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Abstract. A new polynomial analogue of the Rogers–Ramanujan identities

is proven. Here the product-side of the Rogers–Ramanujan identities is re-
placed by a partial theta sum and the sum-side by a weighted sum over Schur

polynomials.
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1. Introduction

The famous Rogers–Ramanujan identities are given by [17]

(1.1) 1 +

∞∑
n=1

qn
2

(1− q)(1− q2) · · · (1− qn)
=

∞∏
j=0

1

(1− q5j+1)(1− q5j+4)

and

(1.2) 1 +

∞∑
n=1

qn(n+1)

(1− q)(1− q2) · · · (1− qn)
=

∞∏
j=0

1

(1− q5j+2)(1− q5j+3)

for |q| < 1. In one of his two proofs of these identities, Schur [19] introduced two
sequences of polynomials (en)n≥2 and (dn)n≥2, where en (dn) is the generating func-
tion of partitions with difference between parts at least 2 (and no part equal to 1),
and largest part at most n−2. The partitions {∅, (1), (2), (3), (4), (3, 1), (4, 1), (4, 2)},
for example, contribute to e6 = 1 + q + q2 + q3 + 2q4 + q5 + q6 and the partitions
{∅, (2), (3), (4), (4, 2)} contribute to d6 = 1 + q2 + q3 + q4 + q6.

By standard combinatorial arguments, see e.g., [16, 12], it follows that e∞ :=
limn→∞ en = LHS(1.1) and d∞ := limn→∞ dn = LHS(1.2). Schur proved the
Rogers–Ramanujan identities by showing that these limits also hold when LHS is
replaced by RHS. This he achieved by showing that both en and dn satisfy the
recurrence

(1.3) xn+2 = xn+1 + qnxn,

and by solving this recurrence subject to the initial conditions d1 = 0, e1 = e2 =
d2 = 1 (consistent with the combinatorial definition of en and dn for n ≥ 2).
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Specifically, Schur’s solution to (1.3) reads

en =

∞∑
j=−∞

(−1)jqj(5j+1)/2

[
n− 1

b(n− 5j − 1)/2c

]
(1.4a)

dn =

∞∑
j=−∞

(−1)jqj(5j+3)/2

[
n− 1

b(n− 5j − 2)/2c

]
(1.4b)

for n ≥ 1 and bxc denoting the integer part of x. Here the q-binomial coefficients
are given by

[
n
m

]
= (q; q)n/(q; q)m(q; q)n−m for 0 ≤ m ≤ n and zero otherwise,

where (a; q)n =
∏n−1
j=0 (1− aqj).

Employing the notation (a1, . . . , ak; q)n = (a1; q)n · · · (ak; q)n and recalling to
the Jacobi triple product identity [12, Eq. (II.28)]

(1.5)

∞∑
n=−∞

(−1)nanq(
n
2) = (a, q/a, q; q)∞

it is now easy to obtain the desired limits;

e∞ =
1

(q; q)∞

∞∑
j=−∞

(−1)jqj(5j+1)/2 =
1

(q, q4; q5)∞
= RHS(1.1)

d∞ =
1

(q; q)∞

∞∑
j=−∞

(−1)jqj(5j+3)/2 =
1

(q2, q3; q5)∞
= RHS(1.2).

Representations for the Schur polynomials similar to the left sides of the Rogers–
Ramanujan identities are also known [16, §286 and §289],

(1.6) en =

∞∑
r=0

qr
2

[
n− r − 1

r

]
and dn =

∞∑
r=0

qr(r+1)

[
n− r − 2

r

]
.

Equating this with (1.4) yields the following polynomial analogue of the Rogers–
Ramanujan identities [1]:

(1.7)

∞∑
r=0

qr(r+a)
[
n− r − a

r

]
=

∞∑
j=−∞

(−1)jqj(5j+2a+1)/2

[
n

b(n− 5j − a)/2c

]
for n ≥ 0 and a ∈ {0, 1}.

Recently there has been renewed interest in the Schur polynomials [11, 7, 13, 8,
22] sparked by the following nice generalization of the Rogers–Ramanujan identities
due to Garrett, Ismail and Stanton [11, Eq. (3.5)]

(1.8)

∞∑
r=0

qr(r+m)

(q; q)r
=

(−1)mq−(m
2 )dm

(q, q4; q5)∞
− (−1)mq−(m

2 )em
(q2, q3; q5)∞

,

where m is a nonnegative integer and e0 = 0 and d0 = 1 consistent with (1.3).
In this paper we show that (1.8) may be used to prove new polynomial analogues

of the Rogers–Ramanujan identities involving the Schur polynomials. These poly-
nomial identities are fundamentally different from (1.7) in that the product-side is
replaced by a partial theta series.
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Theorem 1.1. For k ∈ {0, 1} and n ≥ 0 there holds
n∑

j=−n−k

(−1)jqj(5j+1)/2

=

n∑
r=0

e2r+k+2(−1)n−rq(n−r)(5n+3r+4k+5)/2 (q; q)n+r+k
(q; q)n−r

(1.9)

and

n∑
j=−n−k

(−1)jqj(5j+3)/2

=

n∑
r=0

d2r+k+2(−1)n−rq(n−r)(5n+3r+4k+5)/2 (q; q)n+r+k
(q; q)n−r

.(1.10)

Partial theta-sum identities of this type were first discovered by Shanks [20].
When n tends to infinity (for |q| < 1) only the term with r = n contributes to

the sums on the right. Hence the first identity of the theorem implies
∞∑

j=−∞
(−1)jqj(5j+1)/2 = (q; q)∞e∞ = (q; q)∞

∞∑
n=0

qn
2

(q; q)n
,

which is transformed into (1.1) by the triple product identity. Likewise, (1.2) arises
as the the large n limit of the second identity of the theorem.

Polynomial analogues of the Rogers–Ramanujan strikingly similar to those of
Theorem 1.1 have previously been discovered by Andrews [5]. For n ≥ 0 let Kn(x)
denote the Szegő polynomial [21]

Kn(x) =

n∑
r=0

xrqr(r+1)

[
n

r

]
.

Then Andrews posed in the problems section of SIAM Review [5] the problem of
showing that

(1.11)

n∑
j=−n−k

(−1)jqj(5j+2k+1)/2

=

n∑
r=0

Kr(q
2n−2r+k−1)(−1)n−rq(n−r)(5n−3r+4k+1)/2 (q; q)n+k

(q; q)n−r

for k = {0, 1} and n ≥ 0. Note here that the left side of (1.11) coincides with the
left side of (1.9) ((1.10)) when k = 0 (k = 1).

The remainder of this paper is divided in two parts with section 2 containing a
proof and section 3 a discussion of Theorem 1.1. In the first part of this discussion
we examine two simple proofs of (1.11) found by Jordan and Andrews and indicate
our failure in generalizing these to a proof Theorem 1.1. The second part of our
discussion focuses on some of the combinatorial aspects of Theorem 1.1.

2. Proof of Theorem 1.1

2.1. A more general identity. Key to the proof of Theorem 1.1 is the following
proposition.
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Proposition 2.1. For k ∈ {0, 1} and |a|, |q| < 1 there holds

(2.1)

∞∑
n=0

a2nqn(n+k)

(q; q)n
=

(a; q)2∞
(q; q)3∞

∞∑
j=1

(q2j−k, q5+k−2j , q5; q5)∞

×
∞∑
r=0

(−1)j+r+1q(
j+r
2 )(1− q2r+k+1)(aq−r; q)r
(a; q)r+k+1

.

It is perhaps not immediately clear that the sums on the right converge, but
inspection of the potentially problematic terms shows that for k ∈ {0, 1} and j ≥ 1,

O
(
q(

j+r
2 )(q5+k−2j ; q5)∞(aq−r; q)r

)
=

{
q(j−1)(j+10r+4k+6)/10 j ≡ 1, k + 4 (mod 5)

q(j−2)(j+10r+4k+7)/10+r+1 j ≡ 2, k + 3 (mod 5),

which shows that both sums on the right converge and that their order is irrelevant.
Before proving Proposition 2.1 we will show how it implies Theorem 1.1. Starting

point is the observation that

(2.2)

∞∑
j=1

(−1)jq(
j+r
2 ) (q2j−k, q5+k−2j , q5; q5)∞

(q; q)∞

=

2∑
i=1

(−1)i+rq−(2r+k+2
2 )

(qi+2k, q5−i−2k; q5)∞

r∑
j=−r−k

(−1)jqj(5j+2i+4k−5)/2.

To prove this we use that for fj such that fj = 0 if j ≡ 3k (mod 5) there holds

∞∑
j=1

fj =

2∑
i=1

∞∑
j=0

(f5j+i + f5j+5−i+k).

This, together with the simple to verify identities

(qm+5n, q5−5n−m; q5)∞ = (qm, q5−m; q5)∞(−1)nq−nm−5(
n
2)

(q2i−k, q5+k−2i, q5; q5)∞
(q; q)∞

=
1

(qi+2k, q5−i−2k; q5)∞
, i, k + 1 ∈ {1, 2}

(
i+ r

2

)
− (r + 1)(5r + 2i+ 4k)/2 = −

(
2r + k + 2

2

)
, i, k + 1 ∈ {1, 2}

2∑
i=1

(−1)i = 0
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and the Jacobi triple product identity (1.5), yields

LHS(2.2)

=

2∑
i=1

(−1)iq(
i+r
2 )

(qi+2k, q5−i−2k; q5)∞

(−2r−k−2∑
j=−∞

+

∞∑
j=0

)
(−1)jqj(5j+10r+2i+4k+5)/2

=

2∑
i=1

(−1)i+rq(
i+r
2 )−(r+1)(5r+2i+4k)/2

(qi+2k, q5−i−2k; q5)∞

×
[ r∑
j=−r−k

(−1)jqj(5j+2i+4k−5)/2 − (qi+2k, q5−i−2k, q5; q5)∞

]
= RHS(2.2).

After substituting (2.2) in (2.1) we obtain

∞∑
n=0

a2nqn(n+k)

(q; q)n

=
(a; q)2∞
(q; q)2∞

∞∑
r=0

2∑
i=1

(−1)i+1q−(2r+k+2
2 )(1− q2r+k+1)(aq−r; q)r

(qi+2k, q5−i−2k; q5)∞(a; q)r+k+1

×
r∑

j=−r−k

(−1)jqj(5j+2i+4k−5)/2.

Here the reader is warned that the order of the sums over r and i must be strictly
adhered to. Indeed, our earlier considerations about convergence and the fact that
(2.2) is true, guarantee the not so obvious fact that after summing over i the sum
over r converges.

Our next step removes any further convergence issues as we now specialize a =
qm+1 with m a nonnegative integer. The sum over r then terminates, yielding

(2.3)

∞∑
n=0

qn(n+2m+k+2)

(q; q)n
=

2∑
i=1

(−1)i+1

(qi+2k, q5−i−2k; q5)∞

×
m∑
r=0

q−(2r+k+2
2 )(1− q2r+k+1)

(q; q)m−r(q; q)m+r+k+1

r∑
j=−r−k

(−1)jqj(5j+2i+4k−5)/2.

Rewriting the left-hand side using the Garrett–Ismail–Stanton identity (1.8) gives

d2m+k+2

(q, q4; q5)∞
− e2m+k+2

(q2, q3; q5)∞
= (−1)kq(

2m+k+2
2 )RHS(2.3).

Multiplying both sides by (q; q)2m+k+1 this is of the form

P (q)

(q2, q3; q5)∞
=

Q(q)

(q, q4; q5)∞
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with P (q) and Q(q) polynomials. An identity of this type can only be true if
P (q) = Q(q) = 0, and we infer

e2m+k+2 = q(
2m+k+2

2 )
m∑
r=0

q−(2r+k+2
2 )(1− q2r+k+1)

(q; q)m−r(q; q)m+r+k+1

r∑
j=−r−k

(−1)jqj(5j+1)/2

d2m+k+2 = q(
2m+k+2

2 )
m∑
r=0

q−(2r+k+2
2 )(1− q2r+k+1)

(q; q)m−r(q; q)m+r+k+1

r∑
j=−r−k

(−1)jqj(5j+3)/2

for m ≥ 0. All that remains is to invert these new representations of the Schur
polynomials. This is easily done recalling the Bailey transform [6], which states
that if

(2.4) βn =

n∑
r=0

αr
(q; q)n−r(aq; q)n+r

then

(2.5) αn = (1− aq2n)

n∑
r=0

(−1)n−rq(
n−r
2 )(aq; q)n+r−1

(q; q)n−r
βr.

For later reference we remark that a pair of sequences (α, β) that satisfies (2.4) (or,
equivalently, (2.5)) is called a Bailey pair relative to a.

Since our expressions for the Schur polynomials take the form (2.4) with a =
qk+1, we may invoke (2.5) to find the identity claimed in Theorem 1.1.

2.2. Proof of Proposition 2.1. Our proof relies on the following lemma.

Lemma 2.2. For k ∈ {0, 1} and M and n integers there holds

qn(n+2)

(q; q)3∞

∞∑
j=1

∞∑
r=0

M∑
l=0

(−1)M+j+r+1q(
j+r
2 )+(M−l

2 )+(l
2)+l(r+k+1)

× q−r(M−l)−n(2j−k) (1− q(2j−k)(2n+1))(1− q2r+k+1)

(1− q2n+1)(q; q)M−l(q; q)l

=


qm(m+k)

(q; q)m−n(q; q)m+n+1
M = 2m

0 M = 2m+ 1.

Here our earlier definition of (a; q)n is extended to all integers n by (a; q)n =
(a; q)∞/(aq

n; q)∞. Note in particular that 1/(q; q)n = 0 for n < 0.
Given the triple sum on the left, Lemma 2.2 perhaps appears complicated and

not readily applicable. However, in view of (2.4) it is in fact quite useful, and if we
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multiply boths sides by αn and then sum n over the nonnegative integers we get

qn(n+2)

(q; q)3∞

∞∑
n=0

∞∑
j=1

∞∑
r=0

M∑
l=0

αn(−1)M+j+r+1q(
j+r
2 )+(M−l

2 )+(l
2)+l(r+k+1)

× q−r(M−l)−n(2j−k) (1− q)(1− q(2j−k)(2n+1))(1− q2r+k+1)

(1− q2n+1)(q; q)M−l(q; q)l

=

q
m(m+k)βm M = 2m

0 M = 2m+ 1,

where (α, β) is a Bailey pair relative to q.
Next we multiply both sides by aM and sum over M . If on the left we interchange

the sums over M and l, shift M →M + l and then sum over l and M using Euler’s
q-exponential sum [12, Eq. (II.2)]

∞∑
n=0

(−1)nanq(
n
2)

(q; q)n
= (a; q)∞

this yields

(a; q)2∞
(q; q)3∞

∞∑
n=0

∞∑
j=1

αnq
n(n−2j+k+2) (1− q)(1− q(2j−k)(2n+1))

(1− q2n+1)

×
∞∑
r=0

(−1)j+r+1q(
j+r
2 )(1− q2r+k+1)(aq−r; q)r
(a; q)r+k+1

=

∞∑
n=0

a2nqn(n+k)βn.

We have nearly arrived at (2.1). All that is needed is the following Bailey pair
relative to q due to Rogers [18]:

αn = (−1)nqn(3n+1)/2 (1− q2n+1)

(1− q)
and βn =

1

(q; q)n
.

Substituting this, interchanging the sum over n and j (with the above choice for
αn this may indeed be done) and using the triple product identity (1.5) gives (2.1).

Proof of Lemma (2.2). Replacing M by 2m + i where i ∈ {0, 1}, and shifting l →
l +m+ i leads to

(2.6)
qn(n+2)

(q; q)3∞

∞∑
j=1

∞∑
r=0

m∑
l=−m−i

(−1)j+r+1q(
j+r
2 )+ir−n(2j−k)+l(l+2r+k+i+1)

× (1− q(2j−k)(2n+1))(1− q2r+k+1)

(1− q2n+1)(q; q)m−l(q; q)m+l+i
=

δi,0
(q; q)m−n(q; q)m+n+1

.

By the q-Chu–Vandermonde summation [12, Eq. (II.6)]

(2.7)

n∑
j=0

(a, q−n; q)j q
j

(q, c; q)j
=

(c/a; q)n
(c; q)n

an
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this follows from the simpler to prove identity

(2.8)
q2n(n+1)

(q; q)3∞

∞∑
j=1

∞∑
r=0

m∑
l=−m−i

(−1)j+r+1q(
j+r
2 )+ir−n(2j−k)+l(2r+k+1)

× (1− q(2j−k)(2n+1))(1− q2r+k+1)

(1− q2n+1)(q; q)m−l(q; q)m+l+i
=

δi,0q
m−n

(q; q)m−n(q; q)m+n+1
.

Indeed, if we multiply both sides of (2.8) by qm(m+i)/(q; q)M−m, the resulting
identity can be summed over m by the c = 0 instance of (2.7) (after first replacing
m → M − m). On the right we of course only need to do this sum when i = 0.
Replacing M by m then gives (2.6). Those familiar with the concept of a Bailey
chain [6] will have recognized that the reduction of (2.6) to (2.8) corresponds to a
simplifying (i.e., backwards) iteration along a Bailey chain relative to qi.

Since (2.8) is of the form (2.5) with a = qi we can use (2.4) to invert. Hence

(2.9)
q2n(n+1)

(q; q)3∞

∞∑
j=1

∞∑
r=0

(−1)j+r+1q(
j+r
2 )+ir−n(2j−k)−(m+i)(2r+k+1)

×
(
1− q(2n+1)(2j−k))(1− q2r+k+1

)(
1 + q(2m+i)(2r+k+1)

)
= δi,0(1− q2m)(1− q2n+1)

m∑
r=0

(−1)m−rq(
m−r

2 )+r−n(q; q)r+m−1
(q; q)m−r(q; q)r−n(q; q)r+n+1

,

with the convention that (1 − q2m)(qm; q)r+m−1 = 2 for m = r = 0 in accordance
with (1 − q2m)(q; q)m−1 = (1 + qm)(q; q)m. The sum over r on the right may be
carried out by the q-Chu–Vandermonde sum (2.7), leading to

RHS(2.9)

= δi,0
(−1)m+n(1− q2m)(1− q2max{n,−n−1}+1)(q; q)m+max{n,−n−1}−1

(q; q)m−n(q; q)m+n+1(q2; q)max{n,−n−1}−m
,

which is nonzero for n = ±m and n = ±m − 1 only. If we also multiply (2.9) by
qi(k+1)/2 and note that on the right this may again be dropped, we obtain

(2.10)
q2n(n+1)

(q; q)3∞

∞∑
j=1

∞∑
r=0

(−1)j+r+1q(
j+r
2 )−n(2j−k)−(2m+i)(2r+k+1)/2

×
(
1− q(2n+1)(2j−k))(1− q2r+k+1

)(
1 + q(2m+i)(2r+k+1)

)
= δi,0

(
δm,n + δ−m,n − δm−1,n − δ−m−1,n

)
.

Since both sides are invariant under the substitution m → −m − i this must hold
for all m,n ∈ Z and i, k ∈ {0, 1}.

Next we observe that (2.10) is a consequence of the stronger result

(2.11)
q(

n
2)+(n−m)/2

(q; q)3∞

∞∑
j=1

∞∑
r=0

(−1)j+r+nq(
j+r
2 )−(n−1)(2j−k)/2−(m−1)(2r+k)/2

×
(
1− qn(2j−k)

)(
1− qm(2r+k+1)

)
= δm,n − δ−m,n,
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for m,n ∈ Z and k ∈ {0, 1}. If we denote the above two identities by (2.10)|m,n
and (2.11)|m,n and note that δ2m+i±1,2n+1 = δi,0δm−(1∓1)/2,n, then (2.10)|m,n =
(2.11)|2m+i+1,2n+1 − (2.11)|2m+i−1,2n+1.

Before proving (2.11) let us point out that without loss of generality we may fix
k = 0. For, if we take (2.11) with k = 1, replace r ↔ j − 1, and multiply the result

by (−1)m−nq(m
2−n2)/2 we find (2.11)|m,n;k=1 = (2.11)|n,m;k=0. Equation (2.11) for

k = 0 is a linear combination of yet another identity, given by

(2.12)
q(

n
2)

(q; q)3∞

∞∑
j=0

∞∑
r=0

(−1)j+r+nq(
j+r
2 )−(n−1)j−(m−1)r

+
q(

n
2)

(q; q)3∞

∞∑
j=1

∞∑
r=0

(−1)j+r+nq(
j+r
2 )−(n−1)j−(m−1)r+2nj+m(2r+1) = δm,n.

Here it should be noted that the first sum over j now includes the term j = 0. It is
easily seen that this extra term is cancelled out in the following linear combination,
and that (2.12)|m,n − q−n(2.12)|m,−n = q(m−n)/2(2.11)|m,n;k=0.

After this string of reductive steps we are finally in a position to carry out a proof.
Replacing m by m + n in (2.12) and changing the summation variable j → n − j
(j → j − n) in the first (second) double sum gives

n∑
j=−∞

∞∑
r=0

(−1)j+rq(
j−r
2 )−mr +

∞∑
j=n+1

∞∑
r=0

(−1)j+rq(
j+r+1

2 )+m(r+1)

= (q; q)3∞δm,0.

In the second term on the left we rewrite the sum over r using

(2.13)

∞∑
r=0

(−1)rq(
r+1
2 )+a(r+1) =

∞∑
r=0

(−1)rq(
r+1
2 )−ar

as follows from

(2.14)

∞∑
r=−∞

(−1)rq(
r+1
2 )−ar = 0.

(To prove (2.14) replace r → 2a− 1− r.) As a result we are left with

(2.15)

∞∑
j=−∞

∞∑
r=0

(−1)j+rq(
j−r
2 )−mr = (q; q)3∞δm,0.

Using (2.13) on the sum over r and negating j yields (2.15)|m = qm(2.15)|−m, so
that we may assume m ≤ 0 when proving (2.15). If m < 0 the order of the sums
may be interchanged. By (2.14) this completes the proof. If m = 0 we need

2j−1∑
r=0

(−1)rq(
j−r
2 ) = 0

for j ≥ 0 (to prove this replace r → 2j− 1− r), and Jacobi’s identity [14, §66, (5.)]

∞∑
i=0

(−1)i(2i+ 1)q(
i+1
2 ) = (q; q)3∞.
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Equipped with these the rest is easy;

∞∑
j=−∞

∞∑
r=0

(−1)j+rq(
j−r
2 ) =

{ ∞∑
j=0

∞∑
r=2j

+

−1∑
j=−∞

∞∑
r=0

}
(−1)j+rq(

j−r
2 )

=
{ ∞∑
j=0

+

∞∑
j=1

} ∞∑
r=j

(−1)rq(
r+1
2 )

=

∞∑
r=0

(−1)r(2r + 1)q(
r+1
2 ) = (q; q)3∞. �

3. Discussion

3.1. Eqs (1.9) and (1.10) versus (1.11). The proof of Theorem 1.1 as given in
the previous section is very lengthy and complicated, and, as a result, not very
illuminating. Here we briefly discuss the proofs of (1.11) as found by Jordan and
Andrews as we hold some hope that at least one of these may be generalized to
also prove (1.9) and (1.10).

Perhaps simplest is Jordan’s proof [15]. Denoting the right side of (1.11) by fn;k
and the summand on the right of (1.11) by fn,r;k, it is not difficult to show that
the functional equation

(1− xqn+2)Kn+1(x) = Kn(x)− x2qn+4Kn(xq2)

satisfied by the Szegő polynomials implies the recurrence

(3.1)

n∑
r=m+1

(fn,r;k − fn−1,r−1;k) = −1− qm−n

1− qn+k
fn,m;k.

By the m = 0 instance hereof it is found that

fn;k − fn−1;k = fn,0;k +

n∑
r=1

(fn,r;k − fn−1,r−1;k)

= q−n
1− q2n+k

1− qn+k
fn,0;k

= (−1)nqn(5n+2k+1)/2 + (−1)n+kq(n+k)(5(n+k)−2k−1)/2,

from which (1.11) follows by induction. Unfortunately, at present we have been
unable to find an analogue of (3.1) for the summands on the right of Theorem 1.1.

Andrews’ proof of (1.11) relies on the following multiple series generalization of
Watson’s q-Whipple transform [3, Thm. 4; k = 3]:

(3.2) 10W9(a; b, c, d, e, f, g, q−n; q, a3qn+3/bcdefg; q, q)

=
(aq, aq/fg; q)n
(aq/f, aq/g; q)n

n∑
j=0

n−j∑
k=0

(aq/bc, d, e; q)j
(q, aq/b, aq/c; q)j

(aq/de; q)k
(q; q)k

× (f, g, q−n; q)j+k
(aq/d, aq/e, fgq−n/a)j+k

(aq2
de

)j
qk.

Here and in the following we employ standard notation for basic hypergeometric
series, see e.g., [12]. Taking b = aqn+1 and letting c, d, e, f, g tend to infinity yields
(1.11) with k = 0 if a = 1 (k = 1 if a = q).
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Now if we apply Sears’ 4φ3 transformation [12, Eq. (III.15)] to Watson’s Wat-
son’s q-Whipple transform [12, Eq. (III.18)] we readily obtain

(3.3) 8W7(a; b, c, d, e, q−n; q, a2qn+2/bcde; q, q)

=
(aq, b, a2q2/bcde; q)n
(aq/c, aq/d, aq/e; q)n

4φ3

[aq/bc, aq/bd, aq/be, q−n
aq/b, a2q2/bcde, q1−n/b

; q, q
]
.

Taking b = aqn+1 and letting c, d, e, f, g this simplifies to

(3.4)

n∑
j=0

1− aq2j

1− a
(a; q)j(−1)jq3(

j
2)(aq)j

(q; q)j
= (aq; q)2n

n∑
j=0

qj

(q, q−2n/a; q)j
.

Choosing a = qk for k = 0, 1 and making the variable change j → n − r on the
right we obtain the following polynomial analogue of Euler’s identity

(3.5)

n∑
j=−n−k

(−1)jqj(3j+1)/2 =

n∑
r=0

(−1)n−rq(n−r)(3n+r+2k+3)/2 (q; q)n+r+k
(q; q)n−r

.

(Incidentally, this identity is very similar and can easily be transformed into a
polynomial version of Euler’s identity due to Shanks [20].) Given the similarity
between (3.5) and the identities (1.9) and (1.10), and given Andrews’ proof of
(1.11) by means of (3.2) it seems very natural to ask for a proof of Theorem 1.1
by means of a multiple series generalization of the transformation (3.3). If we take
(1.9) with k = 0 and (1.10) with k = 1 and replace r → n − j in the sums on the
right we find that the resulting identities are the a = 1 and a = q instances of

n∑
j=0

1− aq2j

1− a
(a; q)j(−1)jq5(

j
2)(aq)2j

(q; q)j

= (aq; q)2n

n∑
j=0

n−j∑
k=0

(−1)kaj+kqj
2−(2j+k

2 )+(2n+1)(j+k)(q−2n−1; q)2j+2k

(q, q−2n/a; q)j(q; q)k(q−2n−1; q)2j+k

This is to be compared with (3.4). Despite numerous attempts we failed to extend
this to a multiple series transformation similar to (3.2) and generalizing (3.3). Of
course one can try to prove the above by equating coefficients of am, but the
resulting identity

n∑
j=0

(−1)jq(
j
2)+j(4j−2m+1)

(q; q)j

([
j

m− 2j

]
+ q4j−m+1

[
j

m− 2j − 1

])

=

n∑
r=0

n−r∑
s=0

(−1)r+sq(
r+s
2 )+r(4n−2m+4)+s(s+r−m+1)

(q; q)r

×
[

2n+ 1− r
m− 2r − s

][
2n− 2r − s+ 1

s

]
for n ≥ 0 and 0 ≤ m ≤ 3n+ 1 is not particularly simple (and would only prove half
of Theorem 1.1).
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3.2. Some combinatorics related to Theorem 1.1. In order to discuss some of
the combinatorics of Theorem 1.1 we need to review several standard results from
partition theory [4].

Let λ = (λ1, λ2, . . . , λr) be a partition, defined as a weakly decreasing sequence
of positive integers λj (the parts of λ). The weight |λ| of λ is given by the sum of its
parts. We say that λ is a partition of l if |λ| = l. The Ferrers graph of λ is the graph
obtained by drawing r left-aligned rows of dots with the jth row containing λj dots.
The conjugate λ′ of λ is obtained by transposing its Ferrers graph. The number
d(λ) is the number of rows in the maximal square of dots of the Ferrers graph of λ.
An alternative way to represent a partition λ is as a two-rowed matrix of d(λ) = d
columns

(
t1t2...td
b1b2...bd

)
, where tj = λj − j and bj = λ′j − j, so that, in particular,

tj > tj+1 and bj > bj+1. Conversely, any such matrix (also called Frobenius
symbol) corresponds to the unique partition λ by λj = tj + bj + 1. We will in the
following identify the standard and Frobenius notations for partitions. Note that

|λ| = d+
∑d
j=1(tj+bj). The rank of a partition λ is defined as its largest part minus

its number of parts, i.e., as λ1−λ′1 = t1−b1. More generally, the ith successive rank
of λ is given by ti− bi, and r(λ) = (t1− b1, t2− b2, . . . , td− bd) denotes the sequence
of successive ranks of λ. For example, if λ = (7, 7, 5, 3, 3, 1, 1, 1), then |λ| = 28,
λ′ = (8, 5, 5, 3, 3, 2, 2), d(λ) = 3, λ =

(
652
732

)
, λ′ =

(
732
652

)
, and r(λ) = (−1, 2, 0).

Now let b2(l, n) denote the set of all partitions of l, with largest part at most n−2
and difference between parts at least 2, and let B2(l, n) be its cardinality. Then
en =

∑
l≥0B2(l, n)ql. Given a partition λ ∈ b2(l, n) with exactly r parts, one can

form a new partition µ as follows [4, §9.3]: µ =
( s1,...,sr
c1,...,cr

)
, where sj = bλj/2c and

cj = b(λj − 1)/2c. Because of the difference-2 condition one indeed has sj > sj+1

and cj > cj+1. Since (for n ∈ Z) bn/2c + b(n − 1)/2c = n − 1 one finds that
|µ| = r +

∑r
j=1(sj + cj) = |λ| = l. Furthermore, the restriction that λj − λj+1 ≥ 2

translates into the fact that the successive ranks of µ must take the values 0 and
1 only. Finally the restriction that λ1 ≤ n − 2 implies that s1 + c1 + 1 ≤ n − 2.
Since s1 − c1 ∈ {0, 1} this is equivalent to requiring that µ1 ≤ bn/2c and µ′1 ≤
b(n−1)/2c. If we denote the set of all partitions of l with successive ranks in {0, 1},
largest part not exceeding bn/2c and number of parts not exceeding b(n − 1)/2c
by q2(l, n) (with cardinality Q2(l, n)) then clearly each partition µ ∈ q2(l, n) can
also be mapped back onto a partition in b2(l, n). Specifically, if µ ∈ q2(l, n) has
Frobenius symbol

( s1,...,sr
c1,...,cr

)
, then λ = (s1 + c1 + 1, . . . , sr + cr + 1) ∈ b2(l, n), since

λj − λj+1 = sj + cj − sj+1 − cj+1 ≥ 2 and λ1 = s1 + c1 + 1 = µ1 + µ′1 − 1 ≤ n− 2.
Hence Q2(l, n) = B2(l, n) and en =

∑
l≥0Q2(l, n)ql. For example, ∪l≥0q2(l, n) =

{∅, (1), (2), (2, 1), (3, 1), (2, 2), (3, 2), (3, 3)} so that e6 = 1+q+q2+q3+2q4+q5+q6.
The above discussion can be repeated for the Schur polynomial dn and we define

b1(l, n) as the subset of b2(l, n) obtained by removing all partitions which have a
part equal to 1. Hence dn =

∑
l≥0B1(l, n)ql. If we also define q1(m,n) as the set

of partitions with successive ranks in {1, 2}, largest part not exceeding b(n+ 1)/2c
and number of parts not exceeding b(n − 2)/2c, then it is not hard to show that
Q1(l, n) = B1(l, n) so that dn =

∑
l≥0Q1(l, n)ql. For example, ∪l≥0q1(l, n) =

{∅, (2), (3), (3, 1), (3, 3)} so that d6 = 1 + q2 + q3 + q4 + q6.
So far, we have given a combinatorial interpretation of the Schur polynomi-

als en and dn in terms of partitions with restrictions on their size and successive
ranks. Next we will discuss the combinatorial interpretation of the partial theta
sum

∑n
j=−n+k(−1)jqj(5j−2i+5)/2 in terms of successive ranks.
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First we recall some further known properties of Qi(l, n) [2, 4]. Let λ be a parti-
tion and r(λ) its sequence of successive ranks. The length of the largest subsequence
r′ of r(λ) such that the odd (even) elements of r′ are at least 4 − i and the even
(odd) elements of r′ are at most 1 − i, is called the (2, i)-positive ((2, i)-negative)
oscillation of λ. The number of partitions of l that have at most b parts, largest part
not exceeding a and (2, i)-positive ((2, i)-negative) oscillation at least j is denoted
by pi(a, b; j; l) (mi(a, b; j; l)). By inclusion-exclusion arguments it then follows that

Qi(l, n) =

∞∑
j=0

(−1)jpi(ā, b̄; j, l) +

∞∑
j=1

(−1)jmi(ā, b̄; j, l),

with ā = ā(n, i) = b(n− i+ 2)/2c and b̄ = b̄(n, i) = b(n+ i− 3)/2c. Furthermore,

qj(5j−2i+5)/2

[
n− 1

bn+i−5j−32 c

]
=



∑∞
l=0 pi(ā, b̄;−j, l)ql j ≤ 0, j even∑∞
l=0mi(ā, b̄;−j, l)ql j ≤ 0, j odd∑∞
l=0 pi(ā, b̄; j, l)q

l j ≥ 0, j odd∑∞
l=0mi(ā, b̄; j, l)q

l j ≥ 0, j even,

from which (1.4) immediately follows. But now it is also clear what our partial
theta sums represent. If we denote by λ±i,j the (unique) partition of minimal weight

that has a positive/negative (2, i)-oscillation j and by Mi the set of all such minimal
partitions, i.e., Mi = {λσi,j}j≥0;σ∈{0,1}, then (for k ∈ {0, 1} and i ∈ {1, 2})

n∑
j=−n−k

(−1)jqj(5j−2i+5)/2 =
∑
λ∈Mi

λ1≤b(5n+2ki−2i+5)/2c
λ′1≤b(5n+2ki)/2c

(−1)d(λ)q|λ|.

One can in fact easily find the partition λ±i,j . For example, using the Frobenius
notation it follows immediately that for j even

λ+i,j =

(
5j/2− 1, 5j/2− 5, . . . , 9, 5, 4, 0

5j/2 + i− 5, 5j/2 + i− 6, . . . , i+ 5, i+ 4, i, i− 1

)
.

When converted into standard notation this gives

λ+i,j = (5j/2, (5j/2− 3)2, . . . , (j + 6)2, (j + 3)2, ji, (j − 2)3, . . . , 43, 23)

where pf stands for f parts of size p. Calculating the weight of this partition gives

|λ+i,j | = 5j/2 + 2

j/2−1∑
k=1

(j + 3k) + ij + 3

j/2−1∑
k=1

(2k) = j(5j + 2i− 5)/2, j even

as it should. Similarly one can use the Frobenius notation to find

λ−i,j = ((5j − 3)/2)2, . . . , (j + 6)2, (j + 3)2, ji, (j − 2)3, . . . , 33, 13),

(λ+i,j)
′ = λ−5−i,j both for j odd, and (λ−i,j)

′ = λ+5−i,j for j even, and thus |λ±i,j | =

j(5j ∓ 2i± 5)/2 for odd j and |λ−i,j | = j(5j − 2i+ 5)/2 for even j.
Summarizing, we have the following remarkable situation. The Schur polynomi-

als, which are the generating functions of certain size and successive rank restricted
partitions, can be expressed as an alternating sum over the generating functions of
partitions with certain restrictions on their (2, i)-oscillations. This well-known fact
[2, 4] provides a combinatorial explanation of Schur’s result (1.4). But now we see
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that according to the Theorem 1.1 there is another side to the coin; the alternating
sum over the generating function of a very special subset of partitions with certain
restrictions on their (2, i)-oscillations can in its turn be expressed as a weighted
sum over Schur polynomials. However, by no means is this an example of a trivial
(or nontrivial but known) inversion result. Indeed, naively one might think that if
we substitute (1.4) in Theorem 1.1 to get

n∑
j=−n−k

(−1)jqj(5j−2i+5)/2 =

∞∑
j=−∞

(−1)jqj(5j−2i+5)/2

×
n∑
r=0

(−1)n−rq(n−r)(5n+3r+4k+5)/2 (q; q)n+r+k
(q; q)n−r

[
2r+k+1

b(2r+i+k−5j−1)/2c
]
,

that this is just a consequence of the second line being χ(−n − k ≤ j ≤ n) with
χ(true) = 1 and χ(false) = 0. However, it is readily checked that this is only
correct when n = k = 0. It thus seems an extremely challenging problem to find a
combinatorial proof of Theorem 1.1, especially since our analytic proof provides so
little insight as to why this theorem is true.

To conclude we remark that the previous discussion has a representation theo-
retic counterpart. As is well-known,

1

(q; q)∞

∞∑
j=−∞

(−1)jqj(5j−2i+5)/2

is the (normalized) character of the c = −22/5 Virasoro algebra corresponding to
the highest weight vector vhi

of weight hi = (1 − i)/5. According to the Feigin–
Fuchs construction [10] the above character can be constructed from the Verma
module V (c, hi) by eliminating submodules generated by singular or null vectors.
Because of the embedded structure of these submodules this leads to an inclusion-
exclusion type of sum. Specifically, the character corresponding to the submodule
V (c, h′i) with singular vector of weight h′i is given by qh

′
i−hi/(q; q)∞, with the set

of weights of singular vectors (including vhi
) given by h′i = hi + j(j − 2i+ 5)/2 for

j ∈ Z. Therefore, if we denote by Vs(c, hi;N) the set comprising of the N singular
vectors of V (c, hi) of smallest weight, and if we denote by d(v) + 1 the number
of (sub)modules V (c, h′i) that contain the singular vector v (so that d(v) = 0 iff
v = vhi), then

n∑
j=−n−k

(−1)jqj(5j−2i+5)/2 =
∑

v∈Vs(c,hi;2n+k+1)

(−1)d(v)q|v|−hi ,

where |v| is the weight of v, c = −22/5 and hi = (1− i)/5. Again it is a challenge
to explain Theorem 1.1 from the above representation theoretic point of view.

Note added in proof. Robin Chapman has informed me that he has found a
combinatorial proof of Theorem 1.1 using Schurs involution [9].
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