The Rogers - Ramanujan Identities

S. Ole Warnaar - The University of Melbourne

The identities

The Rogers-Ramanujan identities

are two of the most remarkable and important results in the theory of q-series. Although originally discovered by L.J. Rogers in 1894 [3], they shot to fame through the work of the Indian genius S. Ramanujan.

Ramanujan included the following immediate consequence of the Rogers-Ramanujan identities in his famous letter to G.H. Hardy,

who wrote (about this and a similar such continued fraction):

. defeated me completely. I had never seen anything in the least like them before. A single look at them is enough to show that they could only be written down by a mathematician of the highest class."

Leonard James Rogers
(1862-1933)
b. Oxford, England

Partitions

Another simple consequence of the RogersRamanujan identities involves partitions of the integers [1]. If we write the positive integer 9 as the ordered sum of smaller positive integers (called parts), like

$$
9=3+2+2+1+1
$$

then this sum is called a partition of 9 . The total number of partitions of 9 is 30 and the number of partitions of n denoted $p(n)$ grows exponentially with n :

$$
p(n) \sim \frac{1}{4 n \sqrt{3}} \exp \left(\pi \sqrt{\frac{2 n}{3}}\right) .
$$

The Rogers-Ramanujan identities imply two theorems for partitions of n subject to some simple restrictions. One of these may be stated as follows:

The number of partitions of n such that all parts differ by at least 2 is equal to the number of partitions of n such that all parts are congruent to 1 or 4 modulo 5 .

For example, if we take $n=9$, then out of the 30 unrestricted partitions only 5 are of the first type:

$$
9, \quad 8+1, \quad 7+2, \quad 6+3
$$

$$
5+3+1
$$

and five are of the second type:
$9, \quad 6+1+1+1, \quad 4+4+1$, $4+1+1+1+1+1$,
$1+1+1+1+1+1+1+1+1$.

Representation theory

The Rogers-Ramanujan identities are also related to the representation theory of the special linear Lie algebra $\mathfrak{s l}_{2}$. It thus seems a natural question to ask for a generalization to the more general Lie algebra $\mathfrak{s l}_{n}$. This turns out to be a surprisingly difficult problem and more than a hundred years after Rogers' initial discovery the only other case that has been settled corresponds to $\mathfrak{s l}_{3}$.
Using ideas and techniques from algebraic combinatorics, the following $\mathfrak{s l}_{3}$ analogue of the first Rogers-Ramanujan identity may be proved [2, 4]:

$$
\begin{aligned}
& \sum_{\substack{n_{1}, n_{2}=0 \\
n_{2} \leq 2 n_{1}}}^{\infty} \frac{q^{n_{1}^{2}-n_{1} n_{2}+n_{2}^{2}}(1-q) \cdots\left(1-q^{2 n_{1}}\right)}{(1-q) \cdots\left(1-q^{n_{2}}\right)(1-q) \cdots\left(1-q^{n_{2}}\right)(1-q) \cdots\left(1-q^{2 n_{1}-n_{2}}\right)} \\
&=\prod_{n=1}^{\infty} \frac{1}{\left(1-q^{7 n-1}\right)^{2}\left(1-q^{7 n-3}\right)\left(1-q^{7 n-4}\right)\left(1-q^{7 n-6}\right)^{2}}
\end{aligned}
$$

Although the right-hand side of this identity can again be interpreted combinatorially in terms of partitions, it remains an open problem to also understand the left-hand side from a partition theoretic point of view.

[^0]
References

1. G. E. Andrews, The Theory of Partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, (Addison-Wesley, Reading, Massachusetts, 1976).
2. G. E. Andrews, A. Schilling and S. O. Warnaar, An A_{2} Bailey lemma and Rogers-Ramanujan-type identities, J. Amer. Math. Soc. 12 (1999), 677-702. 3. L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. 25 (1894), 318-343. 4. S. O. Warnaar, Hall-Littlewood functions and the A_{2} Rogers-Ramanujan iden tities, Adv. Math. 200 (2006), 403-434.

[^0]: Srinivasa Aiyangar Ramanujan
 (1887-1920)
 b. Erode, Tamil Nadu, India.

