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The free energy and local height probabilities of the dilute A models with 
broken Z2 symmetry are calculated analytically using inversion and corner 
transfer matrix methods. These models possess four critical branches. The first 
two branches provide new realizations of the unitary minimal series and the 
other two branches give a direct product of this series with an Ising model. We 
identify the integrable perturbations which move the dilute A models away from 
the critical limit. Generalized order parameters are defined and their critical 
exponents extracted. The associated conformal weights are found to occur on 
the diagonal of the relevant Kac table. In an appropriate regime the dilute A 3 
model lies in the universality class of the lsing model in a magnetic field. In this 
case we obtain the magnetic exponent 6 = 15 directly, without the use of scaling 
relations. 
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solid-on-solid (RSOS) models of Andrews, Baxter and Forrester (ABF). (t~ 
In these models each site of the lattice carries a height variable, restricted 
to the values 1,..., h -  1 with h = 4, 5 ..... subject to the rule that heights on 
neighboring lattice sites differ by -I- 1. If the allowed heights are represented 
by the nodes in the following diagram, 

1 2 3 h - 1  

the adjacency rule requires that neighboring lattice sites take values that 
are adjacent on the diagram. 

Andrews et al. cl~ considered four different regimes, labeled I-IV. It was 
pointed out by Huse ~2~ that the critical line separating regimes III and IV 
realizes the complete unitary minimal series of conformal field theory. This 
series is described by a central charge 

6 
c =  1 h ( h -  1)' h = 4 ,  5 .... (1.1) 

and a set of conformal weights, given by the Kac formula 

A(hl_  [ h r - ( h -  I)S] 2 -  1 
r, $ 4 h ( h - 1 )  , l ~ r < ~ h - 2 ,  l<~s<<.h-I  (1.2) 

The corresponding modular invariant partition function is ~31 

h - 2  h - I  

z = � 8 9  '"' 2 [Z,.~(q)l (1.3) 
r = l  s = l  

where q is the modular parameter and the -u,~ x,.s are the Virasoro characters 
given by 

zl(h) q ,~ - c/24 
Xr.s(q) = ( h ~  Q(q) j = - - o o  {qh(h- l ) j2+ [ h r - ( h -  l ) s ] j -  q h(h- I ) j2+ [hr+ ( h -  I ) s ] j + r s }  

(1.4) 

with Q(q)= I-I~= 1 (I-q~). 
By giving a loop or polygon interpretation to the critical ABF models, 

Pasquier ~4'5) extended these models to arbitrary adjacency graphs. 
Demanding that these new models be critical restricts the graphs to the 
Dynkin diagrams of the classical and affine simply-laced Lie algebras 
shown in Fig. 1. 

Recently a new construction of solvable RSOS models was found. 16 8} 
Basically, the method is an extension of the work of Pasquier, and related 
work of Owczarek and Baxter, ~9~ to more general loop models. Application 
to the O(n) modelJ 1~ which is closely related to the lzergin-Korepin 
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model, c~  has led to a new family of critical RSOS models labeled by 
Dynkin diagrams. The same models were found independently by 
Roche.t 12~ 

In the approach of Pasquier, the polygons, which are interpreted as 
domain walls separating regions of different height, densely cover the edges 
of the dual lattice. As a consequence, heights on adjacent sites are always 
different. In the new RSOS models, two neighboring sites of the lattice 
either have the same or different height, so that the domain walls occupy 
some but not all edges of the dual lattice. Therefore it is natural, following 
ref. 12, to term these new models dilute A-D-E models. 

Each member of the dilute AL hierarchy possesses four distinct critical 
branches. The central charge is given by 

I 3  6 branches 1 and 2 
1 h ( h -  1) (1.5) 

c =  6 
h(h - 1 ) branches 3 and 4 

where 

h = { L + 2  branches 1 and 3 
+ 1 branches 2 and 4 (1.6) 

The first two branches give new realizations of the unitary minimal series 
with the modular invariant partition functions (1.3). The other two 
branches appear to be direct product of this same series and an Ising 
model, with modular invariant partition functions 

2 3 h - - 2  h - I  

Z = � 8 8  ~ ~ ~ ~ Iz~,(q)x~'~(q)l-' (1.7) 
r ' = l  s ' = l  r = l  s = l  

As reported in refs. 6 and 7, the models related to the A L Dynkin diagrams 
admit an off-critical extension. A remarkable feature of these off-critical 
models is that, for odd values of L, they break the 7/2 symmetry of the 
underlying Dynkin diagram. The simplest of these symmetry-breaking 
models belongs to the universality class of the Ising model. This allows the 
calculation of the magnetic exponent fi= 15 without the use of scaling 
relations. 

This paper is devoted to the investigation of the models of the dilute 
AL hierarchy. First we briefly describe the whole family of dilute A-D-E 
models. Then, in Section 3, we define the off-critical AL model and in 
Section 4 we calculate its free energy. From this we extract the critical 
exponent ct when L is even and 6 when L is odd. The main body of the 
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paper is concerned with the calculation of the order parameters of the 
dilute A models for odd values of L. In Section 5 we compute the local 
height probabilities and in the subsequent section we use these result to 
evaluate generalized order parameters. We also extract the set of associated 
critical exponents 6k and derive the corresponding conformal weights. In 
Section 7 we discuss the phase diagram, concentrating on L =  3, and in 
Section 8 we collect results concerning the Ising model in a field. Finally, 
we summarize and discuss our main results. 

The results for the order parameters when L is even will be presented 
in a future publication. Likewise, results for the critical models related to 
the other  adjacency diagrams, among which is a solvable tricritical Potts 
model, t13) will be reported elsewhere. 

2. THE D ILUTE A - D - E  M O D E L S  

In this section we define the family of dilute A-D-E models. Although 
we restrict the description to the square lattice, they can be defined on any 
planar lattice. 

Consider an arbitrary connected graph (# consisting of L nodes and a 
number of bonds connecting distinct nodes. Label the nodes by an integer 
height a ~ { 1 ..... L }. Nodes a and b are called adjacent on ~ if they are 
connected via a single bond. Such a graph is conveniently represented by 
an adjacency matrix A with elements 

{10 if a and b adjacent (2.1) 
A a.h = otherwise 

Let n denote the largest eigenvalue of A and S the Perron-Frobenius 
vector, i.e., A S =  nS. 

With these ingredients we define an RSOS model on the square lattice 
as follows. Each site of ~ can take one of L different heights. The 

Boltzmann weight of a configuration is nonzero only if all pairs of 
neighboring sites carry heights which are either equal or adjacent on f#. 
The weight of an element face of the RSOS model is given by 

{ S~'X i/2 

\ s o /  . . . . . .  

+ p86,.,.A,~.bA,~.a+ \SoSaj  P96b.aA,.bAb. c (2.2) 
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where Sa is the a t h  en t ry  of S a n d  a, b, c a n d  d can  take any  of the L 
heights  of  the g raph  cB. The  general ized K r o n e c k e r  6 is defined as 

6~,.....i,, = I-[~"= 2 6i,.i:. If we pa ramet r i ze  n by 

n = - 2 cos 42 (2.3) 

then  P i ..... /99 are  given by  9 

pi  = [ s in  22 sin 32 + sin u s in(32 - u ) ] / ( s i n  22 sin 32) 

/92 = P3 = sin(32 - u)/sin 32 

P4 = P5 = sin u/sin 32 
(2.4) 

P6 = P7 = sin u s in(32 - u) / ( s in  22 sin 32) 

P8 = s in(22 - u) s in(32 - u) / ( s in  22 sin 32) 

P9 = - sin u s in(2 - u) / (s in  22 sin 32) 

Table I. Central Charge of the Dilute A-D-E Models 

Algebra n 3. c Branch 

AL 2cos L +  t 

( ' )  n 1 T_ 2_Z__~_ 2 D L 2 cos 2L - 2 

E6 2 c o s ~  1 

, 4 ( l )  E 7 2 COS "~ 1 

Es 2cOS~o 4 (1  "T-~O) 

1 6 
( L +  1)(L+ l + l) 1, 2 

3 6 4,3 

2 ( L +  1)(L+ 1 -T- 1) 

I" 1 6 
(2L-- 2)(2L-- 2 + 1) 1, 2 

l 6 4,3 

(2L--2)(2L- 2-T- I) 

I 6 1 12(12_+1) 
3 6 
2 12(12~- 1) 

I" 1 6 
18(18 • 1) 

1808 T- t) 

1 - 30{30 _+ 1 ) 

6 
30(30 -T- 1 ) 

1,2 
4,3 

1,2 
4,3 

1,2 
4,3 

9 We note that we have changed the variable 2 of ref. 6 to �89 - 2, 
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A L : 
1 

D L : 
I 

E 6 : 
1 

E 7 = 
1 

E 8 = 
1 

Classical ~f ine  

L 

^(I) 

2 3  L 1 2 3  L - I  

/ L  ,,, _ _  / L  

2 3  \ L _ ,  2 4 

~  _[t _ _ : _ : =  . . . .  

2 3 4 5  1 2 3 4 5  

; ; 4 ; ;  1 2 3 4 5 6 7  

= ~ = _ : ~  E ~ I : : : : : - :  - 

2 3 4 5 6 7  1 2 3 4 5 6 7 5  

Fig. 1, Dynkin diagrams of the simply-laced Lie algebras. 

We note that the weights P4 = P5 and the weights P6 = P7 are determined 
only up to a sign. For any graph aj, the RSOS model defined by (2.2)-(2.4) 
satisfies the Yang-Baxter equation. {~4) In fact, in refs. 6-8 it was shown that 
all models defined above have the same partition function as the O(n) 
model.(1~ 

From Eqs. (2.3) and (2.4) it follows that there are four different 
branches that yield the same values of n. Using the periodicity of the 
weights, we can restrict 2 to the interval -~n ~< 2 <-~n: 

branch 1 0 < u < 32 -~n <~ ;t <~ �88 

branch 2 0 < u < 32 1 

branch 3 - n + 3 2 < u < O  �88189 

branch4 - n + 3 2 < u < O  ~nl <~)~<l~n 

(2.5) 

These four branches correspond to (part of) the four branches defined in 
ref. 15 for the O(n) model. For n > 2 the value of 2 - ~ n  must be chosen 
imaginary, and the weights become complex, unlike the ordinary A-D-E 
models. As was pointed out in refs. 4 and 5, the only adjacency graphs that 
have largest eigenvalue n~<2 are the Dynkin diagrams of the classical 
(n < 2) and affine (n = 2) simply-laced Lie algebras shown in Fig. 1. For 
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the classical case the respective values of n are listed in Table I. The 
corresponding Perron-Frobenius vector can be found in ref. 4. 

From the equivalence with the O(n) model, the central charge of the 
dilute A-D-E models is known. "6~ The values on the four branches are 
listed in Table I for the classical algebras. For the affine algebras we have 
2 = � 8 8  o r l .  

3. T H E  O F F - C R I T I C A L  A M O D E L  

The dilute AL model (2.2) admits an extension away from criticality 
while remaining solvable. In terms of the theta functions of Appendix C, 
suppressing the dependence on the nome p, the Boltzmann weights of the 
off-critical AL model are given by '6'7~ 

( :  ; ) , 9 , ( 6 2 - u ,  oa , (32+u)~91(u ,~9 , (32-u  , 
W - ,9,(62) ,.9,(32) 8~(62) ~9~(32) 

x(S(a+ 1)34(2a2--52) S(a- 1),94(2a).+5._22)' ] 

( a + l  ;) (; a ) oq,(3J.--u,,..q4(+_2a2+2--u) 
W = W  a _ l  - ~91(32) ~94(+ 2a2 + 2) 

(a_+al :) (: a )~9,(32--u)~4(+202+2--u) 
W = W  = - 

a + l  ~1]-32-7~-4 ___ 2a2 + 2) 

( a  : ) = W ( :  a+l)=(S(a+-l)~ t/2'gl(u)~94(+--2a2-22+u) 
W 

a _ l  a \ S-~-) ] ,9,(32),.94(_2a2+2) 

(: a+i)(:-+' ~ 
W - = W  - 

a _ +  a 

fO4( -+ 2a2 + 32) ~4( + 2a2 - ,l)'~ ,/2 91(u) ~9t(32 - u) 
= " \ ~42( _ ~ a 2 -  +--2i ) ,9,(22) 9,(32) 

( a ~ l  a. ) , 9 , ( 2 2 - u ) , 9 , ( 3 2 - u ,  
W = 

aT- l 5,]22-) 01 (32) 

a + 1 a \ S2(a) ~9~(22) 0q~(32) 



476 

w ( a  a+ 1) = ,.91(3)].- u)oql( + 4 a 2  + 22 + u) 
a +  1 a ,9~(32) 31 (+4a2  + 22 ) 

Warnaar e t  al.  

+ m S(a +_ 1 ) 31(u) ~1( -I- 4a2 - 2 + u) 

S(a) 31(32) ~91(+4a2 + 2;t ) 

oql(3J. + u) 31( +__4a2 - 42 + u) + ,9~(u) 31( -t- 4a2 -- 2 + u) 

3,(32) 9t (_+4a2--  42) 3,(32) 9,(___4a2-- 42) 

(S(a-T- 1)3,(4,a.) 34(+2a2-5,a.)~ 
x '  k 'S(a) ,9,(2,,1.) 34(-t-2a,a.+,a.)) 

.~ ~91(4a2) 
S(a) = ( - I ~ (3.1) 

We note that  in the critical limit, p --* 0, the crossing factors S(a) reduce to 
the entries of the Per ron-Frobe l ius  vector So: 

S(a) S~ 
lim = - -  (3.2) p-o S(b) S~ 

We also note that, for later convenience, we have relabeled the states of the 
model a --* L + 1 - a in compar ison  with those of our  earlier definition of 
the model in ref. 6. 

The Bol tzmann weights (3.1) satisfy the following initial condition and 
crossing symmetry:  

( cl) 
W b 0 =6 , . c  (3.3) 

=\s(b)s(a)/ W(d b [ (3.4) 

and an inversion relation of the form 

oa~(22- u) ~9~(32- u) oq~(22 + u) 0t(32 + u) 

o~(2~) o~,(3~) ~o.,. (3.5) 
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In Eq. (2.5) four different critical branches were defined. This yields 
eight regimes for the off-critical A L model: 

regime 1 § 0 < p < 1 "[ 

regime 1 - - 1 < p < 0 S 
0 < u < 3 2  2 = ~  1 -  

0 < u < 3 2  ; t = ~  1 +  

3 2 - 7 t  < u < 0  2 = ~  1 +  

3 2 - r r < u < 0  2 = ~  1 - ~ - - -~  

regime 2 § 0 < p < 1 "[ 

regime 2 - - 1 < p < 0 

regime 3 § 0 < p < 1 "[ 

regime 3 - - 1 < p < 0 

regime 4 § 0 < p < 1 ~ 

regime 4 -  - 1 < p < 0 

(3.6) 

For  regimes 2 • and 3 • we exclude the L = 2 case because the model 
becomes singular. 

At criticality all AL models satisfy the 7/2 symmetry  of the Dynkin  
diagram, but the off-critical models, for odd values of L, break this 
symmetry:  

+ l - a  L + I  L o d d  (3.7) 

For  L = 3, if we make  the identification { 1, 2, 3 } = { + ,  0, - }, the model 
can be viewed as a spin-I Ising model. For  p :# 0 the up -down  symmetry  
of this model is broken.  We can therefore regard the nome p of the 
oq-functions as a magnetic field. This is in contrast  with the usual role of p 
as a temperature-l ike variable (see, e.g., ref. 14). Also for larger, odd values 
of L we refer to p as the magnetic field, even though it is not, in general, 
the leading magnetic operator .  For  odd L the + and - regimes are 
equivalent because negating the magnetic  field p merely has the effect of 
relabeling the heights a ~ L + 1 - a. 

The dilute AL model defined above is closely related to the Izergin-  
Korepin  (or At22~) SOS model. 117~ In the latter model  the weights are given 
by Eq.(3.1)  with 2a2 replaced by 2ot2+w 0, where Wo is an arbi trary 
constant,  and a ~ 7/. If  we set 

kn 
2 4 ( L +  1)'  k ~ { 1  ..... L , L + 2  ..... 2 L + l }  

w 0 = 0  (3.8) 

a ~ { 1  ..... L} 
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we obtain A~ 2) RSOS models based on the AL algebra. Only when k = L 
or L + 2 are these models physical. Other choices of k correspond to eigen- 
values of the adjacency matrix of AL which are not the largest. For all odd 
values of k the models break the 7/2 symmetry of the underlying Dynkin 
diagram. 

Another way to restrict the A~_ 21 SOS model is given by 

kn 
2=2(r+1----- k {l ..... L} 

Wo = �88 i In p (3,9} 

ae{1 ..... L} 

This possibility has been studied by Kuniba in a more general way in his 
study of A~ 2) RSOS models. ~17) However, this way of restricting the A~ 2) 
SOS model does not give rise to symmetry-breaking models. 

4. T H E  FREE E N E R G Y  

We calculate the free energy or, equivalently, the partition function per 
site x of the dilute A model by the inversion relation method. (~8) Because 
the inversion relation (3.5) is quadratic in p we can restrict ourselves to the 
regimes with positive p, and parametrize p = exp ( - e ) .  

4.1. Regimes 1 + and 2 + 

In regimes 1 + and 2 + we assume that x(u) is analytic in the strip 
0 < R e ( u ) < 3 2 ,  and may be analytically extended just beyond these 
boundaries. The inversion relation (3.5)implies 

81(22 - u) 81(32 - u) 81(22 + u) ,9,(32 + u) 
x(u) x ( - u )  = 8~(22) 8~(32) (4.1) 

while the crossing symmetry (3.4) translates to 

x(u) = •(32 - u) (4.2) 

We make the conjugate modulus transformation (C.8) and a Laurent 
expansion of In x(u) in powers of exp(-27tu/~). Matching coefficients in 
Eq. (4.1) and (4.2), we obtain for the free energy 

In x(u) 
cosh [(52 - n) rtk/~] cosh(n2k/~) sinh(nuk/~) sinh[(32 - u) 7tk/~] 

2 
k =  - ~  k sinh(n2k/e) cosh(3n2k/~) 

(4.3) 
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We now take the p ~ 0 limit in the above expression to obtain the leading 
critical singularity. Using the Poisson summation formula, we find 

In xsi,g ~ pn/3,~. (4.4) 

If we compare this with 

In Ksing ~ p 2 -  ~ o r  In Ksing ~ p l  + 1/,~ (4.5) 

we find for the critical exponents cr and 6 

regime 1 § : 

regime 2 § : 

f l  2 ( L - 2 )  L even 3L 
3L 

= L + 4  L o d d  

i 2(L+4..... ) L even 
3 (L+2)  

_ 3 ( L + 2 )  Lodd  
L - 2  

(4.6) 

When L = 2 in regime 1 +, expression (4.4) for the critical singularity has to 
be multiplied by In p. 

4 .2 .  R e g i m e s  3 + a n d  4 + 

In regimes 3 + and 4 + the appropriate analyticity strip is -r~ + 32 < 
Re(u) < 0, and the crossing symmetry becomes 

x ( u )  = ~ : ( 3 2  - ~ - u )  

Performing the same steps as before, we obtain 

(4.7) 

In K(u)= - 2  
k= --oc 

cosh[(52 - re) rckle] cosh(rc2k/e) sinh(~uk/e) sinh [(~ - 32 + u) r~kle] 
k sinh(nZk/e) cosh[(rt - 32) ~k/e] 

(4.8) 

For the dominant singularity we find, apart from some exceptions we list 
below, 

In xsi.g ~ p ~/I. - 3~.1 (4.9) 
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Comparing this with (4.5), we find for the critical exponents c~ and 6 

regime 3 + : 

regime 4 § : 

i 2(L + 4) L even 
L - 2  

L - 2  
3(L ~-'2) L odd 

L + 4  

�9 L + 4  
3-L L odd 

(4.10) 

For the cases L = 5  and 8 in regime 3 + and L = 2  in regime 4 +, Eq. (4..9) 
has to be multiplied by In p. When L = 3 , 4 ,  6, and 14 in regime 3 + and 
L = 8 in regime 4 § the partition function per site is regular. 

5. LOCAL HEIGHT PROBABILITIES 

In this section, which forms the main part of our paper, we calculate 
the local height probabilities of the dilute A model for odd values of L. 
Since negating the nome p is nothing but a reversal of the magnetic field, 
we can restrict ourselves to the four ' + '  regimes. (Recall that for odd L the 
Boltzmann weights are symmetric under the transformation p ~ - p ,  
a--* L + l - a . )  

5.1. Ground-State Configurations 

First, we describe the ground-state configurations in each of the four 
regimes. Below we depict the set of ground states by a decoration of the 
adjacency diagram. Comparing the various weights in (3.1) in the ordered 
limit (see Appendix A), we find that the following types of ground states 
O c c u r :  

1. Completely flat or ferromagnetic configurations. If the height of 
this configuration is a, we will denote this state by a solid circle on 
the adjacency graph @ at node a. Conversely, flat configurations 
that do not yield a ground state will be denoted by an open circle 
on ~. 

2. Antiferromagnetic configurations. One sublattice has height a and 
the other sublattice height b = a + 1. This state, together with the 
state where the heights on the two sublattices are interchanged, is 
denoted by a double bond on ~ between the nodes a and b. 
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r e g i m e  1 + o-----C : O - -  . . . . .  - - C  --  --  O- -  . . . . .  --  C --  O 

I 2 3 t / + l  L - I  L 

r e g i m e  2 + e - - - - G  _- 0 - -  . . . . .  r ~ ~. . . . . .  r C --  0 

I 2 3 I I + 1  L - I  L 

r e g i m e  3 + 0 - -  ._'~-........l~ . . . . .  = :x> . - - - -  ~ . . . . .  
l 2 3 l t + 1  L - 1  L 

r e g i m e  4 + ~ . . . . .  ~ . . . . .  

I 2 3 / /+1  L - I  L 

Fig. 2. Ground-state configurations for the four different regimes. 

If we define the variable l to be 

' :  

where [_ J denotes the 
are as shown in Fig. 2. 
�89 - 1 ), ~(L + 1), and 

regimes 1 + and 4 + 

regimes 2 + and 3 + 

(5.1) 

integer part,  the ground states of the four regimes 
Thus the total number  of ground states is �89 + 1), 
~ ( L -  1), for the regimes 1 § ..... 4 +, respectively. 

5.2.  Local  H e i g h t  P r o b a b i l i t i e s  

The local height probability Pb"(a) is the probability that a given site 
of the lattice has height a given that the model is in the phase indexed by 
b and c. In the ferromagnetic phases c =  b and in the antiferromagnetic 
phases c = b _+ 1. 

The technique of corner transfer matrices (CTMs)  which is used to 
calculate PbC(a) is well known and the details of  the method are given 
elsewhere (see, e.g., refs. 14 and 1). Because the weights (3.1) satisfy the 
Yang-Baxter  equat ion and possess the crossing symmetry  (3.4), the local 
height probabil i ty in regimes 1 + and 2 + can be written as 

q-':;'/"S(a) X~C(q) 
PbC(a) = m~,~lim ~.~=1 q-a2:'/"S(a) X~b,~(q) (5.2) 

Here the variable q is related to p = e x p ( - e )  by 

q = e - 12,~:./~ (5.3) 

abe  The one-dimensional  configuration sums X,, (q) are given by 

m �9 0- X~:.+, ,=.2(q)= ~ qr,=,mv,:j§ j+21 (5.4) 
o'2 ,---, 0-ra 
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The weight function H is determined from the Boitzmann weights in the 
ordered limit (p ~ 1, u/e fixed). Their behavior is 

( d  c~ g .g , .  e_2,tut_tta...b)/~ fi 
W \ a  b}  gt, ga " (5.5) 

where 

g,, = e -2;''2/~" (5.6) 

The values of the function H(d,  a, b) for regimes 1 § and 2 + are listed in 
Appendix A. 

From (5.4) it follows directly that the one-dimensional configuration 
sums satisfy the following recurrence relation: 

abe q,,,n(b- I,h,c) ab-- lb mH(b,b,c)  abb X,,, (q) = X,,, - l  (q) + q X,,, _ t(q) 

+ q,.nlb + I,b.,.~X~b+llO(q ) (5.7) 

The task is to solve this relation, with initial condition 

or, equivalently, 

and with conditions 

x~b,.(q) = qnl..b,,.I (5.8) 

Xgb"(q) = 60.b (5.9) 

oo, X~,L + X m (q) = " ( q )  = 0 (5.10) 

which confine the heights in the recursion relation (5.7) to the set {1 ..... L}. 
In regimes 3 § and 4 +, where the spectral parameter u is negative, the 

local height probability is given by 

q~2;-/~S(a) X~b"(q)  
eb"(a) = ,,,lim~ ~ ~ = t  q"~;'/'~S(a) X~b"(q) (5.11) 

where q is now 

q = e-4n(n - -  33.)/r (5.12) 

As for the regimes 1 + and 2+, the one-dimensional configuration sums are 
expressed in H by (5.4). To determine H, we now need to know the powers 
of e § in the ordered limit of the weights. Relative to regimes 1 § and 
2+, after the appropriate gauge factors g are separated and contributions 



Order Parameters of the Dilute A Models 483 

which cancel in the ratio in Eq. (5.11) are discarded, H is effectively 
replaced - H. We thus need only take q --, l/q in the regime 1 § (2 § ) solu- 
tion of (5.7) to obtain the form of the solution in regime4 § (3+). Of 
course, q must still be given its proper meaning from (5.12). 

5.3. So lu t ion  of  the  Recurrence  Re la t ion  

In this section we derive the solution of the recursion relation (5.7) for 
each of the four regimes. In fact, as remarked above, the solution for 
regimes 3 § and 4 § is deduced from the solution for regimes 1 § and 2+. 

Gaussian M u l t i n o m i a l s .  Before we present the solution we need 
some preliminaries on the Gaussian multinomials [k'.[I, defined by O9) 

[ m ]  I m ]  (q),, 
k, l = k,l q -  (5.13) (q)k (q)t (q),,-~-t 

where 
m 

(q)m = H (1 _qk)  (5.14) 
k = l  

In the limit q ~ 1 the Gaussian multinomials reduce to ordinary multi- 
nomials 

i i m [ m  I m, ( m )  (5.15) 
~-,  k,l - k ! l l ( m - k - I ) !  = k, l  

The following identities, which prove useful in solving the recurrence 
relation, may be derived by straightforward manipulation of the definition: 

m r n - 1  m-k rn--1 m - - I  
[ k , l ] = [  k, l  1 +q [ k - l , l ] + q " - k - ' [ k , l - 1 ]  (5.16) 

m - 1  _ / F m - 1  ] m - I  
, , ,7 ,  

m--1 + t i m - -  11 k [  m--1  

Regime 1 +. As a first step towards the solution of Eq. (5.7) we 
abc 1 yabc consider the special limit q = 1. In this limit, setting X m ( ) =  --m , the 

recurrence relation reduces to the following combinatorial problem: 

xabc:Xamb_-ilbd[_Xambbl ..I_ ~ L / a b +  l b  
m / ~ = m  -- I (5.19) 

822/74/3-4-2 
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The fundamental solution of this equation is 

k=o k , k + b  

In order to satisfy the initial and confining conditions (5.9) and (5.10), we 
must take linear combinations of this solution in the following way: 

(( m )_(  m )} 
j.k=-o~ k , k + 2 ( L + l ) j + a - b  k , k + 2 ( L + l ) j + a + b  

(5.21) 

Another piece of information can be gained by considering the m ~ 
limit. It was noted in ref. 20 that, in this limit, the one-dimensional 
configuration sums for the ABF models in regimes III and IV become 
precisely the characters of the related Virasoro algebra (1.4). 

Expecting similar m - ,  co behavior for our configuration sums, we 
generated large polynomials on the computer and multiplied these by Q(q). 
The resulting polynomials, being very sparse, were then easily identified as 
Virasoro characters, with r = a and s = b for b ~< 1 and s = b + 1 for b > l, or 
as linear combinations of two characters. 

Guided by these two limiting cases, replacing h in (1.4) by L + 2  
according to (1.6), we make the following Ansatz for the configuration 
sums, with b ~< l, which yields a single character: 

m __q~,m q ( L + 2 l l L + l ) j 2 + [ ( L + 2 l a - - l L + l l b ] j + e t ( j , k )  

j , k =  --oo 

[ o ] 
x k , k + 2 ( L + l ) j + a - b  

_ q ( L  + 2 I l L  + I ) j 2  + [ ( L  + 21a  + IL  + 1 )b] j  + ab + fl(j,k) 

[ m 1} (5.22) x k , k + 2 ( L + l ) j + a + b  

For b > l we make a similar Ansatz. The unknown functions at and fl are 
assumed to be quadratic in their argumentsj  and k. They depend implicitly 
on a, b, and c, as does the parameter 7. For the configuration sums that, 
in the m ---, oo limit, yield linear combinations of characters, we make the 
appropriate linear combinations of the above Ansatz. 

Fitting the Ansatz for small values of m with the correct polynomial, 
we can determine the coefficients in the functions at(j, k), fl(j, k), and 7. 
Before we present the solution, we define the following auxiliary function: 
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F~(b) = q.,-~),,/2 f q(L + 2)(L + l )j2 + [lL + 2 )a_ (L  + l ) s ] j+  k[k + 2(L + l ) j + a _ b ]  

j . k=  - o o  

E m 1 x k , k + 2 ( L + l ) j + a - b  

__ q(L  + 2)(L + l l j 2 +  [ (L+  21a+ (L+  l ) s ] j+as  +k[k  + 2(L + l ) j+  a+ b] 

I m ] (5.23) 
x k , k + 2 ( L + l ) j + a + b  

where we have suppressed the a dependence. This function 
following elementary properties: 

F~(b) = - F ~ ~ ( - b )  

F~+2+S(L+l+b) _q-~L+t)s L+2--~ = r , ,  (L + 1 - b) (5.24) 

F~(0)=  (1 -qm)  F~_, (1)  

It is also convenient to define the four sets 

has the 

s , = { 1 , 3  ..... l}  

sz= {1+ 1, 1+3 ..... L -  1} 

s3=  {2 ,4  ..... / - 1 }  

s4={ l+2 ,  l+4  ..... L} 

where l is given by (5.1). 
recurrence relation reads 

(5.25) 

With these definitions the solution of the 

( F ~ ( b )  
) qb/2Fbm+ '(b } 

X~bb- , = qmntb.b.h- " X ) qb/2Vbm + '(b ) 

k r ~ ( b )  + (1 - q")qOrh.,+_',(b + 1) 

bEs,\{1} 
bEs2kJ {L + I } 
b ~ s  3 
b E s  4 

( F ~ ( b )  b ~ s t  

X~b,b_qmnlb.h.b,  )qb /2F~+'(b)  b E s  2 
. - -  X ~ q b / 2 F b + t ( b ) + ( l _ _ q m ) q - b / 2 F b - - l l ( b _ _ l )  b E s  3 

F~.,(b) + (1 - q')qbF~+_~(b + l ) b ~ s,  

(5.26) 

( F ~ ( b )  b E s  I 

X ~ h  + l = q,.n,b.o.b + ,~ X ) qb/2r~+ '(b) b ~ s 2 
- q  )q  F m _ l ( b - 1 )  b ~ s 3 u  {0} ) q b / 2 F b + l ( b ) + ( 1  m -b/2 b - I  

~.Fbm(b) b E s 4 \ { Z }  
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We note that in this solution we have included the terms X,~ ~ and 
X], L+IL, which, according to the confining condition (5.10), should be 
identically zero. Using the simple relations (5.24), it follows directly that 
this is indeed the case. The advantage of including these terms in the above 
way is that it enables us to prove the solution without treating the bound- 
ary separately. From the definition (5.23) it also follows immediately that 
the initial condition (5.9) is satisfied. 

Proving that (5.26) is indeed the solution of the recurrence relation is 
now straightforward but rather tedious. Inserting (5.26) into the recursion 
relation, using the explicit form of the function H as listed in Eq. (A.4), we 
find that only the following four relations need hold: 

F~(b) -  F~_ ,(b) 

=q,,, I[Fhm i(b_ b+l t,+2 )F , , ,  2 ( b - 2 ) ]  bEs~ l ) + q  F,,, ~(b+l)+q-h+~(1--q ' ' - t  ,, 2 

F~ + '(b) - r~,+9,(b) 

= , ~ F t , + , , b + l  , - -b+,r t , - , ,  b +qb+,( l ) V ~ + _ ~ ( b + 2 ) ]  bEs2 = q  k m--I[  ) "t- q . , - i t  - - 1 )  l - - q  = -  

F~ + '(b) - F~,+t,(b + 1 ) 

=q" t[r~,+~(b)+q h + ~ r b m ) t ( b - l ) + q - ' ( l - q "  ' )r~LI2(b-1)]  bes  3 

r~,(b)-  r~, , ( b -  1) 

=q..-J[Fb,_t(b)+~h+lFb+2,b+ I h+2 '4 . , - z~  1 ) + q ^ ( l  - q  ~ -  )F . , -2 (b+l ) ]  bEs4 

(5.27) 
The restriction on b make these special cases of more general expressions, 
which we will show to be true for all values of b. If we widen their 
applicability in this way, the relations can in fact be combined to give 
simpler ones. In turn, these relations can be further simplified by requiring 
that they hold term by term in j. The resulting pair of relations are much 
stronger requirements than the original set, but still they hold. Defining the 
function 

=k o k , k + y - b  

k ,k  + 7+ b (5.28) 

where we have set 2 ( L +  1 ) j + a = y ,  these two relations are 

b b f , . ( b ) - f m (  b - 1)=qm[qbf~23(b+ l)----b+'tb-2(b--2)]q Jm--~ (5.29) 

f ~ ( b ) - f ~ _ 1 ( b ) = q m - ' [ f ~ _ ~ ( b -  1 ) + q  h+'~,,,_~(b+l)b+2 

+ q - b §  q,,,- l h-2 - ) f . , _ 2 ( b - 2 ) ]  (5.30) 
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The functionf~,, consists of two polynomials. One, the first term within 
the curly braces, has only positive coefficients and the other, the second 
term, has only negative coefficients. If we demand that Eqs. (5.29) and 
(5.30) be satisfied for the 'positive' and 'negative' polynomials independ- 
ently, and we set y-T-b = n, respectively, this yields 

qk(k+n}[ m ]_ ~, qk,k+.+l}[ m ] 
k=O k,k+n k=O k,k+n+l 

__q . . . .  m - '  1 
k=o k,k+n-1 

_q.,+,,+, ~. qk{k+n+2) I m - - I  ] (5.31) 
,=o k,k +n+ 2 

for Eq. (5.29), and 

~ qk'k+"'L m ]-- ~ qk'k+"'I m-1 ] 
k=O k,k+n k=o k,k+n 

=q..,-I ~" qk,k+.+"[ m-1 ] 
k=o k,k +n+ l 

_q ..... ~ qkik+,,-l,[ m - l ]  
k=O k,k+n-I 

+q,,+,,(l_q,,_~) ~ qk,k+,+2, [ m--2 ] 
k=o k,k+n+2 (5.32) 

for Eq. (5.30). The proof of these final two equations is now elementary. 
Equation (5.31) follows immediately from (5.16) and (5.17) if we set 
/ = k + n and l = k + n + 1, respectively. Equation (5.32) follows from (5.16) 
with l = k + n. 

R e g i m e  2 +. Finding and proving the solution of the recurrence 
relation for regime 2 + proceeds along similar lines as in regime 1 +. To 
remove any confusion we will denote the one-dimensional configuration 
sums in regime 2 + by ub,- Y,, . First of all, the q = 1 limit (5.21) is still valid. 
Generating large polynomials reveals that in this case the configuration 
sums yield Virasoro characters with s=a and r=b for b ~ < l - 1 ,  and 
r = b - 1 for b >1 l +  2, or linear combinations of two characters. 

We replace h in (1.4) by L + I  according to (1.6) and define the 
auxiliary function 
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G r ( b ) = q  (a-r)a/2 ~ {q  ' l '+l) l- j2-[(L+l'r-La]y+kf-k+2(t-+lU+a-b] 

j , k= - - o o  

[ ~ ] 
x k , k + 2 ( L + l ) j + a - b  

_ q (L+ 1) Lj2+ [ (L+  I ) r + L a ] j + a r + k [ k + 2 ( L +  l l j + a + b ]  

[ ~ l} x k , k + 2 ( L + l ) j + a + b  

which satisfies the following simple relations: 

(5.33) 

Grin(b)= - G m r ( - b )  

GrtLl+r(L + 1 "J[- b ) =  - - q - ( L +  I)r G L t - r ( L  + 1 - - b )  

G~(O)=(1-q")G' . ,_ ,(1)  

Again we define four sets 

t , = { 1 , 3  ..... 1 - 1 }  

t2= { l + 2 ,  1 + 3  ..... L - -  I} 

t3 = {2, 4 ..... 1} 

t4={1+1,1+3 ..... L} 

(5.34) 

(5.35) 

The solution of the recurrence relation then reads 

q-b/2G~- l(b) 
-b /2Gb- l lh~+l l  m~b/2(7.b+l y~,h;'-l=q.,mh.h.h-l,X~ q . . . . . . .  --q ,~ ~,, ,_,(b+l)  

/ --(l--q')q-ZG~_,(1)6b.2 

~G~.,(b) 

b~t,\{1} 
bEt2u {L + l} 

be t  3 
bet4 

(G~(b) b~tl  
ram;,# =qrnH,;'.b.b, X ) q-b/2Ghm-l(b) b~t2 

-- b/2 b -- I m h/2 b + 1 ) q  G,. ( b ) + ( l - q ) q  G.,_~(b+l) be t  3 
[. Gh.,(b ) + ( 1 - q ' )q -;'G~ -2, (b - 1 ) b E 14 

(5.36) 

(Gh.,(b) bEtt 
y~hO+, = q.,n,b.;'.b+,,• )q-b/2G~7 '(b) b ~ t 2 

) q-n/2Gh m- '(b ) b ~ t 3 
k Gb.,(b) + (1 - q'Jq-;'Gb.,-_~(O -- 1) b ~ t4\ {L} 
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As in regime 1 § we have extended the solution to include the term 
y,~+l , . ,  which, using (5.34), indeed yields zero. However, in contrast to 
regime 1 § we can no longer extend the above solution to the term y~ot, 
which according to (5.36), would not be zero. Therefore, in proving the 
recurrence relation we have to treat cases that involve this boundary term 
separately. This 'irregularity' is, however, compensated by the exceptional 
terms ya,,,2t of (5.36) and H(1, 2, 1) of (A.5). As a result, inserting the above 
solution into the recurrence relation, using (5.34), we again obtain only 
four relations that should hold: 

ab.,(b)- ah.,_,(b) 

=q' - t [Gh . ,_ t {b+l )+q-h+'G~-_2 , (b - - l )+qh+t ( l - -q ' - ' )Gh . ,+_~(b+2)]  b e t ,  

a~-'(b)- a~-_',(b) 

,,,-I l,-t . . . .  t , G h - 3 ,  b 2~1 be t2  =q  [ G , , , - l ( b - - l } + q b + t G ~ + l d b + l ) + q - h + ~ ( l - - q  J m-21 -- JJ 

G~,- ' ( b ) -  G~-' ,(b -- 1) 

=q"-'[Gb,,-..',(b)+qh+'G~+_',(b+ 1) + qh(l -q '- ' )Gh,,+_'2(b + 1)] b e t ,  

a~(b)- a~.,_ ,tb + 1) 

= q ' - ' [ G b . , _ , ( b ) + q - ~ + ' G ~ - _ a , ( b - l ) + q - b ( 1 - q ' - ' ) G ~ . . _ " 2 ( b - l ) ]  b~t4 

(5.37) 

Again these equations hold for all values of b and we drop the restric- 
tions on b. Doing so, we can combine the four equations to give simpler 
equations. As before, there are true term by term in j. Setting 
2(L+ 1 ) j + a = y ,  we find 

b b - b r b - 2 t h  1)_qb+tfb,+Zl(b+2) ] f . , ( b ) - f . , ( b + l ) = q m [ q  J , . - t w - -  
b b qm-- I f , , ( b ) - f m _ ~ ( b ) =  [ f ~ _  i(b + 1)+ q-b+~cb-2thj,,_ 1,~ -- 1 ) 

+qb+l( l__qm-t  b+2 ) f,,,_2(b + 2) (5.38) 

with f~, defined in (5.28). Finally, making the same splitting into 'positive' 
and 'negative' polynomials as before, now setting ? T - b = - n ,  yields 
precisely Eqs. (5.31) and (5.32). 

R e g i m e s  3 + and 4 +. As explained previously, the form of the 
soution of the solution of the recurrence relation for regimes 3 + and 4 + 
can simply be obtained by replacing q with 1/q in (5.36) and (5.26), respec- 
tively. It should again be stressed that the precise meaning of the variable 
q in the various regimes is not related, and is given by Eq. (5.3) in 
regimes 1 + and 2 +, and by (5.12) in regimes 3 + and 4 + . 
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5.4. Thermodynamic Limit 

In this section, using the solutions for the one-dimensional configura- 
tion sums X,", h~ and _,,Y"b~, we obtain expressions for the local height 
probabilities Phi(a). 

R e g i m e  1 +. As described in Section 5.1, in regime 1 § we have only 
ferromagnetic ground-state configurations. Hence we need to calculate 

q-az)'/nS(a) X~hh(q) 
Pt'i'(a) = lim 

Y~= q-d'~'/"S(a) X~bb(q) ' r n ~  o'3 l 

b =  1, 3 ..... /, l +  1, l + 3  ..... L -  I (5.39) 

From the solution (5.26) for the one-dimensional configuration sums, 
we find that we have to consider the m ---, oo limit of the auxiliary function 
F~, defined in (5.23). To do so, we need the result 

lim ~ qk'k+"~I m lq=  1 (5.40) 
. . . .  k = - ~ k, k + a Q(q) 

which holds for arbitrary fixed a. To establish this, we take the limit inside 
the sum and use the elementary result 

[ m ] = li m (q),, = 1 lim k , k + a  q ~-. (q)k (q)k+~(q) .... 2k-,  (q)k (q)k+, (5.41) 
r n ~ o ~  m ~  

to obtain 

lim ~ qk'k+"'F rn I = ~ qk'k+"' -- 1 (5.42, 
. . . .  k=-o~ Lk, k + a q  k=o(q)k(q)k+~ Q(q) 

Here the last equality follows from the q-analog of Kummer 's  theorem, Itg~ 

~= qk'k-l'zk f i  1 (5.43) 
k O(1- -q ) ' ' ' (1 - -qk ) (1 - -Z) (1 - - zq ) ' ' ' (1 - - zq~- I )  - l - - zq  k k = O  

by setting z = q"+ ~. F rom the above considerations we conclude that, in 
the m ~ c~ limit, the auxiliary function F~, yields the Virasso characters 
defined in Eq. (1.4): 

q(a-s)a/2 
lim F " , , , ( b ) - - -  {q ~c+ 2){c + l~j2+ ElL+ 21~ cL + j~Jj 

,,-o0 a(q) j = _ ~  
_ q(Z. + 2 ) ( L  + 1 ) j 2  + I l L  + 2 ) a  + (L  + 1 ) s ] j  + as } 

--  "aa's + ~ . a . $  =q(a-s)a/2 - I L + 2 ~  c / 2 4 y { L + 2 ) ( q )  

a 2 2 / n  ( L  + 2 )  ) ~ q  Z,~.s (q (5.44) 
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In the last step we have used 2 - - r t L / [ 4 ( L  + 1)], and have omitted terms 
independent of a. 

Substituting the appropriate  elements of the solution (5.26), the X~,, b~, 
into the expression for local height probabilities, and using the limiting 
behavior of F~,,, we find 

S(a)z~,,zs + " (q )  
pbb(a) = Y'.~= , S(a) Xo.s~L + Z'(q) (5.45) 

where 

b, b = 1, 3 ..... ! (5.46) 
s =  b + l ,  b = l + l , l + 3  ..... L - 1  

We note that s takes the values 1, 3 ..... L. 
By performing the conjugate modulus transformation (C.8), we rewrite 

the Virasoro characters as 

X,-.s (q) - Q(q) 

I n  ( r s'~ 
(5.47) 

where 

qh~h-I) = e-,~'/,:' and t = e  -~'' (5.48) 

As a result the local height probabilities can be written in the form 

s,o, E ( . (a  e""(a)=u--- 03 L+I  

( 5.49 ) 

where the normalization factor in the denominator  is given by 

a s n a s 
N t ( s , =  ~. S ( a ' I O 3 ( 2 ( L + l  L + 2 ) ' t ) - O 3 ( 2 ( - E - ~ + - L - + - 2 ) ' t ) ]  

a=l  

2L+, s ) )  
S(a)  0 3 t (5.50) 

a=o L +  1 L +  ' 
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We recall that the nome q is defined in terms of the nome p as 
q = exp(-12rt2/e). This yields the following relation between the nomes p 
and t: 

p = t  3L~t-+2) (5.51) 

From the definition of the crossing factor 

01(4a2, p) 
S(a) = ( -  1)" (5.52) 

94(2a2, p) 

and the simple identity 

O,(2u, p) = Ol(2u, p2) t93(u, p) 
94(u, p) pl/4Q(p2) Q(p4) (5.53) 

we find an alternative form for S: 

S(a)=oal ~-~--]-,t 6L~L+2) 0 3 \ 2 ( L + l ) , t  3L~L+2) (5.54) 

where we have again neglected a-independent factors. Substituting this 
back into the definition of the normalization factor, we find that the 
summation in N~(s) can actually be performed to give 

S(a) t -L~zL+3)/2 611(an/(L+ 1), t 6L~L+2~) 

Nl(s) 2 ( L + I ) Q ( t  lzrlL + l)) Q(t j2L~L + 2)) 

03(artL/[2(L + 1)], t 3"c~L + 2)) t92(srt/(L + 2), t 6z~L+ t~) 
x (5.55) 

,91(1t/6, t 2'L+ l)~L + 2~) 01(2sn/L + 2), t 6LIL+ 11) 

The proof of this denominator identity, being rather technical and lengthly, 
is given in appendix B.1. 

R e g i m e  2 +. The working for regime2 + is very similar to that of 
regime 1 +. Again we have only ferromagnetic ground states, and we are 
interested in calculating 

q-~2~/,S(a) y~bb(q) 
Pbb(a) = .lim ~.L=~ q-~'~'/"S(a) y~bb(q)' 

b =  1, 3 ..... l -  1, 1+2, 1+4  ..... L -  1 (5.56) 
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From the solution (5.36) for the one-dimensional configuration sums 
we see that we have to take the limit m ~ ~ of the auxiliary function G~ 
defined in (5.33). Using the result (5.40) yields 

lim G.,(b) q(,,-~)./2 ~, r { q(L + l ) Li:-- E(L + 1 )r-- La'l j  

, . - ~  Q(q)  j = _ ~  

_ q ( L +  1) Lj2+ [ ( L +  l ) r +  L a ] j + a r }  

(a--r)a/2-- d(L+l) +c/24 (L + l)(q) = q  r'~ Xr,. 

a22/n ( L +  1) ~ q  X... (q) (5.57) 

where we have used that 2 = n ( L +  2)/[4(L + 1 )]. 
Substituting the elements y,,bh of the solution (5.36), and using the 

limiting behavior of G~,, we find that the local height probabilities are 
given by 

•(L+ 1 
r,a phh(a) = S (a)  I(q) 

L Y".=l S ( a ) "  la+, z , . ,  I(q) 
(5.58) 

where 

b b b = 1, 3 ..... l -  1 (5.59) 
r =  ' - 1 ,  b = l + 2 ,  l + 4  ..... L - 1  

We note that r takes the values 1, 3,..., L - 2 .  
If we use the conjugate modulus form of the Virasoro characters, we 

can rewrite this as 

S(a)  . { n [ r  a ) , t ) _ ~ 9 3 ( 2 ( L + L _ _ _ _ ~ ) t ) ]  (5.60) Pbh(a )=N-- -~[o3~ ,2kZ L + I  

where the normalization factor in the denominator is 

" N 2 ( r ) =  ~ S ( a ) ~ 3  t .=o L +  1 ' (5.61) 

From the relation between the nomes p and q e find that p and t are again 
related as in Eq. (5.51). Inserting the form (5.54) for the crossing factor S 
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into the expression for the normalization factor N2, we can carry out the 
summation over a. The result, proved in Appendix B.2, is 

S(a) t-I/.+z)(2L+ 11/20ql(a~/(L+ 1), t 6LiL+2~) 
N2(r) 2(L + 1) Q(t 12rlL+2)) Q(t 121c+ 11~L+21) 

oq3(altL/[2(L + 1 )], t 3t'(L + 2)) ~92(rrt/L, t6(L + I)(L + 21) 
x ~91 (rt/6, t 2z'~L + '1) ~j(2rrr/L, t 6~L+ ll(L + 2}) (5.62) 

Regime 3 +. The solution of the recurrence relation for regime 3 + 
is obtained by replacing q by 1/q in the solution (5.36) for regime 2 § We 
therefore need to consider the auxiliary function G,~,, with q replaced by 
l/q. The effect of this replacement on the Ga'ussian multinomials is given 
by 

Ikm, l]j/=qk2+t'+kl-(k+t)"'[km, l]u (5.63) 

Applying this to G,~,, we find 

G ,~,,( b ) = qlr - a)~/2 

X ~ {q'L+I,LJ2+[,L+I)r La]j+k2+[k+2,L+l,j+a-b]2,n[2k+2,L+llj+a-I~] 
j.k = -or 

[ m 1 x k , k + 2 ( L + l ) j + a - b  

_ q-lL+ IILj2+ [(L+ l)r+La]j-ar+k2+ [k +2(L+ l)j+a+b]2--m[2k+2(L+ llj+a+b] 

[ m ]t ,,.64, x k , k + 2 ( L + l ) j + a + b  

In the first term we replace k by - k - ( L +  1 ) j + ( m - p o - a + b ) / 2  and in 
the second term we replace k by - k -  (L + l ) j +  ( m - I I . - a -  b)/2, where 
/aa = O, 1 is determined by the requirement that 

(m - ~, - a + b)/2 E ~_ (5.65) 

The subscript of/a, indicating its dependence on a, is included for later 
convenience. After simplification, we thus obtain 
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G] b, -~(b) = qeb'-+ ~,,- ,,,'-- ,,~V2 ~. q2k2+ 2,ok 
j , k ~  - - c ~  

f q l L +  I ) ( L +  2 ) j 2 +  [(L+2)a--(L+ l ) s ] j  • 

[ m ] 
x ( m - ~ . - a + b ) / 2 - k - ( L + l ) j , ( m - # . + a - b ) / 2 - k + ( L + l ) j  
_ q(L+ I){L + 21 j2+  [ ( L + 2 ) a +  ( L +  l)s]j+as 

I m ]t x ( m - # , , - a - b ) / 2 - k - ( L +  1).L ( m - l J o + a + b ) / 2 - k + ( L +  1)j 

(5.66) 

Antiferromagnetic Phases. In contrast to the previous two 
regimes, we now have antifcrromagnetic as well as ferromagnetic phases. At 
first, we restrict our attention to the antiferromagnetic ground states, and 
calculate 

q~2;./~S(a) y~b+ l(q-I) 
Pbb+l(a)= .,lim~ ~ ~.~=lq.2;./.S(a) --,,,Y~hb + t (q-  ~ ), b = l, 2, 4, 6 ..... L - 1  

(5.67) 

It follows from the solution (5.36) that we have to find expressions for the 
function G,~,, of Eq. (5.66) in the m --* oo limit. To do so we use the result 

l i m l  2m ] =,, (q)2,,, (q),,+,, 
. . . . .  m - a , m - b  lira (q),,---~-'(-q)m+,,(q)~,----~b-'(q;,~+b 

1 1 
a+b>~O (5.68) -Q(q)(q)a+b'  

We therefore conclude that, in the limit m ~  oo, the auxiliary function 
G] b-s is given by a product of Virasoro characters, 

1 '~ q 2k2 + 2"t'tuk 
m2/2 2b -- s - -  q (b 2 + .u. -- as)/2 2 

lim q G,,, ( b ) -  Q(q)k=o (q)2k+j,,, 
t r 1 ~  o~ 

X ~ {q  ( s  lls]J 

j= - o~ 
_ q(L+2)(L+ 1)/ '2+ [ (L  + 2 ) a +  ( L +  l)s]j+as} 

= q(b2--as)/2 - a ~ +  2~ + c/24 + t/48Xt,,,/2(q) .'~a.s'{L + 2)(  rt ) ' t  

. (L  + 2)(,,~) (5.69) 
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with 2 = x(L + 2)/I-4(L + 1)]. In the last step we have used the following 
Rogers -Ramanujan  identity tz~ for the c = �89 characters Zo and Z~/2: 

q2*2+z~"k=q 1/4s-~'~/2"141 (t~) - " 1/48 - / j u /2V  ( ~ )  (5.70) 
~" (q)2* +.~ - -  K . l ( a + l , l  i./ = t , /  Aiau,/2 tl 

k = O  

In contrast  to the ferromagnetic phases treated so far, the local height 
probabilities for antiferromagnetic phases depend on whether  m is taken to 
infinity through odd or even values. We therefore write p~h+ ~(a), where tr 
is defined to be the parity of m + b, 

a = m + b  mod 2 (5.71) 

For  #~ this gives 

/ ~ , = a + a  mod  2 (5.72) 

Replacing q by 1/q in the solution (5.36) for the one-dimensional  configura- 
tion sums and using the result (5.69), we find 

S(a) Xu,/2(q) " iz.+ 21,~, 
,t,,.s ~,// (5.73) 

Pbo~ '(a) = E~=,  S(a) Zuo/z(q) Z~,s '-1 . . . +  21(.) 

where 

b, b = 1 
s =  b + l ,  b = 2 , 4  ..... L - I  

(5.74) 

We note that  s takes the values 1, 3 ..... L. 
Performing a conjugate modulus  t ransformation,  we find that  the local 

height probabilit ies are given by 

p~b+l(a ) S(a)xm/2 613 t 
N3(s ) L +  1 L ' 

( r r (  a s "x - ' ) ]  

where the normalizat ion factor is defined as 

(5.75) 

2L+, ) ) 
N3(S ) = ~ S(a) Zu./2 613 x a s 

,=0 L + I  L + 2  , t  (5.76) 

From the relation between the nome p = e x p ( - e )  and the nome 
q = exp[  - 4 n ( n  - 32)/e] we obtain 

p =  t L:-4 (5.77) 
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We take the conjugate modulus transformation (C.8) of the c =  1/2 
characters after first rewriting them using the formula t2~ 

q~,./2- 1/48 
Zm/2(q) = Q(q2~  E ( - q  3-2u~, qS) (5.78) 

Furthermore, we rewrite the crossing factor S by using the identity (5.53) 
as well as the relation between the nomes p and t. Substituting this into the 
defining relation of the normalization factor N3, we can perform the 
summation, yielding 

S(a) zt,a/2 t - t L -  l)(L+2)/4q3((1 + 2#a)/r/8, /(L+ I)IL+ 21/4) 

N3(S ) 2 ( L +  1) Q(t 4(L2-4)) Q(t 2eL+ l)lL+2~) 

~91(an/(L + 1), t 2(L2- 4)) ~93(anL/[2(L + 1 )], t L2- 4) 
x '93(rt/4, t(L+i~tz.+.~) ~gl(sn/(L+2), t(t_~_)~L+,l) (5.79) 

The proof of the denominator identity is presented in Appendix B.3. 

F e r r o m a g n e t i c  Phasos .  For the ferromagnetic phases of 
regime 3 + the local height probabilities are given by 

q~2~'/"S(a) Ym - l.j 
Pbh(a)= lim t. q.~-~./. 

. . . .  ~. .=, S(a) y~.bb(q-l), 

b = 2 ,  4 ..... l, l +  1 , / + 3  ..... L (5.80) 

yobb in Eq. (5.36) it follows that we have to From the expressions for 
consider the following combinations of the function G r, in the m ~ oo limit: 

b + l  G b - ~ ( b ) - q  . . . .  h Gm_j(b+ 1), b = 2 , 4  ..... l 

b _ _ q - m + b  b - 2  
G r a -  I G,,,(b) ( b -  l), b = l + l , l + 3  ..... L 

Here Gr is given by Eq. (5.66) and we have neglected terms that have an 
extra factor q' ,  which do not contribute in the large-m limit. We again take 
m ~ ~ through even or odd values of m with a and b fixed and #.  = 0, 1 
chosen accordingly. For this we need the result 

limqm{[ 1[ ]} , , , ~  m - a - b , m - a + b  m - a - b - l , m - a + b  

= l i r a  q - "  1 -1-q 2" J l _ m - a - b , m - a + b  

= lim q _ , _ b [  2m ] 
m - - ~  m - a - b , m - a + b  

q-O-b 
(5.81 ) 

- Q(q)(q)2, 
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where we have used Eq. (5.68). If we apply this limit to the combinat ion  of 
G~, functions, it follows that 

lim q l " 2 - " + b l / 2 [ G ~ , - I ( b ) - q  . . . . .  b b+l G .... ~(b+ 1)] 
m ~  02, 

1 ~ q2k2+(2~ - Ilk 
qr - ,,~l,/2 

Q(q)k=o/= (q)zk+..  

X ~ { q  ( L + 2 1 I L + I ) j 2 + [ I L + 2 1 a - ( L + I ) b ] j  

j =  -- oo 

__ q ( L  + 2)(L + l ) j 2 +  [(L + 2)a + (L + l )b ] j  + ab } 

(L+21 v( L + 21(n ) =q~b-~h/2-,J..h + , ' / 2 4 - l / 2 4 ~ l / 1 6 ( q )  ~.a, b ',"1 

.. - ~:'/"'." + "-~-~ (5.82) tl Aa, b ~tl ! 

To obtain this result, we have used the Roge r s -Ramanu jan  identity for the 
c - -  1/2 character  X~/~6: 

72 q2*'-+12.,,-llk Q(q2) 1/24~,14~(.,)=.-i/~4 
k~=o (-~2k-~i,-: Q(q) q -  ,~L, u - . ~  -Xl/16(q) (5.83) 

The left-hand side of this identity does not depend on the value o f / ~ ,  and 
hence the result (5.82) is independent  of the pari ty of m. For  a 
ferromagnetic phase this is indeed what  one would expect. Similarly, we 
find that  

~.,-' . . . . .  h~/2 b q - , . + b  h-2 .~-.~./.,,~t.+2~(.,~ (5.84) lim q [ G , , , ( b ) -  G . , _ , ( b - 1 ) ] ~  ~ , b + l  ~J 
r t l  ~ 72: 

Replacing q by 1/q in the solution (5.36) for Y"~", and substituting the 
above results, we get 

S(a)  X~,,L.~+ 21(q) (5.85) 
P h b ( a ) -  Ez:= , S(a)  x~L.s+ 21(q) 

where 

b, b = 2 , 4  ..... 1 
s =  b + l ,  b = l + l , l + 3  ..... L (5.86) 

We note that  s takes the values 2, 4 ..... L + 1. 
If we continue as for the antiferromagnetic phases, we arrive at the 

final result 

(5.87) 
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where the term occuring in the denominator reads 

N4(s)= ~ S(a) ~93 a s a=0 I L + 2  ' t  (5.88) 

Again the summation over a can be carried out, yielding 

S(a)  t--LtL + 2)/2~l(~/4, t(L+ 1)('+2)) ~91(~/4, t (L-  2)(L + l)) 

N4(s) 4(L + 1 ) Q2(t4(L + i)(t_ + 2)) Q(t4(L 2- 4)) 

~l (an/(L + 1 ), t 2(L2- 4)) ~3(anL/[2(L + 1 )], t L2- 4) 
X~l(Sn/(L+2),  t2tL_2)(z+ l)) ~93(sn/(L+2) ' t2(L_2)(L+ l)) (5.89) 

A proof of the denominator identity leading to this result is given in 
Appendix B.3. 

Regime 4 +. The solution of the recurrence relation for regime 4 + 
is obtained by replacing q by l/q in the solution (5.26) for regime I § 
Consequently we need to consider the auxiliary function F~,, with q 
replaced with 1/q. Using the inversion formula (5.63) and carrying out the 
same sequence of transformations as for regime 3 +, we obtain 

F~b-'(b) = q(b2 +~-m2-ar)/2 ~ q 2k2 + 2u~ 

.~k= -oo 

tq(L+ I )L j  2 -  [ ( L +  l)r--La]j X 

[ m ] 
x ( m - # . - a + b ) / 2 - k - ( L +  1)j, ( m - ~ . + a - b ) / 2 - k + ( L +  l ) j  

-- q(L+ 1 )Lj2+ [ ( L +  l)r+La]j+ar 

x ( m - ~ . - a - b ) / 2 - k - ( L +  1)j, ( m - i ~ . + a + b ) / 2 - k + ( L + l ) j  

(5.90) 

Antiferromagnetie Phases. We again have antiferromagnetic as 
well as ferromagnetic phases. Both types admit treatment akin to that 
applied in regime 3 +. In the following we therefore leave out some of the 
details. We begin by treating the antiferromagnetic ground-states and 
calculate 

q"2~'/~S(a)X~bb+l(q-l) b =  1, 3 ..... L - 2  (5.91) pbb+ l(a ) = m~oolim E~=l q"2~'/'S(a) X~  b~ J(q-1), 

822/74/3-4-3 
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From the solution (5.26) we see that we have to obtain the m ~ ov limit 
of the function F~, in Eq. (5.90). We find that in this limit we get a product 
of Virasoro characters 

lim q"2/ZF~b- r(b) ~ q-~2;'/"Zuo/2(q) )c~La + ')(q) 
m ~  oo  

where 2 = nL/[4(L + 1 )-I. For the local height probabilities this gives 

pOt,+ i(a ) _ S(a) z~,:/z(q) ~c~,~ + ')(q) 
L . i t (L+ E,~=l S(a) Zm/2(q) . . . .  l ) (q)  

(5.92) 

where 

r=b,  b =  l, 3 ..... L - 2  (5.93) 

After a conjugate modulus transformation this gives 

I ( r t ( L  a ) ) ( r c ( r  L - - ~ ) ) ]  pOb+ l(a)= S(a) Zu./2 ~3 , , 
Ns(r) 2 L + I t --~9 3 ~ -L + t 

(5.94) 

with the following normalization factor: 

a)) Ns(r)=  ~ S(a);(~./2~93 - L + I  , t  (5.95) 
a = 0  

From the relation between the nome p and q we get 

p = tL(L + 4) (5.96) 

Using the result of Appendix B.4 for the normalization factor Ns, we finally 
obtain 

S(a) Z~,o/2 l-L(L+ 3)/4~13((1 -'1" 2/~a) n/8, l L(L+I)/4) 
Ns(r) 2(L+  1) Q(t 4LcL+41) Q(t zLIL + 1)) 

~t(an/(L + 1), 12L(L +4)) ~3(anL/[2(L + 1)], t LI/'+41) 
• ,93(/Z/4, tt.(t-+ l)) Oal(rn/L ' t(L+ l)(L+4)) (5.97) 
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F e r r o m a g n e t i c  Phases. For the ferromagnetic phases of 
regime 4 § the local height probabilities are 

q,2~/,S(a) x~bb(q- l ) 
Pbb(a) = l i r a  Z~=, q"~/"S(a) xambb(q-l)' 

b = 2 ,  4 ..... l--  1, 1+2, l + 4  ..... L (5.98) 

From the solution for the configuration sums X~, hb, as listed in Eq. (5.26), 
it follows that we have to take the m ~ oo limit of the following combina- 
tions of the function F~,: 

F~+l(b)_q-, , ,+b b-I F , , _ l ( b -  1 ) b =  2, 4,..., 1 -  1 
(5.99) 

F~(b) . . . . .  t,,~.b+z , L -  q r , , _ l t v - r  1 ) b = l + 2 , 1 + 4  ..... L 

where F~, is given by Eq. (5.90). The infinite limit can easily be taken using 
(5.81) and (5.83), and we arrive at 

( m 2 - m - b ) ] 2  b + l  - - m + b  b--  I ~ - - a 2 / n . v ( L +  lim q [F,. ( b ) - q  F, , , _~(b -1 ) - I~  ~)(q) ~1 ~ b,a 
m ~ o o  

lim ( m I - m + b ) / 2  b - m - - b  b + 2  t l--a~./rcv(L + l } ( a  ~ q [ F , , ( b ) - q  F,,,_~(b+ l)].-~u ~b-L~ n, 
m ~ o o  

(5.1oo) 

Again we observe that the dependence on the parity of m has dropped out. 
Replacing q by 1/q in the solution (5.26) for X~, bb and substituting the 

above results, we get 

S(a) ~cL § ~l(q) (5.101) ebb(a) = L . . . .  r.,~ 
~ , = t  S(a) X ~L + t)(q) 

where 

b b b = 2 ,  4 ..... l -  1 (5.102) 
r =  ' - 1 ,  b = l + 2 , 1 + 4  ..... L 

We note that r takes the values 2, 4 ..... L -  1. 
Taking a conjugate modulus transformation, we obtain the final result 

pba(a)= S(a) F~93(;(  L La+ a N6(r)J  l ) ' t ) - ~ g z ( ; ( L + - L - + " - ( ) ' t ) ]  

with the following normalization factor: 

(5.103) 

2L+, a ) )  
N6(r ) = ~, S(a) ~93 t a=o L + I  ' (5.104) 
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Performing the sum over a, using the denominator identity for N 6 in 
Appendix B.4, yields 

S(a) t-L(L+2)/2tgI(1~/4, t Lt/- + l)) ,91(lt/4, t (L+I)(L+4)) 
N6(r ) -  4 (L+  1) Q2(t4L(L+I)) Q(t 4L~L+'I) 

~9,(an/(L + 1), t 2LtL+4)) oqa(anL/[2(L + 1)], t LtL +4)) 
x ~l(rn/L, /2(L+I)IL+4)) t93(rr~/L, t2 tL+I) tL+4))  (5.105) 

6. ORDER PARAMETERS A N D  CRITICAL EXPONENTS 

Following Huse, ~2) we define generalized order parameters in terms of 
the local height probabilities obtained in the previous section: 

b,. ~ sin[(k + 1)an/(L+ 1)] P~(a) (6.1) 
Rk'• = sin[an/(L + 1)] 

a = l  

w h e r e k = 0 , 1 , 2  ..... L - 1  and 

P~C(a) = �89 [P~+  ~(a)+ P~;(a)'l (6.2) 

For k = 0 these order parameters are trivial because Rob~+ = 1 and Rob ~_ = 0. 
For ferromagnetic phases there is no distinction between the two sublattice 
probabilities, and so R ob = 0. k , -  

We are not able in general to perform the sum in (6.1). To determine 
the associated critical exponents we therefore expand the local height 
probabilities for the four regimes in powers of t, and hence of p. In this 
process the critical values of the local height probabilities may also be 
obtained, and are given by 

Pcrit(a) = ~-~---~ sin 2 ~ (6.3) 

in all regimes, and are independent of the boundary spins b and c. 
Using the exponents obtained via the free energy, we extract the 

conformal weights corresponding to the critical exponents of the 
generalized order parameters. 

6.1. Off -Cri t ical  Perturbation 

We first identify the scaling field corresponding to the elliptic nome p. 
From the scaling relations 

1-c t  1 
Zip = (6.4) AP-2 -~ t '  l+& 
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and the exponents 0~ and ~ obtained in Section 4, we find that the 
conformal weight of the perturbing field is 

Ap= 

L + 4  
zl ( L+2 )  - regime 1 • 2.1 4 ( L +  1) 

L - 2  
L ~ ( L +  I)  __ regime 2 • 

1,2 4 ( L +  1) 

1 L + 4  z~(L+2) /1(4) "1- - - ~ - ] -  regime 3 • 
~2,1 2,1 4 ( L +  1) 

1 L - 2  
zJ (4) .-[- zJ (L + 1 ) ~-[ -  regime 4 -+ 

2.1 2.1 - 4 ( L +  1) 

(6.5) 

We therefore conclude that the nome p corresponds to a perturbation in 
the direction of the spinless operator ~b,, with 

/a~(L + 2) __ ,~(L + 2) 
'F2.1 - - ' V L - -  I , L +  1 

]A(L+ 1) _ A ( L +  1) 
~ V" 1,2 --'FL--I,L--I 

--P ~ ~(4) ~ ( L  + 2) __ ~(4) ~ (L  + 2) 
/ ~2 ,1W2,1  - -  W2,1WL--  I . L +  I 

l ,/~ (4) .~(L + 1) __ ~/~ (4) ,,~ (L + 1 ) 
~ .  W2,1 Y/1,2 - - W 2 , 1 W L - -  I , L - -  I 

regime 1 + 

regime 2 • 

regime 3 • 

regime 4 • 

(6.6) 

Here ~b*rh~ denotes the operator of the unitary minimal model with central 
charge 

6 
c = 1 (6.7) 

h ( h  - 1) 

6.2. Order  Parameters  for  Reg ime 1 + 

Because this is a ferromagnetic regime, the only nonzero order 
parameters are 

bb =Rb, b= ~ s i n [ ( k +  l)an/(L + 1)] 
Rk" + "-" sin [aTr/(L + 1 )] 

pbb(a) (6.8) 
a = l  

where k = 0, 1,2 ..... L -  1. To evaluate the associated critical exponents, we 
expand Eq. (5.5,5) using the representation (C.1) of the oq-functions as a 
series of trigonometric functions. In the t ~ 0 limit this yields 

S(a) 1 sin[aTr/(L + 1 )] E1 Jc'O(t3L(L+2)) "] (6.9) 
Nl(s) = 2 ( L +  1)t sin [slr/(L+2)] 
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Expanding also the 03-functions in the expression (5.49) for the local height 
probabilities and using a simple trigonometric identity for the difference of 
cosines gives 

2 sin[an/(L+ 1)] pbb(a) - - -  
L +  1 sin [srt/(L+2)] 

( a , n  ~ (srcn ~ O(t3z(L+z) ) X.=l ~ t"2-~ s i n \ L + l j s i n \ L + 2 J  + (6.10) 

Setting n = I, we obtain the aforementioned result for the critical values of 
the local height probabilities (6.2). 

If we substitute the above expansion into the expression for the order 
parameters, then use the orthogonality relation 

2 ~. sin{ann'] (anm'~= ~ [6 . . . .  Zk(L+1)--f,+,,.2k,L+,) ] 
L + I  \ L + l j s i n \  L+IJ  k= 

a = l  - - o o  

and interchange the order of summation, we find 

Rbkb _ 1 ~ t [k+ 1 + 2 m ( L  + 1 ) ]  2 -  1 

sin[sTt/(L + 2)] . . . .  

x s i n (  [ k +  l + 2m(L + l)]sn) + 2 (t3L{L+2)) 

To leading order we thus find 

(6.11) 

(6.12) 

Rb b ~ sin[(k + 1 )srt/(L + 2)] t( k + 1)2_ 1 (6.13) 
sin[src/(L + 2)] 

Hence, for k i> 1, the order parameters vanish at criticality with a power 
law behavior 

R~ ~ pll~k (6.14) 

where the critical exponents 6k are given by 

3L(L + 2) 
6k=(k+l)Z_l ,  k = l , 2  ..... L - 1  (6.15) 

Here we have used the fact that p =  t 3L(L+2~. To find the corresponding 
conformal weights Ak we use the scaling relation 

1 --zip 
zik = (6.16) 6k 
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From this relation we get 

( k +  1) 2 -  1 
- -  A(L+2) k = 1, 2 ..... L -  1 A k - 4 ( L + 2 ) ( L +  1) ~k+l ,k+ l ,  

Thus we have obtained all 'diagonal '  weights of the Kac table (1.2). 

(6.17) 

6.3.  O r d e r  P a r a m e t e r s  f o r  R e g i m e  2 + 

To obtain the generalized order parameters for regime 2 + we closely 
follow the previous working. The nonzero order parameters are again given 
by (6.8), with k = 0  ..... L -  1. Expanding the results (5.60) and (5.62) for the 
local height probabilities, we find 

Rb b 1 ~ l[k+l+2mtL+l)]2_l 
sin(rlt/L ) ,, = o~ 

xs in  ( [ k  + l + 2m(L + l )]rTt) + O(t3LtL+ (6.18) 

For  k = l ..... L - 2, the leading term is obtained for m = 0. When k = L - 1, 
however, the amplitude of this term vanishes and we need the next-to- 
leading term rn = - 1. Consequently we get 

Rbkb s in[(k  + l ) rn /L]  +1)2-1 
~ sin(rn/L) t(k , k = 1 ..... L - 2 

(6.19) 

where we have used the fact that r is odd. F rom this we can read off the 
exponents 

3L(L + 2) 
6 k = ( k + l ) 2 _ l ,  k = l , 2  ..... L - 2  

3L(L  + 2) (6.20) 
( ~ L - - I  - -  (L + 2) 2 - 1 

To find the corresponding conformal weights z/k we again use the scaling 
relation (6.16). In addition to the diagonal weights of the Kac table this 
yields the conformal weight z~ (L +ll. 2,1 

( k +  1) 2 -  1 
= A tL+i) k =  1, 2 ..... L - 2  Ak 4 L ( L +  1) k+ l ,k+ l '  

(6.21) 
( L +  2) z - 1 --zI(L+I) 

ZtL-I 4 L ( L +  1) 2,, 
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6.4. Order Parameters for Regime 3 + 

Ant i ferromagnet ic  Phases. Using the identities 

~93(~n , p) + ~93(3n, p) = 2oa3(~r~, p ' )  

oa3(kTz , p ) -  ~93(83-n, p ) =  2~9,(�88 p ' )  
(6.22) 

and the result (5.79), it follows from Eq. (5.75) that 

eb~+l(a) ( _1 ) ,+  l 91(re/4, t tt'+l~tL+2~) 
p~b+ l ( a  ) --  t93(~/4, t(L+ I)(L+2))  (6.23) 

For the order parameters (6.1) this yields the relation 

pbb+l ~91(7t/4, t {L+'}cL+2}) .~. ]?bb + 1 
' ' L - - l - k . -  t,q3(~/4 ' t tL+l) tL+2)) ' ' k .+ (6.24) 

V/2 l(L + l ) (L  + 2) /4  p b b  + 1 (6.25) 

i~bb  + 1 Consequently we can restrict our attention to --k, + �9 
As for the regimes 1 § and 2 § we first expand the normalization 

factor (5.79). We note, however, that we now need more terms in the 
expansion: 

S(a) 1 sin[an/(L + 1 )] 
N3(s ) (X0 + Xl/2) = (L + 1 )t sin[sn/(L + 2)] 

[ ' (o L / ] 
x l + 2 t  L2- COS\L+lj+O(t2(L-2~tL+I~) (6.26) 

Expanding the oq3-functions appearing in the local height probabilities 
(5.75), we arrive at 

2 sin[arc/(L+ 1)] pbb+ l(a ) _ _ _  
+ L + I sin[srt/(L + 2)] 

(arm I ( s n n I F  1 
x ~ t "2-~s in \L+l j s in \L+2JL 

+ O(12(L- 2)(L + I)) 

( I I  +2 t  L'-4cos \ L +  l J J  

(6.27) 

If we apply the orthogonality relation (6.11), after substituting this 
expression in the definition of the order parameters, we obtain 
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R b b +  I __ 1 ~ f k,+ sin[sn/(L+2)] . . . . .  l [k+l+2m(L+l)]2-1  

• [k+l+2m(L+l)]sn)L+2 

+ttk+I--L+Z"L+I)1~+L2--Ssin( [k+l-L+2m(L+l)]srt')L+2 

+ttk+~+L+Z,~,L+~)12+L2_Ssin([k+l +L+2m(L+L+2 1)]srt)} 

+ O(t z(t'-z)(L+ ~)) (6.28) 

Except for k = L -  1, the leading term comes from the first term within the 
summation, with m = 0 .  Defining the exponents 6k.+ as in Eq. (6.14), we 
can read off 

L 2 - 4  
6k.+ ( k + l ) 2  1, k = l , 2  ..... L - 2  (6.29) 

When k = L - 1  the first and the third terms, with m = 0  and m =  - 1 ,  
respectively, are of the same order. Using the fact that s is odd, we find that 
Rbb+ ~ vanishes. Because of the symmetry (6.24) this is as it should be. 

L - - I , +  

Using the relation (6.25), we readily obtain the exponents 

L 2 - 4  
&k_=(L+2)(L+I)/4+(L_k)2_ 1, k = l , 2  ..... L - 2  (6.30) 

From the scaling relation (6.16) and the conformal weight Zip in Eq. (6.5), 
we thus find 

( k+  I) 2 -  I _ ZI(4) + A(L+2) 
- -  1,1 O k + l , k + l  3k.+ -4(L+2)(L+ 1) 

1 ( L - k )  2 - 1  _ A(41 + A(L+Zl 
ZIk.-=-~+4(L+2)(L+I) - - 2 ' 2  "L--k.L-k 

, k = l ,  2 ..... L - 2  (6.31)  

We conclude that we have obtained all but one of the diagonal weights of 
the relevant Kac table, shifted by the diagonal c =  1/2 weights. It is this 
structure, which we observe also in regime 4 + below, together with the 
products of Virasoro characters which we found in the local height 
probabilities for these two regimes, which led to the proposal (1.7) for the 
modular invariant partition function for the corresponding critical 
branches. 
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Ferromagnetic Phases. The derivation of the order parameters 
for the ferro magnetic phases of regime 3 § proceeds along similar lines to 
the calculation for the antiferromagnetic phases. 

The nonzero order parameters are again given by (6.8) and, using the 
results (5.87) and (5.89), are found to be 

, { 
sin[s~/(L+2)] ,,= -co ttk+t+2"(L+ll]2--1 

x sin ( [ k + l + 2m( L + 2 !)]sTz) 

t [k+ ,_  L+ 2,,,L + 1,12+ L2_ 5 sin ( [ k  + 1 - L  + 2m(L + 1 )] sn.'] + 
\ L + 2  / 

+ttk+l+t'+2"'c+lla2+L2-Ssin([k+l+L+2m(L+l)]sn)}L+2 

+ O(t2,.-2)tL+ i i) (6.32) 

For  k = 1 ..... L - 2  the leading term comes from the first term within the 
curly braces, with m = 0: 

Rbb~ s i n [ ( k +  l ) sn / (L+2)]  t~,+ t)2_ ~ k =  1 ..... L - 2  (6.33) 
sin[src/(L + 2)-I 

For  k = L - 1 the first term with m = 0 and the third term with m = - I are 
of equal order. Using the fact that s is even gives 

R~b_l~ -- 4 COS t L2 (6.34) 

From these two equations we extract the exponents 

L 2 - 4  
6k ( k + l ) 2 - 1 '  k = l , 2  ..... L - 1  (6.35) 

which are the exponents 6,. + found in (6.29), plus the 'missing' exponent 

~L-I,+" 

6.5. Order Parameters for Regime 4 + 

Ant i fer romagnet ic  Phases. From the results (5.75) and (5.97) 
for the local height probabilities and the symmetry relation 

Rbb+ I 91(n/4, t L~L + l~) 
. - -  j l ~ b b  + 1 

" 'L - - l - - k . - -  ~3(7~/4, t L ( L + l ) ) ' ' k , +  

N/~ tL(L + l)/41?bb+ 1 ,,k,+ (6.36) 
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we obtain the following results for the order parameters in the small-field 
limit: 

Rbb+l s in[ (k+l ) rn /L] t r  l 
k.+ sin(rrc/L) 

Rbb+, ~ X/~ tL~L+ ,~/4 s in[(L--k)r rc /L]  t~L_k)2 l 
k,- sin(rTr/L) 

(6.37) 

From this we read off the critical exponents 

L ( L + 4 )  
~k,+ -- ( k +  1)2-- 1 

L ( L + 4 )  

6k,- = L (L  + 1 ) /4 + ( L  - k )  2 - 1 

(6.38) 

where k = 1, 2 ..... L - 2 .  We apply the scaling relation (6.16) to the above 
results to find 

( k+  1) 2 -  1 
Z~k, + --  4 ( L +  1)L 

1 ( L - k )  2 -  1 
Ak._ =]--~+ 4 ( L +  1)L 

__ Z~(4) .t .  A ( L +  1 ) "~ 
- -  1,1 ~ k + l . k + l  ~ 

- -  A (4) -Jr- Z~ ( L + I )  1 
- - ~ 2 , 2  L--k,L--k) 

k = 1, 2 ..... L - 2 (6.39) 

We have thus obtained the diagonal weights of the Kac table, with 
h = L + 1, shifted by the diagonal c = 1/2 weights. 

Ferromagnetic Phases. From the expression for the order 
parameters which survive in the ferromagnetic phases (6.8), and the results 
for the local height probabilities (5.103) and (5.105), we have 

R~ b s i n [ ( k + l ) r n / L ] t t k + ' ) 2 - ~  k = l , 2  ..... L - 2  (6.40) 
sin(rn/L ) 

From this we obtain a subset of the exponents found for the 
antiferromagnetic phases. We are also able to determine that 

(6.41) 

which corresponds to the conformal weight A~4)+ A ~L + t~ 1,1 2,1 " 
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7. THE PHASE D I A G R A M  

The study of the solvable manifolds spanned by the elliptic nome and 
the spectral parameter reveals some aspects of the role these manifolds play 
in a larger parameter space. In particular the off-critical regimes support 
coexistence between a specified number of phases, each associated with a 
ground state, detailed in Section 5.1 The critical branches are the critical 
points terminating these coexistence lines. In the following we discuss some 
aspects of the phase diagram of the dilute A models. The discussion is not 
limited to the solvable manifolds, but is restricted to the region where the 
weights are 7/2 symmetric. 

When the 7/2 symmetry a--* L + 1 - a is obeyed, the weights permit a 
duality transformation. This transformation is a direct generalization of the 
orbifold duality relating the A2k +~ and D~+ 2 Temperley-Lieb models ~22~ to 
the dilute A and D models. Since the A3 and D3 Dynkin diagrams are 
identical, we have a dual symmetry of the phase diagram in the case L = 3. 
Because the phase diagram for L > 3 is complicated by the large number of 
states of the model and by the absence of a dual symmetry, we limit 
detailed discussion to the case L = 3. Only afterward do we mention which 
conclusions are valid for general L. 

The duality transformation for the case L =  3 can be performed by 
separating each degree of freedom into an Ising-like variable tr = -t-1 that 
discriminaters between the states a = 1 and a = 3, and the variable s = 0, 1 
that decides whether a state is a = 2, so that a = 2 +str. For a given con- 
figuration of s, the lsing variables live on the sites where s = 1. Since these 
Ising variables take the same value on neighboring sites, there is effectively 
only on Ising variables in each cluster of s = 1 sites that are mutually con- 
nected (directly or indirectly) by nearest neighbor links. Such clusters form 
an irregular lattice, with interactions between them wherever they are 
linked via a second-neighbor bond. On this lattice an ordinary Kramers- 
Wannier duality transformation can be performed which results in new 
Ising variables on the dual lattice, formed in the same way, but by the 
clusters where s = 0. The s-variables, fixed in the procedure so far, are now 
each replaced by I - s .  The resulting duality transformation on the weight 
is 
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I~(~  12)=~[W(12  ~)-t-W(32 : ) ]  (7.1) 

where the weights are symmetric under exchange of the states 1 and 3, and 
the transformation rules are invariant under reflection in the diagonals of 
the elementary squares. 

The self-dual subspace contains all four solvable critical branches. It 
constitutes a transition between a phase symmetric under exchange of the 
states 1 and 3 and one in which this symmetry is spontaneously broken. 
The nature of this phase transition is not the same everywhere in the self- 
dual subspace. The phase structure within this subspace, which is equiv- 
alent to the phase diagram of the O(n) loop model, ~23~ is indicated in Fig. 3. 
It may be parametrized in terms of the weights p, ..... P9. If we keep the 
weights P2 ..... P7 fixed, we may describe the self-dual parameter space in 
terms of the weight p~ of the ferromagnetic states and the weights P8 and 
199 of the antiferromagnetic states. 

Ca) 

~ 

(b) / 

Fig. 3. The phase diagram for L =  3. (a) The self-dual subspace. The encircled numbers 
represent the four srlvable critical branches; branches I and 4 describe the transition of the 
entire curves on which they are located, and branch 2 describes the transition across the whole 
lower left ~ection of the diagram. The double curve marks a first-order transition. (b) The 
phase diagram with an additional parameter that reverses sign under duality. In the extreme 
limits (front and back) the model reduces to the interacting hard-square model. 



512 Warnaar et  al. 

When Px as well as Ps and P9 are small, the transition (across the self- 
dual space) is of second order, in the Ising universality class. It is described 
by the solvable critical point of branch 2. The character of the phases is 
ferromagnetic. When the weight p~ is sufficiently large the transition is of 
first order. These regions are separated by an Ising tricritical transition 
governed by branch 1. 

When, on the other hand, P8 and /29 are sufficiently large and p~ is 
relatively small, antiferromagnetic configurations, in which one of the 
sublattices takes the values a = 2  while the other sublattice fluctuates 
between a = 1 and a = 3, are favored. There will be a phase separation 
between regions where one or the other sublattice has a = 2. The onset of 
this phase separation is an ordinary Ising transition, which appears to be 
independent of the transition across the self-dual subspace. It is described 
by the critical point of branch 4. The independence of these transitions is 
reflected in the product structure of the order parameters on this branch 
[see, e.g., Eq. (5.92)] and in the value of the central charge c =  1 (see 
Table I). It implies that the transition across the self-dual subspace is of the 
same (Ising) universality class on either side of the Ising transition within 
the subspace. 

When the ferromagnetic weight p~ and antiferromagnetic weights 
/)8, P9 are all large relative to the other weights, the system must make a 
choice between the first-order regime, in which the ferromagnetic confi- 
gurations dominate, and the critical antiferromagnetic regime. From the 
fact that the surface tension between these phases can be made arbitrarily 
large, we conclude that the transition between the two regimes is first order. 
The point where this first-order transition is met by the other two transitions 
within the subspace is the critical point of branch 3. 

We further observe that the transition between the ferromagnetic and 
antiferromagnetic region of the self-dual subspace, persists away from the 
self-dual subspace (see Fig. 3b). In fact, when the weights are taken far 
from self-duality, the model may be reduced to the interacting hard-square 
model, (24-271 in which the particles are represented by a = 1 or a = 3 and the 
empty sites by a = 2. Of course, by dual symmetry, the roles are reversed 
in the opposite extreme. The hard-square model is known to have an Ising 
critical and tricritical transition into a sublattice-ordered phase. We expect 
the critical transition to join continuously with branch 4 and the tricritical 
transition with branch 3. 

We now see that the critical point of branch 3 plays a central role. 
It sits at the intersection of two phase-transition manifolds, i.e., the 
ferro-antiferromagnetic transition and the self-dual subspace. Furthermore, 
it sits at the line where both transition sheets turn first order. 

For general L we expect the same topology of the phase diagram. 
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Though there is no longer a dual symmetry that maps the weight space 
into itselfs, the subspace given by (2.2) still plays the role of a phase trans- 
ition. The universality class of the transition across this subspace varies 
with L, and is that of regime III-IV of the L-state ABF model for branch 2, 
and of the (L + 1)-state ABF model for branch 1. The transition between 
ferro- and antiferromagnetic regions remains Ising-like for all L. Where the 
transition manifolds intersect, the universality class is that of a direct 
product of an Ising and a ABF model (except where they are first order). 
Again, for general L there are directions in the parameter space in which 
the model can be reduced to the interacting hard-square model. 

To conclude, we remark that with the phase diagram proposed above 
we do not do full justice to the fact that the critical behavior of branch 3 
is that of the product of an lsing model and branch 1. 

8. AN ISING MODEL IN A FIELD 

Because the model in regime 2 § is in the universality class of the Ising 
model in a magnetic field, we take a special interest in this case, and collect 
the results in this section. 

As we have already observed, we can make the identification 
{ 1, 2, 3 } = { +,  0, - } to relate the heights of the dilute A3 model to the 
states of a spin- 1 Ising model. This particular model has the restriction that 
a ' + '  and a ' - '  spin may not be adjacent on the lattice. Because the nome 
p breaks the up-down symmetry, it plays the role of the magnetic field. In 
regime 2 + we see from Table I that the central charge of the model is 
c = 1/2. 

Using result (4.3), we can rewrite the free energy as 

l "~ cosh 9~xcosh 5nxsinh 16uxsinh[(15rc-16u)x]  
In x ( u ) = 2  

k=/-"-o~ j-~o x sinh 16~x cosh 15rtx  

X e 32iekx d x  (8.1) 

The magnetization of this Ising model can be expressed as a linear 
combination of the local state probabilities: 

m = ( + ) -  ( - ) =  P I ~ ( 1 ) - P " ( 3 ) =  R', ' /x/~ (8.2) 

Analogously, we can define a density for the spin-1 model, which is the 
probability that a site is occupied by a spin of either sign, 

- - R l ~ )  ( 8 . 3 )  P = ( + )  ( ) = P " ( t ) + P Z I ( 3 ) = � 8 9  1+ 2 
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When we group the following combination of elliptic function: 

K -  `91(~/3, t 8) `9t (g/4, t 9~ 1 
- -  + O(t  24) (8.4) 

`91(~/3, t 4) N z ( r =  1) 4 x//-6 

and make some simplifications, the magnetization and density are 

m = 4 x / ~  t3K { E ( -  :4, t , 4 , ) E ( -  t 9~ t 2"~ - t  24 E ( -  t '8, t '44) E ( -  t 3~ f14o)} 

(8.5) 

p =  2 x/'6 K{`93(0, t v2) 83(0, t~z~ - ,92(0, t 7z) ,92(0, t'2~ } (8.6) 

The leading-order behavior is 

In/~sing ~ p16/15 
m ~  t3= p I/l'5 (8.7) 

l t24 pS/t5 P-- i "  = 

The first two expressions both lead to the exponent 6 =  15. The last 
exponent is related by scaling to the conformal weights of the energy and 
spin operators: Ai,2/(1-  A2,1)= 8/15. 

9. S U M M A R Y  A N D  D I S C U S S I O N  

In this paper we have considered the infinite hierarchy of dilute A 
models. These models, which belong to the family of dilute A-D-E models, 
can be viewed as spin-I generalizations of the solid-on-solid models of 
Andrews, Baxter and ForresterJ t) For any integer L>~2, the dilute A 
model defines an L-state solid-on-solid model, with heights labeled by the 
Dynkin diagram of the classical Lie algebra AL. At the critical point, the 
Bolzmann weights (3.1) of this solid-on-solid model obey the ;72 symmetry 
of the underlying Dynkin diagram, but away from the critical point this 
symmetry is broken for odd values of L. 

For each values of L the model has four different critical branches. 
Two of these branches provide new realizations of the unitary minimal 
series and the two other branches can be viewed as the directed product of 
this same series and a c =  1/2 model. Away from criticality the four 
branches yield eight distinct regimes. 

For all regimes we have calculated the free energy. From this we have 
obtained critical exponents ct for even L, and exponents 6 for odd L. 
Among these results is the magnetic exponent 6 = 15 of the Ising model. 

The main part of this paper is concerned, however, with the calcula- 
tion of the generalized order parameters for the symmetry-breaking models 
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of the dilute A hierarchy. This calculation involved the evaluation of new 
sums-of-products identities for theta functions of the Rogers-Ramanujan 
type. From the resulting expressions for the order parameters we extracted 
a set of critical exponents 6k. For the models corresponding to the unitary 
minimal series, these exponents correspond to the diagonal conformal 
weights of the relevant Kac table. For the models corresponding to a direct 
product of a unitary minimal model and a c =  1/2 model, the critical 
exponents yield the diagonal weights of the Kac table of the minmal model 
incremented by either one of the diagonal weights of the c = 1/2 model. 

We have not yet succeeded in computing the order parameters for the 
non-symmetry-breaking dilute A models, obtained for even values of L. In 
this case the Boltzmann weights no longer enjoy the diagonal property 
(5.5) and additional diagonalization is required. We hope to report on 
these 'even' members of the dilute A hierarchy in a future publication. 

Another open problem is the relation between the symmetry-breaking 
spin-1 Ising model, corresponding to the dilute A 3 model in the regimes 2 § 
and 2- ,  and the integrable field theory of the critical Ising model in a 
magnetic field, found by Zamolodchikov. ~28'29~ As shown by Smirnov, ~3~ 
Zamolodchikov's S-matrix corresponds to an RSOS projection of the 
Izergin-Korepin R-matrix. Hence the dilute A 3 model provides a likely 
candidate for describing the corresponding solvable lattice model. The 
precise relation between Zamolodchikov's S-matrix, which has a structure 
related to the Lie algebra Es, and the dilute A 3 model remains, however, 
unclear. By studying the excitation spectrum of the dilute A models, and in 
particular the A 3 case, we hope to establish the connection, if present, in 
the near future. 

A P P E N D I X A .  THE FUNCTION H 

In this appendix we give the weights (3.1) in a form which is more 
suitable for considering the ordered or strong-field limit, and hence for 
obtaining the weight function H defined in Eq. (5.5). 

We first define the new variables 

w = e  -2"u/` and x = e  -2n;'/E (A.1) 

In terms of these variables, the ordered limit is given by x --* 0 with w fixed. 
Using the conjugate nome expressions (C.8) of the theta functions and 
setting 

E ( u ,  x "/~) = E ( u )  (A.2) 

we find that the Boitzmann weights in conjugate modulus parametrization 
read 

822/74/3-4-4 
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- E - ~ ) - e ] - ~  + x  e(x,)e(x~) 
[ 2 E(-x2a)  E(x4(a+l)) E( -x2a-5)  

x -  2 E ( - x  2") E(x 4~- '~) E ( - x  2"+ 5)) + E( - x 2(a -- I)) E(X4a) E( - x 2"- / 

( a + l  : )  (: a ) g,, E ( x 3 w - ' , E ( - x + 2 " + ' w  -~) 
W - = W = w E(x3)E(_x•  a a+_ 1 g.,+l 

a + l  
W - 

a 

w(a 
a_+l 

w (  a 
a + l  

w a a 
a+,) 

E(- -x  2") E(x 4~'• ,))~,/2 
= g a + l  W - I x 3  __XZi:l 

E(w) E( -x+2"-2w)  
X E(x 3) E( - x  +za+ 1) 

( :  a + l l ) ( a + l  a + l )  W - = W  - - 
a-t- a a 

{ E ( - x  • 3) E ( - x  •  1)3,/2 E(w) E(x3w -l  ) 
= x ~  E---y-~_x~2--U-~) . E(x2)E(x3) (A.3) 

E(x2w - 1) E(x3w - I) 
a _ g] w 

aT- 1 g.+l g~-i  E(x2) E(x3) 

a-~l'~ g . + , g ~ _ , x 2 {  E2(_x2~)E(x,(~- ,))E(x,( .+,))  .~.,/z 
a ] gT~ \ E ( - x  2(a+ 1)) E ( - x  21"- 1)) E2(x4a)J 

E(w) E(xw- t )  
X E(x 2) E(x 3) 

a+_ l'~=ga+12 E(x3w-I)E(X+4a+2w) 
a J g2 ~ E(x 3) E(x+:O+ 2) 

2 E(--X 2a) E(x 4(a+ 1)) E(w) E(x +4a- lw) 
g a •  w - I x 3 T - I  

g] E( - x  2~'• 1)) E(x4a) E(x 3) E(x+4a + 2) 

2 E(x3w) E(x• =ga+ l W-I 
g] E(X 3) E(x+aa': -4 ) 

ga• -l  E(w) E(x • 'w) 
- -  ..,, W g: E(x 3) E(x ++-4a-4) 

I-I E(-x2a)E(x4(a~'))E(x4) E(-x+2a-5)~  
x x +- -g(~;;TF;,Se-~+x~e(_x• 



Order Parameters of the Dilute A Models 517 

where we have omitted an overall normalization factor exp[2u(32-u) /e]  
and go is defined in Eq. (5.6). In this alternative representation of 
the Boltzmann weights, we can readily extract their leading behavior in 
the ordered limit. To do so, we make use of the simple properties of the 
function E as listed in Eq. (C.4) of Appendix C. It is clear from the 
definition of x that the result depends on the value of 2. For regime 1 +, 
using definition (5.25), we get 

H(b, b, b)= besz 
bEs 3 
b~s 4 

( ! ( b +  1) b~s, 

H(b+ 1, b, b)=H(b, b, b+ 1)= t ~b b~s2 
�89 b~s3 

I 
~�89 1) b~s4\{t} 

- � 8 9  1) b s s , \ {1 }  
�89 b~s2 

H ( b - l , b , b ) = H ( b , b , b - l ) =  - �89 b6s3 

�89 bEs4 

b~s2 
H(b+ l ,b,b+ l)= +1 b E s  3 

"{- I bES4\{L  } 

- (b - l )  bes,\{1} 

H(b-  l , b , b - 1 ) =  - (b  2) bes2 
- (b -2 )  b E s  3 

( b - 2 )  b~s4 

H(b +_ l, b, b-T- l )= l, bE{2,3  ..... L - l }  

(A.4) 

To facilitate the proof of solution (5.26) we add the following two terms to 
the above list: H(0, 1, 1 ) = 0 and H(L + 1, L, L) = �89 + 1 ). 

For regime 2 § using definition (5.35), we get 

f !  b~tl H(b, b, b) = b ~ t2 
b~t 3 
b~t4 
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f�89 1) bet1 
�9 H ( b + 2 )  b ~ 2  H(b+ 1, b, b)=H(b, b, b+ 1)= ~ ( b + 2 )  

be t3 
~.�89 + 3) bet4\{L } 

{ i  '(b-1) b e t ' \ { 1 } ~ b  bet2 
H(b-l,b,b)=H(b,b,b-l)= �89 b~t3 

�89 1) bet4 
b + l  bet~ 

H(b+l,b,b+l)= b + 2  b e t  2 
b + 2  b~t 3 
b + 2  bet4\{L} 

I - ( b  b - l ) -  bet2bet'\{1} 
H(b-l'b'b-1)=[-(b-l)+3b, z bet3 

- ( b -  1) be t4 

H(b+ 1, b, b~- 1)-- I be  {2 ..... L -  1} 

(A.5) 
Now we only add the single term H(0, 1, 1)= 0. 

A P P E N D I X  B. D E N O M I N A T O R  I D E N T I T I E S  

In this appendix we prove the six denominator identities used in 
Section 5.4 to normalize the local height probabilities. All identities involve 
sums over products of elliptic functions similar to the sums-of-products 
identities of Rogers and Ramanujan. 

For brevity we shall adopt the convention that sums over j, k, l, m, 
and n always run over 7/. 

B.1. Reg ime  1 + 

For regime 1 + the denominator identity reads 

2 L + I  

x83 L 1 L 2' , t  
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= 2(L + 1 ) t Lt2L+31/2 Q( t  12LtL+2~) Q(t  12z-tL + l)) 

x o q l (  6 t2'L + l)'L + 2')  3 ' ( 2 s n / ( L  + 2)' t6L'c + ' ' )  
' ~2(Sn/(L + 2), t 6Lu'+ t)) 

where s =  l,  3, 5 ..... L a n d  L = 3 , 5 , 7  ..... 

(B. l )  

Proof .  To prove this identi ty we start  by recasting the left-hand side 
using the representa t ion  (C. I )  of the oq-functions as infinite sums: 

2 L + I  
N I = - - i t  3L~L+21/2 ~, ~ (-- l)Je~i~(2J+l+kL+O/~L+t)e -~i~l/~L+2~ 

a = O  j,k,I 

X t 6L( L + 2))1j2 + j )  + 3L(L + 2)k 2 + 12 ( B . 2 )  

Summing  the roots  of unity over  a, we find that  the above  expression 
vanishes unless l = - 2 j -  1 - k L  + 2 m ( L  + 1), with m e 7/. Hence we get 

N i  = -- 2 i (L  + 1 ) 13L(L+2)/2 E ( - -  1 )J+keraS(2j+ I -2k+2m)/(L+2)  

jJt.m 

X t 6L(L + 2) l j  2 + j )  + 3L~L + 2)k 2 + [2j + I + kL - 2m(L + 1 )]2 ( B . 3 )  

where we have used the fact that  s is odd.  
We now carry  out  a sequence of t ransformat ions  to diagonal ize  the 

quadra t ic  exponent  of t. F i rs t  we make  the subst i tut ion m - , m - j + k  
followed by k--* k + 2j. Then we replace the sum over k by a sum over l 
and ct by setting k = 31+ ct, where ~x has to be summed over 0, 1, and 2. 
Similarly,  we replace the sum over m by a sum over n and fl by setting 
m = 3n + ft. F inal ly  we make  the replacements  j --+ j - / and 1 - - + / -  n. After 
all these t ransformat ions  we obta in  

2 

N l = - 2 i ( L +  1)t ~3Lz+6L+2)/2 E E ( -l)j+~e~i~6"+2/~+1~/~L+~ 
~t. fl = 0  j.l.n 

X / 41cc+ B l ( ~ + f l -  l)+2L(5~2+4fl2+6etfl-ct-2fll+4L2l~Z+fl2+cc[J) 

X 16L(L+2)(3j+ 1 + 2~c)j+ 6(L + I)(L + 2)(31-- 1 +2a+2fl)I+6L(L+ l)(3n + 1 + 2/i')n 

= - 2 i (L  + 1 ) t (3L2 + 6L + 2)/2 (B.4) 

2 
X E "(--l)~14(~t+fl)(ct+lY--I)+2LtS~2+4flZ+6a#-a--2fl)+4L2t~t2+fl2+~t#) 

a .B=O 

X e rtis(2#+ I) /(L+2)E( - - e  6nis/(L+ 2)II2LtL+ I)(2 + fl), 136L(L+ I ) )  

x E(  t 12LtL + 2)(2 +~), 1 3 6 L ( L + 2 ) ) E ( - t  1 2 ( L + l ) ( L + 2 ) ( l + a + / ~ )  t 3 6 ( L + I ) t L + 2 1 )  
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where, in the second step, we have used the definition (C.3) of the function 
E. The terms with ~ = 1 are identically zero and the two terms with fl = 1, 
0t # 1 cancel. The remaining four terms factorize to give 

NI = 2i(L + 1)t(3L2+6L+2)/2e--=is/(t'+2)Q(tl2t'(L+2)) 

X l-E( -- t 12(L+ II(L+2), /36(L + I)(L+ 2)) 

- -  t 4(L+ II(L+2)E(- 1, /36(L + I)(L+ 2))] 

x [E( - e 6his~it" + 2) t 12L(L + 1), t36t-(L + t)) 

- - e 2 n i s / ( L + 2 ) E ( - - e - 6 n i s / t t ' + 2 ) t l 2 L ( L + l ) ,  136L(L+I))  "] (B.5) 

We now note the following two elliptic function identities: 

E(-x3p, p3)_ xE(-x-3p, p3)_ Q(P) E( x2, P) 
E(-x, p) 

E( _p3, p 9 ) _  pE(-  1, p 9 ) =  eni /3E(eni /3 ,  p) 
(B.6) 

To prove the first identity we note that the function f (x ) ,  defined as the 
ratio of the left-hand side over the right-hand side, has the following 
periodicity property: f (px)=f(x) .  Since the function E(x, p) is analytic in 
0 < Ixl < ~ ,  the only possible poles in the period annulus p ~< Ixl ~< 1 are 
the zeros x =  +1 and x =  +pi/2 of the function E(x 2, p). Using formula 
(C.4) to manipulate the function E, it is readily verified that these poles 
have zero residue. Hence, by Liouville's theorem, f is constant. Setting 
x = _ p  1~3 shows that this constant is one. The second identity is actually 
a corollary of the first. Replacing p by p3, then setting x = p2 and again 
using formula (C.4) yields 

E(p4, p3) Q(p3) 
E( _p3, p g ) _  pE(-  1, p 9 ) =  _p E( _p2, p3) 

= I~I ( 1 - p - + p 2 - )  
n = l  

= e~ i /3E(e  ~i/3, p) (B.7) 

Applying both identities and the relation (C.6) of Appendix C, we obtain 
the desired right-hand side of (B.1). 
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B.2. Reg ime  2 + 

For  regime 2 + we have to prove the following identity: 

2L+' ( a~t ) (. arrL ) ( n ( r  
N2=. a)-'0t,ql= ~_ ._~ , / 6L t L + 2) t gS \ 2 (L +I ) , / 3L t C+2) t93  "2 

= 2(L + 1 )t tL+ 2~t2z+ l)/2Q(t12L~t+2))Q(t12tL+ l~tL+ 2~) 

Xoq , ( 6, t2L, L + , )) ~q,(2rn/L, t6'L + ')(L + 2') 
•2(rrr/L, t 6tL + l ~(L + 2)) 

a)) 
L + I  , t  

(B.8) 

where r =  1, 3, 5 ..... L - 2  and L = 3 ,  5, 7 ..... 

Proof. The proof  of this denominator  identity is similar to that 
presented for regime 1 § Using the representation of the oq-functions as 
infinite sums yields 

2 L +  1 
N2=--it3LtL+2)/2 ~ E ( -1)jenia(2j+l+kL-t)/{L+l)enirt/L 

a = O  j.k,I 

x t 6LtL + 2)(j2 + j )  + 3L(L + 2)k 2 + 12 (B.9) 

Performing the sum over a gives / = 2 j +  1 + k L + 2 m ( L +  1), where m 
assumes integer values. Thus we find 

N2 = -- 2i(L + 1 ) t alc L + 2 i/2 ~ ( _ 1 )J + ~ e ~irt2j + i + 2,.~/c 
j,k.m 

X t 6L(L + 2 )L( j  2 + j )  + 3L(L + 2 )k 2 + [2j + 1 + kL + 2m(L + 1 )]2 ( B .  1 0 )  

where we have used the fact that r is odd. 
As before, we carry out a sequence of  transformations to diagonalize 

the quadratic exponent of t. First we make the replacements m --+ m - j  and 
k--,  k + 2j. Then we set k = 31 + ct and m = 3n + 13 and finally we substitute 
j - - + j - I  following by l-+ l - n .  After making these transformations we 
obtain 

N 2 = --  2i(L + 1 ) / (3L2 + 6L + 2)/2 

2 
X ~ ( - - 1 ) a t  4fl(fl+l)+2L(3cxz+4fl2+2~fl+~t+2fl)+4L2(rt2+fl2+afl) 

~ , # = 0  

X e nit(2#+ l ) /LE(--e6nir /Ll l2{L+ I ) ( L +  2){2+fl) ,  / 3 6 ( L +  I ) ( L + 2 ) )  

x E ( t  12L(L+21(2+~), t36L(L+2~)E( - - t12L(L+l ) ( I+~+f l l ,  t 36L{L+I)) (B,11) 
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The terms with ~ = 1 vanish and the terms with fl = 1 cancel. The 
remaining four terms can be written as 

N2 = 2i( L + I ) tt3L2 + 6L + 2)/2 e-- nir/L Q(  tI2L(L + 2) ) 

x [E( - t  12LIL +11, t36L(L + 1)) - -  t4LIL +t)E( _ 1, t 36LIL +1))] 

X rE ( - -e6n i r / L t  12(L+ I)(L+2), t36(L+ I )(L+2)) 

-- e2. i , /LE( _e - -6n i r /L l l 2 (L+  t)(L+ 2), t36(L + I)(L+ 2))] (B.12) 

If we again apply the two identities of Eq. (B.6) and use the relation (C.6), 
we obtain the required right-hand side of Eq. (B.8). 

B.3. Regime 3 + 

Ant/ferromagnetic Phase. For the ant/ferromagnetic phases of 
regime 3 § the denominator identity is given by 

N3= ~, 33 t(L+I)(L+2)/4 ~1 /2(L2-4) 
a ~ O  8 ~ 

x '93 \2(L + I )' L 

= 2 ( L +  1)tlL-I)~L + 2~/4Q(t4CL2-4))Q(t2~L + I~IL + 2)) 

Xt93(4, t'L+l'{L+2))tgI(-?--~"-~+2,' {L+I)(L-2)) ( B . 1 3 )  

w h e r e / ~ a = a + a m o d 2  with a = 0 , 1 ; s = l , 3 , 5  ..... L a n d  L = 3 , 5 , 7  ..... 

Proof. We split the summation on the left-hand side depending on the 
parity of a. Using the fact that '93(u + �89 p) = '94(u, p) = '93(u, - p ) ,  we get 

N3='93 ~, (--1)~t IL+I~IL+21/' ~ '91 \ ~ - " ~  / 2~L~-4) 
a = O  

(artL ) ( 2 (  2a s ) ) X ' 9 3 \ L + l , t L ' - 4  '93 ~ 1  t + 2  , t  

(IZa+1)  ,2,.-.,) 
+'93(~'( - - l" t 'L+'"L+Z' / ' )  ~ 0 ' \  L + I  ' 

a = O  ) . :o+,s))  
x 9 3 \  2~+- l - j  , y - 4  03\~\~__~. 1 L + 2  , t  (B.14) 
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We now represent the theta functions with a-dependent arguments by 
series to obtain 

L 
N 3 = - - i t ( L 2 - 4 ) ~ 2  E E (-1)je2nia(2j+l+kL+t)/(L+l) 

a = O  j.k,I 

X e-nisU(L+2)t (L2-4)12j2+2j+k21+12 

E(8 ) X ~3 , ( - -1)  al(L+I)IL+2)/4 

+ enit2j+ l +kL +l)/tL + l)oq3 ( ~ ,  (-- I )a ttL + I)(L + 2)/4) ] (BA5) 

Performing the sum over a, we find that l =  - 2 j -  1 - k L  + m(L + 1) and 
hence 

N3= - i ( L  + 1 ) r  (tA-4)/2 ~ ( - - 1 ) i + k e  ~i'12j+) 2~+.,)/r 
j,k,m 

X [ (L2-4)(2j2+2j+k2)+ [2j+ I +kL-m(L+ 1)] 2 

XI( - -1 )m~3(8 ,  ( - - I)~ (--1)~ 
\ q  

+ ! )(L + 2 ) / 4 ) ]  

/_1 

(B.16) 

where we have used the fact that s is odd. 
Again we carry out a sequence of transformations to diagonalize the 

quadratic exponent of t. First we make the replacements m---, m -  2j + 2k 
and k --+ k + 2j, followed by the substitutions k = 31+ ct and m = 4n + ft. 
Finally we set j ---, j - 1 and l ~ l - n to obtain 

N3 = - i ( L  + 1 )t IL2- 2)/2 
2 3 

x ~ ~ (--1)=t #2+'=# 4r 
~=0 fl=O 

X [ ( --1)fl ~318 , ( --1)a l(L + l )(L + 2)/4) "~- ~3 ( ~ ,  ( --1)tr '(L + l llL + 2'/4) ] 

X e nis(fl+ I)/(L + 2)E(  _e4nis/(L+2)12(L+ I)(L-2113+fl) /8(L+ I) (L-  2)) 

X g(t 4(L2-4)I2+a), / 121L2-4)) E ( - I  2(a+ IIIL + 2)(5 + 4ct + 3ill, 124(L + II(L + 21) 

( B . 1 7 )  
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In this expression the terms with ~ = 1 vanish and the terms with/~ = 1 and 
/~ = 3 cancel. Using the simple identity 

which follows directly from (C.1), we find that  the remaining four terms 
factorize as 

N3= 2i(L + I )e-'~i'/(L + 2lt(L2- 2'/2Q(t4IL2-4') ~3 (4,  ttL + I)(L + 2) ) 

X [E( - - t  ~~ ~L+  2), tZ4~L+ t~L+2)) 

__ t2tL+ lltL + 2)E( __ t21L+ 1)tL+Z~, t24ts l)tL + 2))] 

x [E( --e4~i~/(L+2)t 2~L+ l ) lL-  2), tsu,+ ~ s  z)) 

--eZ"is/IL+2)E(--e--4"is/CL+Z)t z~L+II~L-z), tS~L+l~L--21)] (B. 19) 

We now note the identities 

E(-x2p, p ' ) -  x E ( - x - 2 p ,  p ' )=  E(x, p) 
(B.20) 

E( _pS, plZ) _ pE( - -p ,  p12) = Q(p) 

The first one follows directly from Liouville's theorem and the second one 
can be obtained from the first upon setting x = p after replacing p by p3. 
If we apply these two identities as well as Eq. (C.6), we find precisely the 
r ight-hand side of Eq. (B.13). This completes the proof. 

Ferromagnetic Phase. The denomina tor  identity for the ferro- 
magnetic phases in regime 3 + reads 

U~- ~ O, ~--~,t ~cL~-4~ O~\2(L+I/,Y -~ 

x ~ 3 ( 2 (  a L + l  L+S ) 

= 4 ( L +  I )tLIL + 21/2Q2(t 41L + lllc + z~) Q(t 4cL2-41) 

~,(s~/(L + 2), ? ~  + ' ~ -  ~-~) ~3(s~/(L + 2), t "-~§ ~ -  ~) 
x ~gt(r~/4, t ~+~1~-21) ,9~ (r~/4, t ~ + ~(~+ ~)) (B.21) 

where s =  2, 4, 6 ..... L + I  a n d L = 3 , 5 , 7  ..... 

Proof. We begin by writing the sum over  the oa-functions in the 
left-hand side as 
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2 L + l  
N4=--itCL2-4)/2 ~ ~ (--1)Ye~ia(2J+'+kL+t)/(L+')e--~is#(L+2) 

a=O j .k,I  

X t (L2-4)(2j2+2j+k2)+12 (B.22) 

Summing over a yields l = - 2 j -  1 - kL + 2m(L + 1 ) and hence, using the 
fact that  s is even, we get 

N 4 = - -  2i(L + 1 ) l (L2-  4)/2 ~ ( __ 1 )Je  nis(2j+ 1 - 2k + 2m)/(L + 2) 

j ,k ,m 

X t (L2-4) (2 j2+2j+k2)+ [2j+ 1 +kL - -2 m (L + 1)] 2 (B.23) 

In order to diagonalize the quadratic exponent of  t, we make the 
replacements m --* m - j + k and k -+ k + 2j followed, by the substitutions 
k = 3l + ~ and m = 2n + /L  Further  replacing j ~ j -  l and l --, l -  n leads to 
the result 

N4 = - 2i(L + 1 )t (L2-2)/2 
2 1 

X ~ ~ t 4(fl2+2~ 

a=O p=O 

• eniS(2# + l )/IL + 2) E(e4nis/(L + 2)/21L + 1 )(L - 2)(3 + 2#), t8(L + 1 )(L -- 2) ) 

X E ( t  4 (L2-4) (2+~) ,  t 12(L2- 4) ) E( l  2(L+ I)(L+ 2)(5 + 4a + 6/~'), /24(L + I)(L + 2)) 

(B.24) 

The terms with cc = 1 vanish and the other terms may be combined to give 

N4 = 2i(L + l )e -nis/(L + 2)/(L2- 2)/2Q(14(L2-4)) 

X [ E ( t  lO(L+ I ) ( L + 2 )  /24(L+ I ) (L+2))  

..~ t2(L+ l)(L+ 2 ) E ( [ 2 ( L +  I ) (L+2)  /24(L + l ) ( L + 2 ) ) ]  

X [ E ( e 4 n i s / ( L + 2 ) t  2(L+ I)(L-2),~ /8(L+ I ) (L-  2)) 

- - e 2 n i s / ( L + 2 ) E ( e - 4 n i s / ( L + 2 ) t 2 ( L + l ) ( L - 2 ) ,  I t 8 ( L + I ) ( L - 2 ) ) ]  (B.25) 

If we multiply this expression with the prefactors outside the sum in 
Eq. (B.21) and use the identities 

E(x2p, p , ) _  x E ( x -  2p, p4) = V/~ e-.i/4 E(x, p2) E ( - x p ,  p2) 
E(i, p) 

(B.26) 
E(p% p,2) + pE(p, p,2) = ~ e-, . /4 Q2(p2) 

E(i, p) 

we find precisely the right-hand side of Eq. (B.21). The proof  of these two 
relations is similar to those obtained earlier. The first identities follows 
from application of Liouville's theorem and the second identity is a conse- 
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quence of the first. Replacing the nome p by p3 and then setting x = p2 
yields 

E ( p S ,  p12) + pE(p, pJ2) = w~ ~ e-.i/4Q(p2) E( _pS, p6) 
E(i, p3) 

=Q(p2)  f i  (I + p6"-5)(I + p6"-I)(I  + P 3") 
, ,=1 (1 +p6n) 

=Q(p2)  f i  ( l + p 2 , , - , )  
n= 1 

= w/~ e -~i/4 Q2(p2) (B.27) 
E(i, p) 

B.4.  R e g i m e  4 + 

Ant/ferromagnet/c Phase. The denominator identity in the 
antiferromagnetic phase of regime 4 + is given by 

N s -  ~ ~3 IL(L+I)/4 ~I 12L(L+4) 
a~O 8 ~ 

= 2(L + 1 ) l  L(L+ 31/4Q(14LtL+41) Q(t 2LtL+I)) 

(4 )(r§ , . - ,  X03 , tL(L + I) ~ l  , t (L 

where :t o = a + a m o d 2 , w i t h a = 0 , 1 ; r = l , 3 , 5  ..... L - 2 a n d  L = 3 , 5 , 7  ..... 

ProoL Following the proof for the antiferromagnetic phase of regime 
3 +, we split the summation on the left-hand side depending on the parity 
of a. Representing the theta functions with a-dependent arguments by series 
yields 

N5 = - it L(L + 4)/2 
L 

X 2 ~ ( -1)je2rria(2j+l+kL-tl//(L+llenirl/LtL(L+4)(2fi+2j+k2)+'2 
a=O j,k,I 

X ~3 , ( - - l  +)/4 e~i(2j+|+kL I)/(L+l) 

x ,93 ( - ~ ,  (--1)~ (B.29) 
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Summing the roots of  unity over a, we see that l = 2j + 1 + kL  + m(L + 1 ) 
and as a result we have 

N5 = - i(L + 1 )t L~L +4)/z 

X 2 ( - -  1 }J+kenir(2j+ I +m)/LIL(L+4)(2j2+ 2j+k21+ [2)+ I +kL+rn(L+ 1)] 2 
j,k..m 

where we have used the fact that r is odd. 
We diagonalize the quadratic exponent of t by carrying out the follow- 

ing sequence of replacements. We first set m - *  r n -  2j and k - *  k + 2j. We 
then replace k = 31 + ct and m = 4n + fl and finally we substitute j - - ,  j -  1 
followed by l -*  l - n .  We then have 

N5 = - i ( L  + 1 ) t  (L2 +4L + 2)/2 

2 3 
x Z ,T__, ( -1)" t  ~§247 

==O /3=0 

X [(-- l  )/3t,q3 (8, (--1)~ 

X f rtir[/3+ l ) /LE(- -e4n i r /L l2 lL+ l ) (L+4)t3+f l) ,  18(L+ I)(L+ 4)) 

xE(t4L~L+4)~Z+=~, t12L~L+"~)E(- - tZLIL+l )~5+4=+3#) , t24LIL+I) )  (B.31) 

As before, the terms with ct = 1 vanish and the terms with fl = 1 and fl = 3 
cancel. Using the relation (B.18), we can write the remaining four terms as 

N , =  2i(L + 1)e-"ir/Lt(L2 +4L + 2'/2Q(t4L'L +4') 33 (4 ,  tLIL + " ) 

x [E( - t IOL(L+ i), tE4L(L+ I)) _ 12LIL+ ~)E( - t 2LtL+ i), t24L(L+ 11)] 

X r E (  --eanir/Ll 2(L+ I )(L+ 4), /8(L+ I ) (L+4))  

_ e 2 . i , / L E (  _e-4,i,/Lt21L+ l)~t.+ 4~, tstc+ I)(L+41)] (B.32) 

After application of the identities (B.20), we obtain the required right-hand 
side of (B.28). 

F e r r o m a g n e t i c  Phase.  The denominator  identity for the 
ferromagnetic phase in regime 4 + is 
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N6 = ~ ~, - ~ - ~ ,  t2L(L+4) ~3 \ 2 ( L +  I)' 
a = 0  

L + I  , t  

= 4(L + 1 ) tL(L+2)/2Q2(t4LIL+ 1)) Q(t4L(L+4)) 

~l(mz/L,  12tL+ I)(L+4)) ~3(rrc/L ' 12(L+ 1){L+4)) 
X 

~l(rc/4, tt.~c+ 1))~91(r~/4 ' t(L+ I)(L+4)) 

where L = 3, 5, 7 ..... and r = 2, 4 , 6  ..... L - 1. 

as 

Warnaar e t  al.  

tL(L+4) / 

(B.33) 

ProoL  We rewrite the sum over the oa-functions in the left-hand side 

2 L +  1 
Nr=-it LIL+41/2 ~. ~. (--l)Je~ia(2j+l+~t-l)/(L+l)e ~i~t/L 

a = O  j,k,I 
X l L(L+4)(2j2+2j+k2)+12 (B.34) 

By summing over the roots  of unity, this vanishes unless l = 2j + 1 + k L  + 
2 m ( L  + 1). As a result we find 

N 6 = -- 2i (L  + 1 ) l  L(L+41/2 E ( - -  1 )Je nir(2j+ l+2m)/L 
j,k,m 

• IL(L+4)(2j2+2j+M)+ [ 2 j +  1 +kL+2m(L+ 1)] 2 (B.35) 

where we have used the fact that  r is even. 
This expression is d iagonal ized by carrying out  the sequence of trans- 

formations m ~ m -  j ,  k -+ k + 2j, k = 3 1 + c c ,  m = 2n + fl, j--+ j -  l, and 
l ~ 1 -  n. This gives 

N 6 = - -  2i (L  + 1 ) t (L2 + 4c + 2)/2 

2 1 
X E E 14fl(fl+l)+2L(2aZ+4f12+2c~fl+a+21J)+2L2(c~2+2f12+2~fl) 

a = 0  /~=0 

X e nir(2fl + 1 )/L E(e4nir/L 12(L + 1 )(L + 4)(3 + 2//), 18(L + 1 )(L + 4))  

X E ( I  4L(L+4)(2+cO, 112L(L+4)) E ( t  2L(L+ 1)(5 +4ct + 6//), t24L(L+ 1)) (B.36) 

Here the terms with cc = 1 vanish. The other  terms may  be combined  to 

N6 = 2i(L + 1 )e - ,ir/t t ( t  2 + 4t + 2 I/2 Q(t4t l  t + 4)) 

X [E( t  l~ + l), t2aL(L+ 11) + t2 t ( t+ l )E( t2c( t+ t), /24L(L + 1 ) ) ]  

• [E(e4~i,/Lt2(L+ l)(L+4), tS(L+ I)(L+4)) 

_e2.i,/t.E(e-4.i,/Lt2(L+ I)(L+4). ts( t+ l)(t +4))] (B.37) 
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If we again use the identities (B.26) and multiply the above expression by 
the correct prefactors from the left-hand side of (B.33), we indeed obtain 
the right-hand side of (B.33). 

A P P E N D I X  C.  T H E T A  F U N C T I O N S  

In this appendix we list several definitions and relations for the 
Jacobian 9-functions used in the main text. For a more complete introduc- 
tion, we refer the reader to, e.g., ref. 31. 

The four standard ~-functions, of nome p, IPl < 1, are defined as the 
following infinite sums(32): 

~l(u,p)=,gl(u)=--i  ~. (--1)"p(2n+l)~/4e (z'+l)iu 
t l  = - o o  

= 2 ~ ( - 1 ),pt2,+ 1~2/4 sin(2n + 1 )u 
n = O  

6t2(u, p)=612(u)= ~ p(2n+l)2/4et2n+l)iu 
n =  -oG 

= 2  ~" pl2"+l)2/4cos(2n+ 1)u 
,=0 (C.1) 

~3(u, P)= 83(u)= ~ P n2e2"i" 
n ~ - o o  

= 1 + 2  ~ p,2cos2nu 
n = l  

~ 4 ( U ,  p) = 6t4(u ) = ~ ( -  l)"p"2e2"i" 

= 1 + 2  ~ (--l)"p"2cos2nu 
n = l  

By virtue of Jacobi's triple product identity, (19~ the theta functions admit a 
representation as infinite products 

~91(u ) = 2p TM sin u I~l (1 - 2p 2n cos 2u + p4")(1 - p2,) 
r t = l  

~92(u ) = 2p 1/4 cos u I~I (1 + 2p 2" cos 2u + p4n)(1 - p2,) 

"= ~ ( C . 2 )  

~93(u)= FI (1 +2p  2"-I cos 2u+p4"-2 ) ( l  _p2n) 
r t ~ l  

~94(u)= I~I (1 - 2 p  2"-j cos 2u+p4"-2 ) ( l  _p2~) 
n = l  
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Another function which proves to be useful is 

E(x,p)= ~ (-1)"p"("-')/2x"= f i  (1--p"-lx)(1--p"x-t)(1--p ") 
n =  - - o 9  n =  ] 

(c.3) 
From its definition it follows immediately that 

E(x, p)= E(px-t, p)= -xE(x - ' ,  p) 

E(xp', p)= ( - x ) - " p  - ' ( ' -  ll/2E(x, p) 
E(p, p3)= Q(p) (C.4) 

{] a=00<a<b lim E(xp u, pb)= ' - x ,  
p ~ O  

where the function Q is defined as 

Q ( p ) =  f i  ( l - p " )  (C.5) 
n = l  

The 9-functions can be expressed in terms of the E-function as 

91(u, p) = ipU%-i~E(eZi", p2) 

~92(u, p) = pl/%-iuE( _e2i., p2) 
(c.6) 

oa3(u, p)= E(-pc 2iu, p2) 
#4(u, p) = E(pe 2i~, p2) 

Likewise, the conjugate modulus transformation of the theta functions, 
which relates ~9-functions of nome p = e x p ( - e )  to those of none 

p' = e - ~2/~ (C.7) 

can be written as 

oal(u, p)= e - ( . - n / 2 ) 2 / E E ( e - 2 n u / ~  ' p,2) 

~92(u, p)= e-.2/.E(p,e-2../% p,2) 

(c.8) 
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We no te  tha t  these re la t ions  fol lows di rec t ly  f rom the Po i s son  s u m m a t i o n  
formula .  
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