cases constant culling (rate µx + κ) may be more
appropriate. The choice depends on the particular
management program used. The model can easily be
modified to account for other management programs,
such as sterilisation; instead of an increased death rate,
we would have a deceased birth rate.

Reduction Regime. Under this management policy the
population is reduced to a pre-defined level L once the
population size reaches the critical level U . Therefore
when the population is in state U (> L) the death rate
is increased to account for culling and restored once
the population size is reduced to L. Our model here
is a continuous-time Markov chain with state space
S := {0, 1, . . .}×{0, 1} and non-zero transition rates

q((x, 0), (x + 1, 0)) = λx, x < U − 1,
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q((x, 0), (x− 1, 0)) = µx, x < U,

q((U − 1, 0), (U, 1)) = λ(U − 1),

q((x, 1), (x+1, 1)) = λx, x ∈ {L+1, L+2, . . .},
q((x, 1), (x−1, 1))=(µ+ψ)x, x ∈ {L+2, L+3, . . .}
and

q((L + 1, 1), (L, 0)) = (µ + ψ)(L + 1),

where ψ is the rate of culling, once again required
to be larger than λ − µ. A typical state (x, f) has
x being the population size and f being an indicator
variable, which is 0 in the non-culling phase and 1
in the culling phase. For a description of a general
version of this kind of process (a birth-death process
with two phases), see Pollett and Ross (2005). Again
the model can be adjusted to account for sterilisation
programs.

3 CHOICE OF REDUCTION LEVEL

We present a method for selecting the reduction
level L, the population size following a culling phase.
We base this selection on a specified probability of
population persistence, the level of genetic diversity
and the expected time between culling phases.

3.1 Population Persistence

The persistence measure we use is the probability αi

of reaching U before 0, starting with a population of
size i. For the general birth-death process with birth
rates λx and death rates µx, this probability is given
by αi = si/sU , where s0 = 0, s1 = 1 and, for 2 ≤
i ≤ U ,

si = 1 +
i−1∑

j=1

j∏

k=1

µk

λk
.

Thus, for a chosen minimum probability ρ that the
population reaches U before 0 starting from i, we may
identify a minimum reduction level Lmin;ρ. This is
given by Lmin;ρ := inf{i : αi ≥ ρ}. For our model,

αi =
1− (µ/λ)i

1− (µ/λ)U

(being the familiar Gambler’s Ruin probability), and
so clearly

Lmin;ρ =
⌈

ln{1− ρ[1− (µ/λ)U ]}
ln(µ/λ)

⌉
,

where dae denotes the smallest integer greater than a.

Table 1 lists various probabilities ρ of persistence, and
the corresponding minimum reduction levels Lmin;ρ,
for a population with λ = 0.18, µ = 0.1 and
U = 10, 000. The reduction levels for the particular
parameter values are small, and thus larger reduction
levels could be implemented in practice.

ρ Lmin;ρ

0.99 8
0.999 12

0.9999 16
0.99999 20

Table 1: Various probabilities ρ of population
persistence and the corresponding minimum reduction
levels Lmin;ρ.

3.2 Genetic Diversity

Genetic diversity is an important consideration
in the context of population management (see
Franklin (1980), Soule (1980) and Lande and Bar-
rowclough (1987) for a discussion). Maintaining a
sufficient level of genetic diversity avoids inbreeding
depression, while allowing for evolutionary change.
This amounts to ensuring an adequate effective
population size: the number of individuals in an
ideal population that would have the same genetic
properties (in terms of random genetic drift) as
an actual population with its own complex traits
(for example, demographics and varying sex ratios).
It is widely recommended that the effective size
Ne of a population be at least 500, and this has
been incorporated into management plans for other
populations (see for example Seal and Foose (1983)).
On the other hand, Lande (1984) warns that even
populations with Ne of the order of 103 may incur
a substantial risk of extinction from fixation of new
mutations.

We therefore calculate the minimum reduction level
Lmin;Ne needed to ensure a chosen minimum
effective population size of Nmin

e . Franklin (1980)
and Lande and Barrowclough (1987) discuss the
calculation of effective population size for a number
of different scenarios. For simplicity, and due to
a lack of information on the koalas of Kangaroo
Island, we assume equal population sizes of males
and females. Ideally one should know (or estimate)
the sex ratio, as it has a significant impact on the
effective population size. We use a continuous-
time version of the overlapping generations model
discussed in Lande and Barrowclough (1987). We
need only consider the growth phase, that is the
period following a cull until the population reaches
the critical threshold (Phase 0). We require that the
effective population size during this phase be greater
than Nmin

e . The effective population size during
this phase, starting in state i, is given approximately
by Ne ≈ τi/τHM

i (being the harmonic mean of the
population size over Phase 0), where τi is the expected
time to hit U starting from i, conditional on hitting U
before 0, and τHM

i is the path integral (area under the
curve) of the inverse of the population size over the
period.
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3.3 Expected Phase Times

We digress to consider the expected phase times of
the reduction regime model, needed to evaluate the
effective population size. Under the reduction regime,
both the culling and non-culling and phases will incur
costs, in the latter case because of monitoring. It
will therefore be useful to know the expected time
to reach the critical threshold U . It will also be
useful to know the expected time to return to L from
U , because increased monitoring will be required
when the population size approaches these critical
thresholds. Additionally, we may be able to decrease
monitoring in the intermediate periods to reduce costs.
The expected time spent in the culling phase also
provides us with an estimate of the time needed
to cull the population: useful for selecting culling
rates in the reduction model. We use results of
Pollett and Ross (2005) to derive explicit expressions
for these expected times.

Non-Culling Phase (Phase 0). For a general
birth-death process with two phases, the expected
time spent in the non-culling phase, conditional on
reaching state U , is given by

τL =
U−1∑

i=L

1
λiπiαiαi+1

i∑

j=1

α2
jπj ,

where π1 = 1 and πj =
∏j

i=2
λi−1
µi

, j ≥ 2. For our
model this evaluates to

τL =
1
λ

U−1∑

i=L

1
[1− (µ/λ)i][1− (µ/λ)i+1]

×
i∑

j=1

1
j

[(µ

λ

)j

− 1
]2 (

λ

µ

)j−i

. (1)

Culling Phase (Phase 1). The expected duration of
the culling phase is simply the expected time to hit
L starting from U for a birth-death process with rates
corresponding to those for the culling phase. This is
given by

γU =
U∑

k=L+1

1
(µ + ψ)kπk

∞∑

j=k

πj ,

where πL = 1 and πj =
∏j

i=L+1
λ(i−1)
(µ+ψ)i , j ≥ L + 1,

For our model this evaluates to

γU =
1

µ + ψ2

∞∑

j=0

U∑

k=L+1

1
j + k

(
λ

µ + ψ2

)j

.

3.4 Effective Population Size

We now return to problem of calculating the effective
population size Ne. We already have an expression
for τi, namely (1). We may now also evaluate

τHM
i using results of Pollett and Stefanov (2002)

concerning the evaluation of path integrals. We get

τHM
i =

U−1∑

k=i

1
λkπkαkαk+1

k∑

j=1

fjα
2
jπj ,

where π1 = 1 and πj =
∏j

k=2
λk−1
µk

, j ≥ 2, and
fj = 1/j. This evaluates to

τHM
i =

1
λ

U−1∑

k=i

1
[1− (µ/λ)k][1− (µ/λ)k+1]

×
k∑

j=1

1
j2

[(µ

λ

)j

− 1
]2 (

λ

µ

)j−k

.

For a chosen minimum effective population size
Nmin

e we may identify the minimum reduction level
Lmin;Ne . This is given by

Lmin;Ne := inf
{

i :
τi

τHM
i

≥ Nmin
e

}
.

In practice it will often be difficult to evaluate
the required expected times. However, whenever
the underlying model is density-dependent (see
Pollett (2001)), as it is here, we may approximate
the expected times using the analogous deterministic
model. For our model we obtain

τi ≈ (λ− µ)−1 ln (U/i) (2)

and
τHM
i ≈ U − i

Ui(λ− µ)
,

and thus

Lmin;Ne ≈ inf
{

i :
(

Ui

U − i

)
ln

(
U

i

)
≥ Nmin

e

}
.

The effect of varying the minimum effective
population sizes Nmin

e on the minimum reduction
level Lmin;Ne

is illustrated in Table 2 for a population
with U = 10, 000.

Nmin
e Lmin;Ne

500 110
1000 270
1500 467
2000 700

Table 2: Minimum effective population sizes and the
resulting minimum reduction level for a population with
U = 10, 000.

The minimum reduction level Lmin can then be
taken to be the maximum of Lmin;ρ and Lmin;Ne .
Whilst this provides us with a workable minimum,
population dynamics may change at lower densities
and thus in most cases we will choose a level
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larger than this minimum. Also, many populations
are relocated to regions where the species is
declining in the hope of increasing its persistence.
Such translocation is also frequently implemented
in an attempt to control populations, as was the
case between 1997 and 2000 for the koalas of
Kangaroo Island (see Masters et al. (2004)). For
populations that are growing rapidly and require
control in one area, but are declining in other areas,
such translocation would be similar in effect to
captive breeding for prolonging the persistence of
declining species. For these situations techniques
exist for the optimal management (see for example
Tenhumberg et al. (2004)). One advantage of this,
for the type of population considered here, is the
high probability of persistence, since the population
is not captive but, rather, occupies optimal habitat.
Such translocation will also warrant a larger reduction
level. The expected duration of the first phase, given
by (1) and approximated by (2), may also be useful for
selecting a suitable reduction level; we may choose
a level such that the expected time between culling
phases is larger than some acceptable minimum.

4 CHOICE OF SUPPRESSION THRESHOLD

Having selected a suitable reduction level L we may
now select a suitable suppression threshold M . A
sensible choice for M is the average population size
under the reduction regime. We evaluate this using
the expected times and path integrals for our density-
dependent deterministic model, as outlined above, and
arrive at

M ≈
⌈

U − L

ln(U)− ln(L)

⌉
. (3)

5 CHOICE OF CULLING RATES

In this section we discuss how to choose appropriate
culling rates for our models. For the reduction model
we base this choice on minimizing the cost of culling.

Suppression Regime. The only constraint on the
culling rate for the linear birth-death suppression
model is the obvious requirement that µ + κ >
λ. The choice will be based mainly on the cost of
culling, since under this regime the control is almost
continuous in time.

Reduction Regime. After selecting the reduction level
we can calculate the cost for a particular culling
rate from the formula for γU presented in the last
section, once again in conjunction with results of
Pollett and Stefanov (2002). The expected cost of a
culling phase is given by

cU =
U∑

k=L+1

1
(µ + ψ)kπk

∞∑

j=k

fjπj ,

where πj =
∏j

i=L+1
λ(i−1)
(µ+ψ)i and fj is the cost per unit

time of culling a population of size j. To minimize cU

we must first specify fj . We will use the cost function

fj = dψ1+δj, (4)

where d is the culling cost per individual, per unit of
time, and δ is a non-negative constant that reflects
increasing cost associated with increased culling
effort. For a given cost function we choose the culling
rate ψ that minimizes cU , subject to constraints λ −
µ < ψ < ψmax. Using (4), the cost of the culling
phase is

cU =
dψ1+δ(U − L)

µ + ψ − λ
.

This is minimized over the range λ− µ < ψ < ψmax

by

min
{(

1 + δ

δ

)
(λ− µ), ψmax

}
.

So, when δ = 0, we should cull at the fastest rate
possible, while if δ > 0, the optimal rate of culling is
given by

ψ =
(

1 + δ

δ

)
(λ− µ). (5)

6 EXTINCTION AND COSTS

6.1 Extinction Probabilities

Extinction occurs with probability 1 for the per-
capita culling models. While at first this may seem
undesirable, because it is contrary to the management
objective, eventual extinction is inevitable under these
models if we are to satisfy the desirable objective
of preventing unbounded growth. Additional support
will commonly be found when consideration is given
to the time scale over which the competing causes
of extinction are expected to occur. For the koalas
of Kangaroo Island, for example, extinction without
control is imminent, particularly in comparison with
extinction due to control (as discussed below). For
situations when constant culling is used we may
invoke formulae in Pollett and Ross (2005) to evaluate
the probability of extinction. The probability will be
close to 1, as a consequence of selecting a suitable
culling rate.

6.2 Extinction Times

We now present formulae for the expected time to
extinction for each of our models. While we are
attempting to control populations, in most situations
we also wish to choose a method that ensures, to as
large an extent as possible, population persistence.
Therefore these times are of interest for choosing
between different control regimes; we can investigate
and compare the effect of the different culling
methods on population persistence.

Suppression Regime. Our suppression regime model
is simply a (linear) birth-death process, for which an
explicit expression for the time to extinction exists
(see Norris (1997)).
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Reduction Regime. The expected extinction time for
the reduction regime model, starting in state U with
culling, is given by

φU = γU + (τL + γU )
(

αL

1− αL

)
+ ξL,

where ξL, the expected time to hit 0 starting from L
conditional on hitting 0 before U , is given by

ξL =
L∑

j=1

1
µjπj(1− αj)(1− αj−1)

U∑

k=j

(1− αk)2πk

(see Pollett and Ross (2005)). For our model, ξL

evaluates to

ξL =
1
µ

L∑

j=1

1
[(µ/λ)j − (µ/λ)U ][(µ/λ)j−1 − (µ/λ)U ]

×
U∑

k=j

1
k

[(µ

λ

)k

−
(µ

λ

)U
]2 (

λ

µ

)k−j

.

6.3 Total Costs

The final consideration in choosing a management
policy (or control regime) is the economic costs of
the policies. In this section we adapt the methods of
Pollett and Stefanov (2002) to evaluate the expected
total cost of each management policy over the
lifetime of the population. The resulting formulae
are similar to our extinction time formulae, because
the expected total cost is simply the expected time
to extinction for a process with modified transition
rates (see the remark in the last paragraph of
Pollett and Stefanov (2002)).

For the suppression regime we use the cost function
fi = D + K, where D is the cost per unit time
of monitoring and K is the cost per unit time of
controlling the population. For the reduction regime,
we use

f(i,0) = J, f(i,1) = Ci + J,

where C is the cost per capita, per unit time, of
controlling the population, and J is the per unit time
cost of monitoring.

For both models we have continuous monitoring of
the population. The purpose of this monitoring is
to determine when control should be implemented,
to ensure the correct rate of control and to ensure
cessation of control at the appropriate time. It is
also useful to ensure that the population does not start
to decline, due to some external influence. In such
a case, a management program to boost population
size may be implemented, in contrast to the control
management programs considered here. The cost of
culling under the suppression regime is assumed to be
constant through time, as individuals are being killed

frequently to maintain the population size around M ,
while under the reduction regime control only occurs
during the culling phase, and the per capita cost is
used to reflect the per capita rate of culling.

7 THE KOALAS OF KANGAROO ISLAND

We illustrate the usefulness of our results by
considering the control of the Kangaroo Island koalas.
The first step is to estimate the per capita birth and
death rates, λ and µ. Based on abundance data (initial
population size, and a conservative estimate of the
population size in 2001 (Masters et al. (2004)) and
a conservatively chosen average lifetime of 10 years
(µ = 0.1), we arrive at a growth rate of λ = 0.18.
We must also select the carrying capacity. About
9 years ago a taskforce recommended the culling of
2, 000 koalas, based on an estimated population size
of 5, 000. The population size was re-estimated to be
around 27, 000 in 2001, and it was recommended in
2004 that the population be reduced by a minimum
of 20, 000 to ensure its survival (at which time it was
estimated to consist of 30, 000 koalas). We therefore
use an estimated maximum carrying capacity of U =
10, 000.

Using these estimates, we will use the methods
described above to select suitable control parameters.
First we select a reduction threshold by way of our
reduction regime model. From Tables 1 and 2 we
see that the reduction level Lmin should be at least
700 (using a conservative choice of 2, 000 for the
minimum effective population size). As discussed
previously, we might select a reduction level larger
than this to guard against changes in population
dynamics at lower densities and to allow for the
possible implementation of translocation strategies.
We choose L = 2, 000, which corresponds to
implementing control approximately every 20 years
only (ensuring an extremely large probability of
persistence αL) and corresponds to a healthy effective
population size of approximately 4, 020. Using
equation (3) we thus arrive at the suppression
threshold 4, 971, which we round to 5, 000; that is,
we set M = 5, 000.

We now consider the choice of culling rates. For the
suppression regime we only require that κ be chosen
such that µ + κ > λ, and so we choose κ = 0.2.
For the reduction regime we must select a δ ≥ 0
to reflect increasing cost associated with increasing
culling effort. Using δ = 0.05, in conjunction with
equation (5), we arrive at the culling rate ψ = 1.68,
for which the cost of culling is minimized.

Figure 1 depicts a simulation of both models for the
parameter values given above. We can see that for
the suppression regime, the population size fluctuates
around M = 5, 000, while for the reduction model,
there is roughly linear decline in the population from
U = 10, 000 to L = 2, 000, followed by growth back
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to U taking approximately 20 years. It can be seen
that under the reduction regime, the culling phase is
expected to much shorter than the non-culling phase.
The final set of tools provided allows population
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Figure 1. Simulation of the suppression and reduction
regime models corresponding to the koalas of
Kangaroo Island.

managers to decide which regime is optimal in terms
of population persistence and cost. Using results
of the last section we may evaluate the expected
time to extinction of the koala population under both
management regimes, and also evaluate the expected
total cost of control over the life of the population.
Since both expected extinction times are extremely
large for the koala population, they would not be
used as a criteria for selection of optimal management
policy. Also, a fair comparison of the costs of
control under each regime should be averaged over the
expected life of the population under that regime, that
is, the comparison should be made on the cost per year
of implementation. These costs are given in the table
below.

Regime Total Cost/Time
Suppression $(D + K)/year
Reduction $(J + 49C)/year

The optimal control regime, in terms of cost per unit
time, will thus depend on the values of D, K, J and
C. The annual cost can then be used to decide which
regime should be implemented.
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