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History and motivation

The Rogers–Ramanujan identities, first discovered by Rogers in 1894, are
the pair of q-series identities:

G (q) :=
∞∑
n=0

qn
2

(1− q) · · · (1− qn)
=
∞∏
n=0

1

(1− q5n+1)(1− q5n+4)

(
= 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + · · ·

)
and

H(q) :=
∞∑
n=0

qn
2+n

(1− q) · · · (1− qn)
=
∞∏
n=0

1

(1− q5n+2)(1− q5n+3)

(
= 1 + q2 + q3 + q4 + q5 + 2q6 + · · ·

)



The Rogers–Ramanujan q-series have since showed up in a large number
of areas of mathematics and physics, including partition theory, knot
theory, conformal field theory, statistical mechanics, probability,
orthogonal polynomials, representation theory, modular forms and K
theory.



Knot theory (Dasbach, Armond, Garoufalidis, Hikami, Khovanov,
Morton, Murakami2, . . . )

A torus knot is a knot representable as a curve on the torus.

Torus knots are classified by pairs of relatively prime integers p, q, the
winding numbers of the knot.

For example, the (0, 1)-torus knot and (2, 3)-torus knots are the unknot

and trefoil

One popular method for recognising knots is to compute knot invariants
such as the Alexander or Jones polynomial.

The Jones polynomials JK (q) of the unknot and of the trefoil are 1 and
q + q3 − q4.

http://katlas.math.toronto.edu/wiki/36_Torus_Knots


For N a nonnegative integer the coloured Jones polynomial JK ,N(q) of a
knot K is a generalisation of the Jones polynomial such that
JK ,1(q) = JK (q).

People care about the coloured Jones polynomial because of the volume
conjecture (Kashaev, Murakami2):

Vol(K )
?
= 2π lim

N→∞

log|JK ,N(e2πi/N)|
N

where Vol(K ) is the hyperbolic volume of the knot complement of K in
the 3-sphere.

For example, the figure-eight knot has hyperbolic volume 2.02988. . .

http://www.youtube.com/watch?v=xGf5jY_v5GE


It is easy to compute the coloured Jones polynomial of K = :

JK ,0 = 1

JK ,1 = −q−7(1− q + q3 − 2q4 + q6 − q7 + q9 − q10 + q12 + q15)

JK ,2 = q−19(1− q − q5 + q7 − q9 + · · · − q30)
...

JK ,8 = q−196(1− q − q4 + q7 + q9 − · · ·+ q180)

The tail tK (q) = a0 + a1q + a2q
2 + · · · of JK ,N(q) is a q-series such that,

for all N,
tK (q) ≡ ±qaJK ,N(q) + O(qN+1)

Theorem. (Morton, 1995)

The tail of the (2, 5)-torus knot is

H(q)
∞∏
n=1

(1− qn) = 1− q − q4 + q7 + · · ·



The arithmetics of the Rogers–Ramanujan series

The modular group Γ is the group of fractional linear transformations

τ 7→ aτ + b

cτ + d
ad − bc = 1, τ ∈ H

The modular group is generated by

τ 7→ τ + 1 and τ 7→ −1

τ

Geometrically,



Recall that

G (q) :=
∞∑
n=0

qn
2

(1− q) · · · (1− qn)

= 1 + q + q2 + q3 + 2q4 + 2q5 + 3q6 + · · ·

and

H(q) :=
∞∑
n=0

qn
2+n

(1− q) · · · (1− qn)

= 1 + q2 + q3 + q4 + q5 + 2q6 + · · ·



Amazingly, Ramanujan was aware of the modular properties of

f (τ) = F (q) := q1/5 H(q)

G (q)
, q = e2πiτ , τ ∈ H

In his second letter to Hardy (dated 27 Feb. 1913) he stated the
reciprocity theorem(

1 +
√

5

2
+ f (τ)

)(
1 +
√

5

2
+ f
(
−1

τ

))
=

5 +
√

5

2

which implies that

F (e−2π) = f (i) =

√
5 +
√

5

2
− 1 +

√
5

2



Since

F (q) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · ·
this implies the Rogers–Ramanujan continued fraction

1

1 +
e−2π

1 +
e−4π

1 +
e−6π

1 + · · ·

=

(√
5 +
√

5

2
− 1 +

√
5

2

)
e2π/5



Since

F (q) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · ·
this implies the Rogers–Ramanujan continued fraction

Of these G.H. Hardy wrote:

A single look at them is enough to show that they could only
be written down by a mathematician of the highest class. They
must be true because, if they were not true, no one would have
had the imagination to invent them.



In his first letter to Hardy (16 Jan. 1913), Ramanujan also claimed that

As usual it is not exactly clear what he meant by this, but to support his
claim he gave several examples of what he had in mind, such as

F
(
e−6π

)
=
√

c2 + 1− c

where

2c = 1 +
√

5
4
√

60 + 2−
√

3 +
√

5
4
√

60− 2 +
√

3−
√

5

G.N. Watson added to Ramanujan’s claim by stating, without proof, that
the F

(
e−π
√
n
)

are algebraic.



For example, F
(
e−6π

)
is a root of

x16 + 38x15 − 240x14 − 300x13 − 235x12 − 726x11

+ 92x10 − 1840x9 − 675x8 + 1840x7 + 92x6

+ 726x5 − 235x4 + 300x3 − 240x2 − 38x + 1

Over the years many people have contributed to making the claims of
Ramanujan and Watson more precise.

The first to add to the list of values for F
(
e−π
√
n
)

was Ramanathan
(1984 & 1985). Among other things, he proved a second reciprocity
theorem:(( 1 +

√
5

2

)5

+ f 5(τ)

)(( 1 +
√

5

2

)5

+ f 5
(
− 1

5τ

))
= 5
√

5
( 5 +

√
5

2

)5

allowing some non-integral values of n to be computed, such as n = 4/5.



The first theoretical result on the arithmetic properties of F
(
e−π
√
n
)

is
due to Berndt, Chan and Zhang (1996).

Theorem.

If τ ∈ H is in an imaginary quadratic field then f (τ) is an (algebraic)
unit.

By taking τ = i
√
n/4 this implies that F

(
e−π
√
n
)

is a unit for n ∈ Q+.

This is a much stronger statement than that of Watson.



Example

The number f (i) has minimal polynomial

x4 + 2x3 − 6x2 − 2x + 1

so that it is an unit. But

q−1/60G (q)
∣∣
q=i

= −
4

√
1 + 3

√
5− 2

√
10 + 2

√
5

10

q11/60H(q)
∣∣
q=i

= −
4

√
1 + 3

√
5 + 2

√
10 + 2

√
5

10

share the minimal polynomial

x16 − 2

5
x12 − 41

25
x8 − 18

125
x4 +

1

625

and are thus algebraic numbers but not algebraic integers.



The sphere, tessellated by an icosahedron has as symmetry group the
alternating group A5 of order 60. Under stereographic projection this
corresponds to the subgroup G60 of PSL(2,C).

In 2005 Duke used G60 to show that f = f (τ) satisfies the icosahedral
equation

(f 20 − 228f 15 + 494f 10 + 228f 5 + 1)3 + j(τ)f 5(f 10 + 11f 5 − 1)5 = 0

where j(τ) = q−1 + 744 + 196884q + · · · is Klein’s j-invariant.



This implies that

Theorem.

The number f (τ) is expressible in terms of radicals over Q iff j(τ) is
and the icosahedral equation is reducible over Q

(
e2πiτ/5, j(τ)

)
.

From the theorem of complex multiplication this immediately yields

Theorem.

If τ ∈ H is in an imaginary quadratic field then f (τ) is a unit ex-
pressible in terms of radicals over Q.

which settles Ramanujan’s claim.



In the remainder of this talk I will discuss some generalisations of the
previous results to more general Rogers–Ramanujan type identities arising
from affine Lie algebras.

To keep technicalities to a minimum I will explain the main ideas in the
classical instead of affine Lie algebra setting.



Plane partitions and representation theory

A plane partition is a two-dimensional array of nonnegative integers such
that the numbers are weakly decreasing from left to right and from top
to bottom, and such that finitely many numbers are positive.

Geometrically, a plane partition may also be thought of as a configuration
of stacked unit cubes, such that . . .

For example,

4 3 3 2 1
3 2 1
3 1
2
1

and

represent the same plane partition of 26.



A symmetric plane partition is a plane partition that is invariant under
reflection in the main diagonal.

In 1898 MacMahon conjectured that the number of plane partitions that
fit in a box of size n × n ×m is given by

SPPn,m(q) =
n∏

i=1

1− qm+2i−1

1− q2i−1

∏
1≤i<j≤n

1− q2(m+i+j−1)

1− q2(i+j−1)

It took 80 years before the conjecture was (independently) proved by
Andrews and Macdonald.

Below I will sketch a streamlined version of Macdonald’s proof.



Let V (Λ) be an integrable highest-weight module of a complex
semi-simple Lie algebra g.

By the Weyl character formula, the character of V (Λ) is expressible in
terms of the associated root system as

chV (Λ) =

∑
w∈W sgn(w)ew(Λ+ρ)−ρ∏

α>0(1− e−α)

Here W is the Weyl group and ρ the Weyl vector (half the sum of the
positive roots).

Example

A2 = sl(3,C) has a 15-dimensional module V (2Λ1 + Λ2) with character

chV = e2Λ1+Λ2 + e3Λ1−Λ2 + e2Λ1−2Λ2 + eΛ1−3Λ2 + e−Λ1−2Λ2 + e−2Λ1

+ e−3Λ1+2Λ2 + e−2Λ1+3Λ2 + e2Λ2 + 2eΛ1 + 2e−Λ2 + 2e−Λ1+Λ2



α1

α2

Λ1

Λ2

>0

The A2 root system and fundamental weights.

The root lattice, weight lattice and set of dominant weights.



Let Fq be the homomorphism

Fq :

C[e−α1 , . . . , e−αn ]→ C[q]

e−αi 7→ q〈ρ,αi 〉

Applied to the Weyl character formula this gives the q-dimension formula

dimq V (Λ) := Fq

(
e−Λ chV (Λ)

)
=
∏
α>0

1− q〈Λ+ρ,α〉

1− q〈ρ,α〉

Macdonald noted that if g = Bn:
1 2 n

then

dimq2 V (mΛn) =
n∏

i=1

1− qm+2i−1

1− q2i−1

∏
1≤i<j≤n

1− q2(m+i+j−1)

1− q2(i+j−1)

= SPPn,m(q)



Following an idea of Reshetikhin and Okounkov, given a symmetric plane
partition

4 3 3 2 1
3 2 1
3 1
2
1

we can read off the diagonal slices to obtain a sequence of interlacing
partitions

(4, 2), (3, 1)2, (3)2, (2)2, (1)2

These partitions can be reassembled into a column-strict plane partition
all of whose parts are odd

1 1 1 1
1 1



Following an idea of Reshetikhin and Okounkov, given a symmetric plane
partition

4 3 3 2 1
3 2 1
3 1
2
1

we can read off the diagonal slices to obtain a sequence of interlacing
partitions

(4, 2), (3, 1)2, (3)2, (2)2, (1)2

These partitions can be reassembled into a column-strict plane partition
all of whose parts are odd

3 3 3 1
3 1



Following an idea of Reshetikhin and Okounkov, given a symmetric plane
partition

4 3 3 2 1
3 2 1
3 1
2
1

we can read off the diagonal slices to obtain a sequence of interlacing
partitions

(4, 2), (3, 1)2, (3)2, (2)2, (1)2

These partitions can be reassembled into a column-strict plane partition
all of whose parts are odd

5 5 5 1
3 1



Following an idea of Reshetikhin and Okounkov, given a symmetric plane
partition

4 3 3 2 1
3 2 1
3 1
2
1

we can read off the diagonal slices to obtain a sequence of interlacing
partitions

(4, 2), (3, 1)2, (3)2, (2)2, (1)2

These partitions can be reassembled into a column-strict plane partition
all of whose parts are odd

7 7 5 1
3 1



Following an idea of Reshetikhin and Okounkov, given a symmetric plane
partition

4 3 3 2 1
3 2 1
3 1
2
1

we can read off the diagonal slices to obtain a sequence of interlacing
partitions

(4, 2), (3, 1)2, (3)2, (2)2, (1)2

These partitions can be reassembled into a column-strict plane partition
all of whose parts are odd

9 7 5 1
3 1



The above map implies a bijection between symmetric plane partition in
B(n, n,m) and column-strict plane partitions into odd parts in
B(n,m, 2n − 1).

SPPn,m(q) =
∑

λ⊆(mn)

sλ
(
q2n−1, . . . , q3, q

)

Here
sλ(x) =

∑
T

xT

is the Schur function.



Theorem. (Macdonald)

For V a Bn-module of highest-weight mΛn and

xi = e−αi−···−αn

we have

emΛn chV (mΛn) =
∑

λ⊆(mn)

sλ(x1, . . . , xn)

Since Fq2 (xi ) = q2n−2i+1 it follows that

SPPn,m(q) =
∑

λ⊆(mn)

sλ(q2n−1, . . . , q3, q)

= dimq2 V (mΛn)

proving MacMahon’s conjecture.



Generalised Rogers–Ramanujan identities

From the point of view of representation theory, Macdonald’s theorem
may be viewed as a decomposition or branching formula for the character
of SO(2n + 1,C) indexed by mΛn into characters of GL(n,C).

If we could prove infinite-dimensional analogues of Macdonald’s
decomposition formula, we should expect Rogers–Ramanujan identities
instead of plane partition identities to result after specialisation.

Indeed, the Weyl–Kac formula for the characters of integrable
highest-weight modules V (Λ) of affine Lie algebras

chV (Λ) =

∑
w∈W sgn(w)ew(Λ+ρ)−ρ∏
α>0(1− e−α)mult(α)

again implies “q-dimension formulas” which are completely factorised.



For example, let g be the twisted affine Lie algebra A
(2)†
2n with Dynkin

diagram

0 1 2 n

Parametrise the weight Λ of the highest-weight module V (Λ) by

Λ = (λ0 − λ1)Λ0 + · · ·+ (λn−1 − λn)Λn−1 + 2λnΛn

where λ = (λ0, λ1, . . . , λn) is a (half-)partition, and define the
homomorphism Fq by

Fq :


C[[e−α0 , . . . , e−αn ]]→ C[[q]]

e−αi 7→ q 0 ≤ i ≤ n − 1

e−αn 7→ −1



Then

Fq

(
e−Λ chV (Λ)

)
=

(qκ; qκ)n∞
(q; q)n∞

n∏
i=1

θ
(
qλ0−λi+i ; qκ

)
×

∏
1≤i<j≤n

θ
(
qλi−λj−i+j

)
θ
(
qλi+λj−i−j+2n+1; qκ

)
where κ = 2n + 2λ0 + 1 and

(q; q)∞ = (1− q)(1− q2)(1− q3) · · ·

θ(a; q) = (1− a)(1− q/a)(1− aq)(1− q2/a) · · ·

In particular, for n = 1 and Λ = 2Λ1 or Λ = Λ0 we obtain the
Rogers–Ramanujan q-series

(q5; q5)∞
(q; q)∞

θ(q; q5) and
(q5; q5)∞
(q; q)∞

θ(q2; q5)



The big question now is:

Can we decompose the characters of A
(2)
2n a là Macdonald to obtain a

“Rogers–Ramanujan sum side” (after we apply Fq)?



The modified Hall–Littlewood polynomials are a t-analogue of the Schur
functions.

For example,

P ′(3,1)(x ; t) =
s(3,1)(x) + t s(4)(x)

(1− t)2

Up to a trivial overall factor bµ(t) =
∏

i≥1(t; t)mi (µ) the coefficients of
the P ′µ in its Schur expansion are given by the Kostka–Foulkes
polynomials Kλµ(t):

P ′µ(x ; t) =
1

bµ(t)

∑
λ

Kλµ(t)sλ(x)

A t-analogue of Kostant’s formula for weight multiplicities may be used
to compute the latter

Kλµ(t) =
∑
w∈W

sgn(w)P
(
w(λ+ ρ)− (µ+ ρ); t

)
(where now we use the language of weights of sln+1 instead of partitions).



The t-analogue of the Kostant partition functions P(µ; t) t-counts the
number of ways of writing a weight µ ∈ P as a sum of positive roots:∏

α>0

1

1− teα
=
∑
µ

P(µ; t)eµ

P(2ρ; t) = P(2Λ1 + 2Λ2; t) = t2︸︷︷︸
2(α1+α2)

+ t3︸︷︷︸
(α1)+(α2)+(α1+α2)

+ t4︸︷︷︸
2(α1)+2(α2)



Theorem. (A
(2)
2n decomposition formula)

Let V (mΛ0) be an A
(2)
2n integrable highest-weight module, and set

xi = e−αi−···−αn−1 (1 ≤ i ≤ n − 1)

t = e−α0−2α1−···−2αn

Provided we specialise e−αn 7→ −1,

e−mΛ0 chV (mΛ0) =
∑
λ

λ1≤m

t |λ|P ′2λ(x±1 , . . . , x
±
n−1, 1; t)

“Proof”. Use a q, t-analogue of∫
S∈Sp(2n)

sµ(S)dS = 0

unless µ′ is an even partition, due to Rains and Vazirani.



Recall

Fq :


C[[e−α0 , . . . , e−αn ]]→ C[[q]]

e−αi 7→ q 0 ≤ i ≤ n − 1

e−αn 7→ −1

This corresponds to xi 7→ qn−i and t 7→ q2n−1.
Therefore, the decomposition formula thus specialises to

Fq

(
e−mΛ0 chV (mΛ0)

)
=
∑
λ

λ1≤m

q(2n−1)|λ|P ′2λ
(
q1−n, . . . , qn−1; q2n−1

)
=
∑
λ

λ1≤m

q|λ|P ′2λ
(
1, . . . , q2n−2; q2n−1

)
=
∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)



But

Fq

(
e−mΛ0 chV (mΛ0)

)
=

(qκ; qκ)n∞
(q; q)n∞

n∏
i=1

θ
(
qi+m; qκ

) ∏
1≤i<j≤n

θ
(
qj−i , qi+j−1; qκ

)
for κ = 2m + 2n + 1, so that

Theorem. (First A
(2)
2n Rogers–Ramanujan identity)

Gm,n(q) :=
∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)

=
(qκ; qκ)n∞

(q; q)n∞

n∏
i=1

θ
(
qi+m; qκ

) ∏
1≤i<j≤n

θ
(
qj−i , qi+j−1; qκ

)

=
(qκ; qκ)m∞

(q; q)m∞

m∏
i=1

θ
(
qi+1; qκ

) ∏
1≤i<j≤m

θ
(
qj−i , qi+j+1; qκ

)



Also the second Rogers–Ramanujan identity generalises:

(Second A
(2)
2n Rogers–Ramanujan identity)

Hm,n(q) :=
∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)

=
(qκ; qκ)n∞

(q; q)n∞

n∏
i=1

θ
(
qi ; qκ

) ∏
1≤i<j≤n

θ
(
qj−i , qi+j ; qκ

)

=
(qκ; qκ)m∞

(q; q)m∞

m∏
i=1

θ
(
qi ; qκ

) ∏
1≤i<j≤m

θ
(
qj−i , qi+j ; qκ

)



For m, n positive integers, define

φm,n :=
mn(4mn − 4m + 2n − 3)

12(2m + 2n + 1)

and

ψm,n :=
mn(4mn + 2m + 2n + 3)

12(2m + 2n + 1)

Example

φ1,1 = − 1

60
, ψ1,1 =

11

60
, ψ1,1 − φ1,1 =

1

5



Let q = e2πiτ , where the τ is a quadratic irrational in H.

Call τ as a CM point with discriminant −D < 0, where −D is the
discriminant of the minimal polynomial of τ .

Define Gm,n(τ) := qφm,nGm,n(q), Hm,n(τ) := qψm,nHm,n(q) and
fm,n(τ) = Hm,n(τ)/Gm,n(τ).

Theorem.

For κ = 2m + 2n + 1, let κτ be a CM point with discriminant −D < 0.
Then

1/Gm,n(τ) and 1/Hm,n(τ) are algebraic integers;

Gm,n(τ) and Hm,n(τ) are units over Z[1/κ];

fm,n(τ) is an algebraic unit.



Example

G2,2(τ) = q1/3
∑
λ

λ1≤2

q|λ|P2λ

(
1, q, . . . ; q3

)
= q1/3

∞∏
j=1

(1− q9j)

(1− qj)

H2,2(τ) = q
∑
λ

λ1≤2

q2|λ|P2λ

(
1, q, . . . ; q3

)
= q

∞∏
j=1

(1− q9j)(1− q9j−1)(1− q9j−8)

(1− qj)(1− q9j−4)(1− q9j−5)

G2,2(i/3) and H2,2(i/3) have minimal polynomials

x2 − 1

3

1

19683
(19683x18 − 80919x12 − 39366x9 + 11016x6 − 486x3 − 1)

and are thus algebraic numbers.



Example (continued)

√
3G2,2(i/3) and

√
3H2,2(i/3) have minimal polynomials

x − 1

x18 + 6x15 − 93x12 − 304x9 + 420x6 − 102x3 + 1

and are thus units.

f2,2(i/3) has minimal polynomial

x18 − 102x15 + 420x12 − 304x9 − 93x6 + 6x3 + 1

and is thus a unit.



The End


