
A FRAMEWORK OF ROGERS–RAMANUJAN IDENTITIES AND
THEIR ARITHMETIC PROPERTIES

MICHAEL J. GRIFFIN, KEN ONO, AND S. OLE WARNAAR

In memory of Basil Gordon and Alain Lascoux

Abstract. The two Rogers–Ramanujan q-series
∞∑
n=0

qn(n+σ)

(1− q) · · · (1− qn)
,

where σ = 0, 1, play many roles in mathematics and physics. By the Rogers–Ramanujan
identities, they are essentially modular functions. Their quotient, the Rogers–Ramanujan
continued fraction, has the special property that its singular values are algebraic integral
units. We find a framework which extends the Rogers–Ramanujan identities to doubly-
infinite families of q-series identities. If a ∈ {1, 2} and m,n ≥ 1, then we have∑

λ
λ1≤m

qa|λ|P2λ(1, q, q2, . . . ; qn) = “infinite product modular function”,

where the Pλ(x1, x2, . . . ; q) are Hall–Littlewood polynomials. These q-series are specialized
characters of affine Kac–Moody algebras. Generalizing the Rogers–Ramanujan continued

fraction, we prove in the case of A
(2)
2n that the relevant q-series quotients are integral units.

1. Introduction

The Rogers–Ramanujan (RR) identities [69]

(1.1) G(q) :=
∞∑
n=0

qn
2

(1− q) · · · (1− qn)
=
∞∏
n=0

1

(1− q5n+1)(1− q5n+4)

and

(1.2) H(q) :=
∞∑
n=0

qn
2+n

(1− q) · · · (1− qn)
=
∞∏
n=0

1

(1− q5n+2)(1− q5n+3)
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play many roles in mathematics and physics. They are essentially modular functions, and
their ratio H(q)/G(q) is the famous Rogers–Ramanujan q-continued fraction

(1.3)
H(q)

G(q)
=

1

1 +
q

1 +
q2

1 +
q3

. . .

.

The golden ratio φ satisfies H(1)/G(1) = 1/φ = (−1 +
√

5)/2. Ramanujan computed
further values such as1

(1.4) e−
2π
5 · H(e−2π)

G(e−2π)
=

√
5 +
√

5

2
−
√

5 + 1

2
.

The minimal polynomial of this value is

x4 + 2x3 − 6x2 − 2x+ 1,

which shows that it is an algebraic integral unit. All of Ramanujan’s evaluations are such
units.

Ramanujan’s evaluations inspired early work by Watson [60, 78, 79] and Ramanathan
[67]. Then in 1996, Berndt, Chan and Zhang [11]2 finally obtained general theorems
concerning such values. The theory pertains to values at q := e2πiτ , where the τ are
quadratic irrational points in the upper-half of the complex plane. We refer to such a
point τ as a CM point with discriminant −D < 0, where −D is the discriminant of the
minimal polynomial of τ . The corresponding evaluation is known as a singular value.
Berndt, Chan and Zhang proved that the singular values q−1/60G(q) and q11/60H(q) are
algebraic numbers in abelian extensions of Q(τ) which satisfy the exceptional property
(see [11, Theorem 6.2]) that their ratio q1/5H(q)/G(q) is an algebraic integral unit which
generates specific abelian extensions of Q(τ).

Remark. The individual values of q−1/60G(q) and q11/60H(q) generically are not algebraic
integers. For example, in (1.4) we have τ = i, and the numerator and denominator

q−
1
60G(q) =

4

√
1 + 3

√
5 + 2

√
10 + 2

√
5

10
and q

11
60H(q) =

4

√
1 + 3

√
5− 2

√
10 + 2

√
5

10

share the minimal polynomial 625x16 − 250x12 − 1025x8 − 90x4 + 1.

In addition to the algebraic properties described above, (1.1) and (1.2) have been related
to a large number of different areas of mathematics. They were were first recognized by
MacMahon and Schur as identities for integer partitions [59, 71], but have since been

1He offered this value in his first letter to Hardy (see p. 29 of [12]).
2Cais and Conrad [24] and Duke [27] later revisited these results from the perspective of arithmetic

geometry and the symmetries of the regular icosahedron respectively.
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linked to algebraic geometry [23, 37], K-theory [28], conformal field theory [10, 44, 52],
group theory [32], Kac–Moody, Virasoro, vertex and double affine Hecke algebras [25, 31,
50, 51, 53, 54, 55, 56], knot theory [6, 39, 40], modular forms [16, 17, 18, 19, 20, 21, 22,
63], orthogonal polynomials [7, 15, 35], statistical mechanics [4, 9], probability [33] and
transcendental number theory [68].

In 1974 Andrews [1] extended (1.1) and (1.2) to an infinite family of Rogers–Ramanu-
jan-type identities by proving that

(1.5)
∑

r1≥···≥rm≥0

qr
2
1+···+r2m+ri+···+rm

(q)r1−r2 · · · (q)rm−1−rm(q)rm
=

(q2m+3; q2m+3)∞
(q)∞

· θ(qi; q2m+3),

where 1 ≤ i ≤ m+ 1. As usual, here we have that

(a)k = (a; q)k :=


(1− a)(1− aq) · · · (1− aqk−1) if k ≥ 0,

∞∏
j=0

(1− aqj) if k =∞,

and

θ(a; q) := (a; q)∞(q/a; q)∞

is a modified theta function. The identities (1.5), which can be viewed as the analytic
counterpart of Gordon’s partition theorem [36], are now commonly referred to as the
Andrews–Gordon (AG) identities.

Remark. The specializations of θ(a; q) in (1.5) are (up to powers of q) modular functions,
where q := e2πiτ and τ is any complex point with Im(τ) > 0. It should be noted that this
differs from our use of q and τ above where we required τ to be a quadratic irrational point.
Such infinite product modular functions were studied extensively by Klein and Siegel.

There are numerous algebraic interpretations of the Rogers–Ramanujan and Andrews–
Gordon identities. For example, the above-cited papers by Milne, Lepowsky and Wilson
show that they arise, up to a factor (q; q2)∞, as principally specialized characters of in-

tegrable highest-weight modules of the affine Kac–Moody algebra A
(1)
1 . Similarly, Feigin

and Frenkel proved the Rogers–Ramanujan and Andrews–Gordon identities by consider-
ing certain irreducible minimal representations of the Virasoro algebra [31]. We should
also mention the much larger program by Lepowsky and others on combinatorial and
algebraic extensions of Rogers–Ramanujan-type identities, leading to the introduction
of Z-algebras for all affine Lie algebras, vertex-operator-theoretic proofs of generalized
Rogers–Ramanujan identities, and Rogers–Ramanujan-type identities for arbitrary affine
Lie algebras in which, typically, the sum side is replaced by a combinatorial sum, see e.g.,
[34, 49, 62] and references therein.

In this paper we have a similar but distinct aim, namely to find a concrete framework of
Rogers–Ramanujan type identities in the q-series sense of “infinite sum = infinite product”,
where the infinite products arise as specialized characters of appropriately chosen affine
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Lie algebras X
(r)
N for arbitrary N . Such a general framework would give new connections

between Lie algebras and the theory of modular functions.
In [5] (see also [30, 76]) some results concerning the above question were obtained,

resulting in Rogers–Ramanujan-type identities for A
(1)
2 . The approach of [5] does not

in any obvious manner extend to A
(1)
n for all n, and this paper aims to give a more

complete answer. By using a level-m Rogers–Selberg identity for the root system Cn as
recently obtain by Bartlett and the third author [8], we show that the Rogers–Ramanujan
and Andrews–Gordon identities are special cases of a doubly-infinite family of q-identities

arising from the Kac–Moody algebra A
(2)
2n for arbitrary n. In their most compact form, the

“sum-sides” are expressed in terms of Hall–Littlewood polynomials Pλ(x; q) evaluated at
infinite geometric progressions (see Section 2 for definitions and further details), and the
“product-sides” are essentially products of modular theta functions. We shall present four
pairs (a, b) such that for all m,n ≥ 1 we have an identity of the form∑

λ
λ1≤m

qa|λ|P2λ(1, q, q
2, . . . ; q2n+b) = “infinite product modular function”.

To make this precise, we fix notation for integer partitions, nonincreasing sequences
of nonnegative integers with at most finitely many nonzero terms. For a partition λ =
(λ1, λ2, . . . ), we let |λ| := λ1 + λ2 + · · · , and we let 2λ := (2λ1, 2λ2, . . . ). We also require
λ′, the conjugate of λ, the partition which is obtained by transposing the Ferrers–Young
diagram of λ. Finally, for convenience we let

(1.6) θ(a1, . . . , ak; q) := θ(a1; q) · · · θ(ak; q).

Example. If λ = (5, 3, 3, 1), then we have that |λ| = 12, 2λ = (10, 6, 6, 2) and λ′ =
(4, 3, 3, 1, 1).

Using this notation, we have the following pair of doubly-infinite Rogers–Ramanujan

type identities which correspond to specialized characters of A
(2)
2n .

Theorem 1.1 (A
(2)
2n RR and AG identities). If m and n are positive integers and κ :=

2m+ 2n+ 1, then we have that∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)
(1.7a)

=
(qκ; qκ)n∞

(q)n∞
·
n∏
i=1

θ
(
qi+m; qκ

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j−1; qκ

)
=

(qκ; qκ)m∞
(q)m∞

·
m∏
i=1

θ
(
qi+1; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j+1; qκ

)
,
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and ∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)
(1.7b)

=
(qκ; qκ)n∞

(q)n∞
·
n∏
i=1

θ
(
qi; qκ

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j; qκ

)
=

(qκ; qκ)m∞
(q)m∞

·
m∏
i=1

θ
(
qi; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j; qκ

)
.

Remarks. (1) When m = n = 1, Theorem 1.1 gives the Rogers–Ramanujan identities (1.1)
and (1.2). The summation defining the series is over the empty partition, λ = 0, and
partitions consisting of n copies of 1, i.e., λ = (1n). Since

q(σ+1)|(1n)|P(2n)(1, q, q
2, . . . ; q) =

qn(n+σ)

(1− q) · · · (1− qn)
,

identities (1.1) and (1.2) thus follow from Theorem 1.1 by letting σ = 0, 1.
(2) When n = 1, Theorem 1.1 gives the i = 1 and the i = m+1 instances of the Andrews–
Gordon identities in a representation due to Stembridge [74] (see also Fulman [32]). The
equivalence with (1.5) follows from the specialization formula [58, p. 213]

q(σ+1)|λ|P2λ(1, q, q
2, . . . ; q) =

∏
i≥1

qri(ri+σ)

(q)ri−ri+1

,

where ri := λ′i. Note that λ1 ≤ m implies that λ′i = ri = 0 for i > m.
(3) We note the beautiful level-rank duality exhibited by the products on the right-hand
sides of the expressions in Theorem 1.1 (especially those of (1.7b)).
(4) In the next section we shall show that the more general series

(1.8)
∑
λ

λ1≤m

q(σ+1)|λ|P2λ

(
1, q, q2, . . . ; qn

)
are also expressible in terms of q-shifted factorials, allowing for a formulation of Theo-
rem 1.1 (see Lemma 2.1) which is independent of Hall–Littlewood polynomials.

Example. Here we illustrate Theorem 1.1 when m = n = 2. Then (1.7a) is∑
λ

λ1≤2

q|λ|P2λ

(
1, q, q2, . . . ; q3

)
=
∞∏
n=1

(1− q9n)

(1− qn)
,

giving another expression for the q-series studied by Dyson in his “A walk through Ra-
manujan’s Garden” [29]:
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“The end of the war was not in sight. In the evenings of that winter I kept sane by
wandering in Ramanujan’s garden. . . . I found a lot of identities of the sort that Ramanujan
would have enjoyed. My favorite one was this one:

∞∑
n=0

xn
2+n · (1 + x+ x2)(1 + x2 + x4) · · · (1 + xn + x2n)

(1− x)(1− x2) · · · (1− x2n+1)
=
∞∏
n=1

(1− x9n)

(1− xn)
.

In the cold dark evenings, while I was scribbling these beautiful identities amid the death
and destruction of 1944, I felt close to Ramanujan. He had been scribbling even more
beautiful identities amid the death and destruction of 1917.”

The series in (1.7b) is∑
λ

λ1≤2

q2|λ|P2λ

(
1, q, q2, . . . ; q3

)
=
∞∏
n=1

(1− q9n)(1− q9n−1)(1− q9n−8)

(1− qn)(1− q9n−4)(1− q9n−5)
.

We also have an even modulus analog of Theorem 1.1. Surprisingly, the a = 1 and a = 2

cases correspond to dual affine Lie algebras, namely C
(1)
n and D

(2)
n+1.

Theorem 1.2 (C
(1)
n RR and AG identities). If m and n are positive integers and κ :=

2m+ 2n+ 2, then we have that∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n

)
(1.9)

=
(q2; q2)∞(qκ/2; qκ/2)∞(qκ; qκ)n−1

∞
(q)n+1
∞

·
n∏
i=1

θ
(
qi; qκ/2

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j; qκ

)
=

(qκ; qκ)m∞
(q)m∞

·
m∏
i=1

θ
(
qi+1; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j+1; qκ

)
.

Theorem 1.3 (D
(2)
n+1 RR and AG identities). If m and n are positive integers such that

n ≥ 2, and κ := 2m+ 2n, then we have that∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−2

)
(1.10)

=
(qκ; qκ)n∞

(q2; q2)∞(q)n−1
∞
·
∏

1≤i<j≤n

θ
(
qj−i, qi+j−1; qκ

)
=

(qκ; qκ)m∞
(q)m∞

·
m∏
i=1

θ
(
qi; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j; qκ

)
.
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Remarks. (1) The (m,n) = (1, 2) case of (1.10) is equivalent to Milne’s modulus 6 Rogers–
Ramanujan identity [61, Theorem 3.26].
(2) If we take m = 1 in (1.9) (with n 7→ n− 1) and (1.10), and apply formula (2.7) below
(with δ = 0), we obtain the i = 1, 2 cases of Bressoud’s even modulus identities [13]

(1.11)
∑

r1≥···≥rn≥0

qr
2
1+···+r2n+ri+···+rn

(q)r1−r2 · · · (q)rn−1−rn(q2; q2)rn
=

(q2n+2; q2n+2)∞
(q)∞

· θ(qi; q2n+2).

By combining (1.7)–(1.10), we obtain an identity of “mixed” type.

Corollary 1.4. If m and n are positive integers and κ := 2m + n + 2, then for σ = 0, 1
we have that∑

λ
λ1≤m

q(σ+1)|λ|P2λ

(
1,q, q2, . . . ; qn

)
(1.12)

=
(qκ; qκ)m∞

(q)m∞
·
m∏
i=1

θ
(
qi−σ+1; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j−σ+1; qκ

)
.(1.13)

Identities for A
(1)
n−1 also exist, although their formulation is perhaps slightly less satis-

factory. We have the following “limiting” Rogers–Ramanujan type identities.

Theorem 1.5 (A
(1)
n−1 RR and AG identities). If m and n are positive integers and κ :=

m+ n, then we have that

lim
r→∞

q−m(r2)P(mr)(1, q, q
2, . . . ; qn) =

(qκ; qκ)n−1
∞

(q)n∞
·
∏

1≤i<j≤n

θ(qj−i; qκ)

=
(qκ; qκ)m−1

∞
(q)m∞

·
∏

1≤i<j≤m

θ(qj−i; qκ).

Now we turn to the question of whether the new q-series appearing in these theorems,
which arise from the Hall–Littlewood polynomials, enjoy the same algebraic properties
as (1.1), (1.2), and the Rogers–Ramanujan continued fraction. As it turns out they do:
their singular values are algebraic numbers. Moreover, we characterize those ratios which
simplify to algebraic integral units.

To make this precise, we recall that q = e2πiτ for Im(τ) > 0, and that m and n are
arbitrary positive integers. The auxiliary parameter κ = κ∗(m,n) in Theorems 1.1, 1.2
and 1.3 is defined as follows:

(1.14) κ =


κ1(m,n) := 2m+ 2n+ 1 for A

(2)
2n

κ2(m,n) := 2m+ 2n+ 2 for C
(1)
n

κ3(m,n) := 2m+ 2n for D
(2)
n+1.
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Remark. The parameter κ has a representation theoretic interpretation arising from the

corresponding affine Lie algebra X
(r)
N (see Section 3). It turns out that

κ∗(m,n) =
2

r

(
lev(Λ) + h∨

)
,

where lev(Λ) is the level of the corresponding representation, h∨ is the dual Coxeter number
and r is the tier number.

To obtain algebraic values, we require certain normalizations of these series. The sub-
scripts below correspond to the labelling in the theorems. In particular, Φ1a and Φ1b appear
in Theorem 1.1, Φ2 is in Theorem 1.2, and Φ3 is in Theorem 1.3. Using this notation, the
series are

Φ1a(m,n; τ) := q
mn(4mn−4m+2n−3)

12κ

∑
λ: λ1≤m

q|λ|P2λ(1, q, q
2, . . . ; q2n−1)(1.15a)

Φ1b(m,n; τ) := q
mn(4mn+2m+2n+3)

12κ

∑
λ: λ1≤m

q2|λ|P2λ(1, q, q
2, . . . ; q2n−1)(1.15b)

Φ2(m,n; τ) := q
m(2n+1)(2mn−m+n−1)

12κ

∑
λ: λ1≤m

q|λ|P2λ(1, q, q
2, . . . ; q2n)(1.15c)

Φ3(m,n; τ) := q
m(2n−1)(2mn+n+1)

12κ

∑
λ: λ1≤m

q2|λ|P2λ(1, q, q
2, . . . ; q2n−2).(1.15d)

Remarks. (1) We note that Φ3(m,n; τ) is not well defined when n = 1.

(2) We note that the κ∗(m,n) are odd in the A
(2)
2n cases, and are even for the C

(1)
n and D

(2)
n+1

cases. This dichotomy will be important when seeking pairs of Φ∗ whose singular values
have ratios that are algebraic integral units.

Our first result concerns the algebraicity of these values and their Galois theoretic prop-
erties. We show that these values are in specific abelian extensions of imaginary quadratic
fields (see [14, 26] for background on the explicit class field theory of imaginary quadratic
fields). For convenience, if −D < 0 is a discriminant, then we define

D0 :=

{
D
4

if D ≡ 0 (mod 4),
−D−1

4
if −D ≡ 1 (mod 4).

Theorem 1.6. Assume the notation above, and let κ := κ∗(m,n). If κτ is a CM point
with discriminant −D < 0, then the following are true:

(1) The singular value Φ∗(m,n; τ) is an algebraic number.
(2) The multiset {

Φ∗(m,n, τQ/κ)12κ
(γ·δQ(τ)) : (γ,Q) ∈ Wκ,τ ×QD

}
(see Section 5 for definitions) consists of multiple copies of a Galois orbit over Q.
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(3) If κ > 10, |−D| > κ4/2, and gcd(D0, κ) = 1, then the multiset in (2) is a Galois
orbit over Q.

Remarks. (1) For each pair of positive integers m and n, the inequality in Theorem 1.6
(3) holds for all but finitely many discriminants.
(2) In Section 5 we will show that the values Φ∗(m,n; τ)12κ are in a distinguished class
field over the ring class field Q(j(κ2τ)), where j(τ) is the usual Klein j-function.
(3) The Φ∗ singular values do not in general contain full sets of Galois conjugates. In
particular, the singular values in the multiset in Theorem 1.6 (2) generally require q-series
which are not among the four families Φ∗. For instance, only the i = 1 and i = m+1 cases
of the Andrews–Gordon identities arise from specializations of Φ1a and Φ1b respectively.
However, the values associated to the other AG identities arise as Galois conjugates of these
specializations. One then naturally wonders whether there are even further families of
identities, perhaps those which can be uncovered by the theory of complex multiplication.
(4) Although Theorem 1.6 (3) indicates that the multiset in (2) is generically a single orbit
of Galois conjugates, it turns out that there are indeed situations where the set is more
than a single copy of such an orbit. Indeed, the two examples in Section 7 will be such
accidents.

We now address the question of singular values and algebraic integral units. Although
the singular values of q−1/60G(q) and q11/60H(q) are not generally algebraic integers, their
denominators can be determined exactly, and their ratios always are algebraic integral
units. The series Φ∗ exhibit similar behavior. The following theorem determines the
integrality properties of the singular values. Moreover, it gives algebraic integral unit

ratios in the case of the A
(2)
2n identities, generalizing the case of the Rogers–Ramanujan

continued fraction.

Theorem 1.7. Assume the notation and hypotheses in Theorem 1.6. Then the following
are true:

(1) The singular value 1/Φ∗(m,n; τ) is an algebraic integer.
(2) The singular value Φ∗(m,n; τ) is a unit over Z[1/κ].
(3) The ratio Φ1a(m,n; τ)/Φ1b(m,n; τ) is an algebraic integral unit.

Remarks. (1) We have that Φ1a(1, 1; τ) = q−1/60G(q) and Φ1b(1, 1; τ) = q11/60H(q). There-
fore, Theorem 1.7 (3) implies the theorem of Berndt, Chan, and Zhang that the ratios of
these singular values—the singular values of the Rogers–Ramanujan continued fraction—
are algebraic integral units.
(2) It is natural to ask whether Theorem 1.7 (3) is a special property enjoyed only by the

A
(2)
2n identities. More precisely, are ratios of singular values of further pairs of Φ∗ series

algebraic integral units? By Theorem 1.7 (2), it is natural to restrict attention to cases
where the κ∗(m,n) integers agree. Indeed, in these cases the singular values are already
integral over the common ring Z[1/κ]. Due to the parity of the κ∗(m,n), the only other
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cases to consider are pairs involving Φ2 and Φ3. In Section 7 we give an example illustrating
that such ratios for Φ2 and Φ3 are not generically algebraic integral units.

Example. In Section 7 we shall consider the q-series Φ1a(2, 2; τ) and Φ1b(2, 2; τ). For τ =
i/3, the first 100 coefficients of the q-series respectively give the numerical approximations

Φ1a(2, 2; i/3) = 0.577350 · · · ?
=

1√
3

Φ1b(2, 2; i/3) = 0.125340 . . .

Here we have that κ1(2, 2) = 9. Indeed, these values are not algebraic integers. Respec-
tively, they are roots of

3x2 − 1

19683x18 − 80919x12 + 39366x9 + 11016x6 + 486x3 − 1.

However, Theorem 1.7 (2) applies, and we find that
√

3Φ1a(2, 2; i/3) and
√

3Φ1b(2, 2; i/3)
are units. Respectively, they are roots of

x− 1

x18 + 6x15 − 93x12 − 304x9 + 420x6 − 102x3 + 1.

Lastly, Theorem 1.7 (3) applies, and so their ratio

Φ1a(2, 2; i/3)

Φ1b(2, 2; i/3)
= 4.60627 . . .

is a unit. Indeed, it is a root of

x18 − 102x15 + 420x12 − 304x9 − 93x6 + 6x3 + 1.

The remainder of this paper is organized as follows. In Section 2 we recall some ba-
sic definitions and facts from the theory of Hall–Littlewood polynomials. We use these
facts to give a different combinatorial representation for the left-hand side of (1.12) (see
Lemma 2.1). Then, in Sections 3 and 4, we prove Theorems 1.1–1.3 and Theorem 1.5,
respectively. The proofs require Weyl denominator formulas, Macdonald identities, and
a lemma for Cn hypergeometric series from [8]. We also interpret each of the theorems
from the point of view of representation theory. Namely, we explain how these identities
correspond to specialized characters of Kac–Moody algebras of affine type.

As noted above, the specializations of the θ(a; q) that arise in these identities are es-
sentially modular functions of the type which have been studied extensively by Klein and
Siegel. This is the key fact which we employ to derive Theorems 1.6 and 1.7. In Section 5
we recall the Galois theoretic properties of the singular values of Siegel functions as devel-
oped by Kubert and Lang, and in Section 6 we prove Theorems 1.6 and 1.7. In the last
section we conclude with a detailed discussion of examples of Theorems 1.6 and 1.7.
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Note added. One of the referees asked about Rogers–Ramanujan identities for affine Lie
algebras other than those considered in this paper. It is indeed possible to extend some of

our results to also include B
(1)
n and A

(2)
2n−1. However, the results of [8]—which are essential

in the proofs of Theorems 1.1–1.3—are not strong enough to also deal with these two Kac–
Moody algebras. In [66] Eric Rains and the third author present an alternative method
for expressing characters of affine Lie algebras in terms of Hall–Littlewood polynomials
to that of [8]. Their method employs what are known as virtual Koornwinder integrals
[64, 65] instead of the Cn Bailey lemma used in [8]. This results in several further Rogers–

Ramanujan identities, including identities for B
(1)
n and A

(2)
2n−1. At this stage it is not clear

to us how to deal with D
(1)
n or any of the exceptional affine Lie algebras.

Acknowledgements

The authors thank Edward Frenkel, James Lepowsky, Dong Hwa Shin, and Drew Sills for
their comments on a preliminary version of this paper.

2. The Hall–Littlewood polynomials

Let λ = (λ1, λ2, . . . ) be an integer partition [3], a nonincreasing sequence of nonnegative
integers λ1 ≥ λ2 ≥ . . . with only finitely nonzero terms. The positive λi are called the
parts of λ, and the number of parts, denoted l(λ), is the length of λ. The size |λ| of λ
is the sum of its parts. The Ferrers–Young diagram of λ consists of l(λ) left-aligned rows
of squares such that the ith row contains λi squares. For example, the Ferrers–Young
diagram of ν = (6, 4, 4, 2) of length 4 and size 16 is

The conjugate partition λ′ corresponds to the transpose of the Ferrers–Young diagram of
λ. For example, we have ν ′ = (4, 4, 3, 3, 1, 1). We define nonnegative integers mi = mi(λ),
for i ≥ 1, to be the multiplicities of parts of size i, so that |λ| =

∑
i imi. It is easy to see

that mi = λ′i − λ′i+1. We say that a partition is even if its parts are all even. Note that
λ′ is even if all multiplicities mi(λ) are even. The partition ν above is an even partition.
Given two partitions λ, µ we write µ ⊆ λ if the diagram of µ is contained in the diagram of
λ, or, equivalently, if µi ≤ λi for all i. To conclude our discussion of partitions, we define
the generalized q-shifted factorial

(2.1) bλ(q) :=
∏
i≥1

(q)mi =
∏
i≥1

(q)λ′i−λ′i+1
.

Hence, for ν as above we have bν(q) = (q)2
1(q)2.
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For a fixed positive integer n, let x = (x1, . . . , xn). Given a partition λ such that
l(λ) ≤ n, write xλ for the monomial xλ11 . . . xλnn , and define

(2.2) vλ(q) =
n∏
i=0

(q)mi
(1− q)mi

,

where m0 := n− l(λ). The Hall–Littlewood polynomial Pλ(x; q) is defined as the symmetric
function [58]

(2.3) Pλ(x; q) =
1

vλ(q)

∑
w∈Sn

w

(
xλ
∏
i<j

xi − qxj
xi − xj

)
,

where the symmetric group Sn acts on x by permuting the xi. It follows from the definition
that Pλ(x; q) is a homogeneous polynomial of degree |λ|, a fact used repeatedly in the rest
of this paper. Pλ(x; q) is defined to be identically 0 if l(λ) > n. The Hall–Littlewood
polynomials may be extended in the usual way to symmetric functions in countably-many
variables, see [58].

Here we make this precise when x is specialized to an infinite geometric progression. For
x = (x1, x2, . . . ) not necessarily finite, let pr be the r-th power sum symmetric function

pr(x) = xr1 + xr2 + · · · ,
and pλ =

∏
i≥1 pλi . The power sums {pλ(x1, . . . , xn)}l(λ)≤n form a Q-basis of the ring

of symmetric functions in n variables. If φq denotes the ring homomorphism φq(pr) =
pr/(1 − qr), then the modified Hall–Littlewood polynomials P ′λ(x; q) are defined as the
image of the Pλ(x; q) under φq:

P ′λ = φq
(
Pλ
)
.

We also require the Hall–Littlewood polynomials Qλ and Q′λ defined by

(2.4) Qλ(x; q) := bλ(q)Pλ(x; q) and Q′λ(x; q) := bλ(q)P
′
λ(x; q).

Clearly, Q′λ = φq
(
Qλ

)
.

Up to the point where the x-variables are specialized, our proof of Theorems 1.1–1.3
will make use of the modified Hall–Littlewood polynomials, rather than the ordinary Hall–
Littlewood polynomials. Through specialization, we arrive at Pλ evaluated at a geometric
progression thanks to

(2.5) Pλ(1, q, q
2, . . . ; qn) = P ′λ(1, q, . . . , q

n−1; qn),

which readily follows from

φqn
(
pr(1, q, . . . , q

n−1)
)

=
1− qnr

1− qr
· 1

1− qnr
= pr(1, q, q

2, . . . ).

From [45, 77] we may infer the following combinatorial formula for the modified Hall–
Littlewood polynomials:

Q′λ(x; q) =
∑ λ1∏

i=1

n∏
a=1

x
µ
(a−1)
i −µ(a)i
a q(

µ
(a−1)
i

−µ(a)
i

2 )
[
µ

(a−1)
i − µ(a)

i+1

µ
(a−1)
i − µ(a)

i

]
q

,
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where the sum is over partitions 0 = µ(n) ⊆ · · · ⊆ µ(1) ⊆ µ(0) = λ′ and[
n

m

]
q

=


(q)n

(q)m(q)n−m
if m ∈ {0, 1, . . . , n}

0 otherwise

is the usual q-binomial coefficient. Therefore, by (2.1)–(2.5), we have obtained the follow-
ing combinatorial description of the q-series we have assembled from the Hall–Littlewood
polynomials.

Lemma 2.1. If m and n are positive integers, then

(2.6)
∑
λ

λ1≤m

q(σ+1)|λ|P2λ(1, q, q
2, . . . ; qn)

=
∑ 2m∏

i=1

{
q

1
2

(σ+1)µ
(0)
i

(qn; qn)
µ
(0)
i −µ

(0)
i+1

n∏
a=1

qµ
(a)
i +n(µ

(a−1)
i

−µ(a)
i

2 )
[
µ

(a−1)
i − µ(a)

i+1

µ
(a−1)
i − µ(a)

i

]
qn

}
,

where the sum on the right is over partitions 0 = µ(n) ⊆ · · · ⊆ µ(1) ⊆ µ(0) such that (µ(0))′

is even and l(µ(0)) ≤ 2m.

Lemma 2.1 may be used to express the sum sides of (1.7)–(1.12) combinatorially. More-
over, we have that (2.6) generalizes the sums in (1.1), (1.2), and (1.5). To see this, we
note that the above simplifies for n = 1 to∑

λ
λ1≤m

q(σ+1)|λ|P2λ(1, q, q
2, . . . ; q) =

∑ 2m∏
i=1

q
1
2
µi(µi+σ)

(q)µi−µi+1

summed on the right over partitions µ of length at most 2m whose conjugates are even.
Such partitions are characterized by the restriction µ2i = µ2i−1 =: ri so that we get∑

λ
λ1≤m

q(σ+1)|λ|P2λ(1, q, q
2, . . . ; q) =

∑
r1≥···≥rm≥0

m∏
i=1

qri(ri+σ)

(q)ri−ri+1

in accordance with (1.5).
If instead we consider m = 1 and replace µ(j) by (rj, sj) for j ≥ 0, we find

∞∑
r=0

q(σ+1)rP(2r)(1, q, q
2, . . . ; qn)

=
∑ q(σ+1)r0

(qn; qn)r0

n∏
j=1

qrj+sj+n(
rj−1−rj

2 )+n(sj−1−sj
2 )

[
rj−1 − sj
rj−1 − rj

]
qn

[
sj−1

sj

]
qn

=
(qn+4; qn+4)∞

(q)∞
· θ
(
q2−σ; qn+4

)
,

where the second sum is over r0, s0, . . . , rn−1, sn−1 such that r0 = s0, and rn = sn := 0.
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We conclude this section with a remark about Theorem 1.5. Due to the occurrence of
the limit, the left-hand side does not take the form of the usual sum-side of a Rogers–
Ramanujan-type identity. For special cases it is, however, possible to eliminate the limit.
For example, for partitions of the form (2r) we found that

(2.7) P(2r)(1, q, q
2, . . . ; q2n+δ) =

∑
r≥r1≥···≥rn≥0

qr
2−r+r21+···+r2n+r1+···+rn

(q)r−r1(q)r1−r2 · · · (q)rn−1−rn(q2−δ; q2−δ)rn

for δ = 0, 1. This turns the m = 2 case of Theorem 1.5 into∑
r1≥···≥rn≥0

qr
2
1+···+r2n+r1+···+rn

(q)r1−r2 · · · (q)rn−1−rn(q2−δ; q2−δ)rn
=

(q2n+2+δ; q2n+2+δ)∞
(q)∞

· θ(q; q2n+2+δ).

For δ = 1 this is the i = 1 case of the Andrews–Gordon identity (1.5) (with m replaced by
n). For δ = 0 it corresponds to the i = 1 case of (1.11). We do not know how to generalize
(2.7) to arbitrary rectangular shapes.

3. Proof of Theorems 1.1–1.3

Here we prove Theorems 1.1–1.3. We begin by recalling key aspects of the classical
works of Andrews and Watson which give hints of the generalizations we obtain.

3.1. The Watson–Andrews approach. In 1929 Watson proved the Rogers–Ramanujan
identities (1.1) and (1.2) by first proving a new basic hypergeometric series transformation
between a terminating balanced 4φ3 series and a terminating very-well-poised 8φ7 series
[75]

(3.1)
(aq, aq/bc)N
(aq/b, aq/c)N

N∑
r=0

(b, c, aq/de, q−N)r
(q, aq/d, aq/e, bcq−N/a)r

qr

=
N∑
r=0

1− aq2r

1− a
· (a, b, c, d, e, q−N)r

(q, aq/b, aq/c, aq/d, aq/e)r
·
(
a2qN+2

bcde

)r
.

Here a, b, c, d, e are indeterminates, N is a nonnegative integer and

(a1, . . . , am)k := (a1, . . . , qm; q) = (a1; q)k · · · (am; q)k.

By letting b, c, d, e tend to infinity and taking the nonterminating limit N → ∞, Watson
arrived at what is known as the Rogers–Selberg identity [70, 72]3

(3.2)
∞∑
r=0

arqr
2

(q)r
=

1

(aq)∞

∞∑
r=0

1− aq2r

1− a
· (a)r

(q)r
· (−1)ra2rq5(r2)+2r.

3Here and elsewhere in the paper we ignore questions of convergence. From an analytic point of view,
the transition from (3.1) to (3.2) requires the use of the dominated convergence theorem, imposing the
restriction |q| < 1 on the Rogers–Selberg identity. We however choose to view this identity as an identity
between formal power series in q, in line with the combinatorial and representation-theoretic interpretations
of Rogers–Ramanujan-type identities.
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For a = 1 or a = q the sum on the right can be expressed in product-form by the Jacobi
triple-product identity

∞∑
r=−∞

(−1)rxrq(
r
2) = (q)∞ · θ(x; q),

resulting in (1.1) and (1.2).
Almost 50 years after Watson’s work, Andrews showed that the Andrews–Gordon identi-

ties (1.5) for i = 1 and i = m+1 follow in a similar way from a multiple series generalization
of (3.1) in which the 8φ7 series on the right is replaced by a terminating very-well-poised

2m+6φ2m+5 series depending on 2m + 2 parameters instead of b, c, d, e [2]. Again the key
steps are to let all these parameters tend to infinity, to take the nonterminating limit, and
to then express the a = 1 or a = q instances of the resulting sum as a product by the
Jacobi triple-product identity.

Recently, Bartlett and the third author obtained an analog of Andrews’ multiple se-
ries transformation for the Cn root system [8, Theorem 4.2]. Apart from the variables
(x1, . . . , xn)—which play the role of a in (3.1), and are related to the underlying root
system—the Cn Andrews transformation again contains 2m + 2 parameters. Unfortu-
nately, simply following the Andrews–Watson procedure is no longer sufficient. In [61]
Milne already obtained the Cn analogue of the Rogers–Selberg identity (3.2) (the m = 1
case of (3.3) below) and considered specializations along the lines of Andrews and Watson.
Only for C2 did this result in a Rogers–Ramanujan-type identity: the modulus 6 case of
(1.10) mentioned previously.

The first two steps towards a proof of (1.7)–(1.12), however, are the same as those of
Watson and Andrews: we let all 2m + 2 parameters in the Cn Andrews transformation
tend to infinity and take the nonterminating limit. Then, as shown in [8], the right-hand
side can be expressed in terms of modified Hall–Littlewood polynomials, resulting in the
level-m Cn Rogers–Selberg identity

(3.3)
∑
λ

λ1≤m

q|λ|P ′2λ(x; q) = L(0)
m (x; q),

where

L(0)
m (x; q) :=

∑
r∈Zn+

∆C(xqr)

∆C(x)

n∏
i=1

x
2(m+1)ri
i q(m+1)r2i+n(ri2 ) ·

n∏
i,j=1

(
−xi
xj

)ri (xixj)ri
(qxi/xj)ri

.

Here we have that

∆C(x) :=
n∏
i=1

(1− x2
i )

∏
1≤i<j≤n

(xi − xj)(xixj − 1)

is the Cn Vandermonde product, and f(xqr) is shorthand for f(x1q
r1 , . . . , xnq

rn).

Remark. As mentioned previously, (3.3) for m = 1 is Milne’s Cn Rogers–Selberg formula
[61, Corollary 2.21].
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The strategy for the proofs of Theorems 1.1–1.3 is now simple to describe. By comparing
the left-hand side of (3.3) with that of (1.7)–(1.10), it follows that we should make the
simultaneous substitutions

(3.4) q 7→ qn, xi 7→ q(n+σ+1)/2−i (1 ≤ i ≤ n).

Then, by the homogeneity and symmetry of the (modified) Hall–Littlewood polynomials
and (2.5), we have∑

λ
λ1≤m

q|λ|P ′2λ(x; q) 7−→
∑
λ

λ1≤m

q(σ+1)|λ|P2λ(1, q, q
2, . . . ; qn).

Therefore, we wish to carry out these maneuvers and prove that the resulting right-hand
side can be described as a product of modified theta functions in the four families in the
theorems. The problem we face is that making the substitutions (3.4) in the right-hand
side of (3.3) and then writing the resulting q-series in product form is very difficult.

To get around this problem, we take a rather different route and (up to a small constant)
first double the rank of the underlying Cn root system and then take a limit in which
products of pairs of x-variables tend to one. To do so we require another result from [8].

First we extend our earlier definition of the q-shifted factorial to

(3.5) (a)k = (a)∞/(aq
k)∞.

Importantly, we note that 1/(q)k = 0 for k a negative integer. Then, for x = (x1, . . . , xn),
p an integer such that 0 ≤ p ≤ n and r ∈ Zn, we have

(3.6) L(p)
m (x; q) :=

∑
r∈Zn

∆C(xqr)

∆C(x)

n∏
i=1

x
2(m+p+1)ri
i q(m+1)r2i+(n+p)(ri2 )

×
n∏
i=1

n∏
j=p+1

(
−xi
xj

)ri (xixj)ri
(qxi/xj)ri

.

Note that the summand of L
(p)
m (x; q) vanishes if one of rp+1, . . . , rn < 0.

The following lemma will be crucial for our strategy to work.

Lemma 3.1 ([8, Lemma A.1]). For 1 ≤ p ≤ n− 1,

(3.7) lim
xp+1→x−1

p

L(p−1)
m (x; q) = L(p)

m (x1, . . . , xp−1, xp+1, . . . , xn; q).

This will be the key to the proof of the generalized Rogers–Ramanujan identities of
Theorems 1.1–1.3 although the level of difficulty varies considerably from case to case.

We begin with the simplest proof, that of the Cn Rogers–Ramanujan and Andrews–
Gordon identities of Theorem 1.2. Although this theorem may also be proved more directly
by principally specializing [8, Theorem 1.1] (more on this later), we take a more indirect
approach in order to describe the general method using the simplest available example.

For the A
(2)
2n and D

(2)
n+1 Rogers–Ramanujan and Andrews–Gordon identities we have no
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analogues of [8, Theorem 1.1], and in these cases we rely on to the method described
below.

3.2. Proof of Theorem 1.2. Here we carry out the strategy described in the previ-

ous section by making use of the Cn and Bn Weyl denominator formulas, and the D
(2)
n+1

Macdonald identity.

Proof of Theorem 1.2. By iterating (3.7), we have

lim
y1→x−1

1

. . . lim
yn→x−1

n

L(0)
m (x1, y1, . . . , xn, yn) = L(n)

m (x1, . . . , xn).

Hence, after replacing x 7→ (x1, y1, . . . , xn, yn) in (3.3) (which corresponds to the doubling
of the rank mentioned previously) and taking the yi → x−1

i limit for 1 ≤ i ≤ n, we find

(3.8)
∑
λ

λ1≤m

q|λ|P ′2λ(x
±; q) =

1

(q)n∞
∏n

i=1 θ(x
2
i ; q)

∏
1≤i<j≤n θ(xi/xj, xixj; q)

×
∑
r∈Zn

∆C(xqr)
n∏
i=1

xκri−i+1
i q

1
2
κr2i−nri ,

where κ = 2m+2n+2 and f(x±) = f(x1, x
−1
1 , . . . , xn, x

−1
n ). Next we make the simultaneous

substitutions

(3.9) q 7→ q2n, xi 7→ qn−i+1/2 =: x̂i (1 ≤ i ≤ n),

which corresponds to (3.4) with (n, σ) 7→ (2n, 0). By the identity

(q2n; q2n)n∞ ·
n∏
i=1

θ(q2n−2i+1; q2n) ·
∏

1≤i<j≤n

θ(qj−i, q2n−i−j+1; q2n) =
(q)n+1
∞

(q2; q2)∞
,

and

q2n|λ|P ′2λ(q
n−1/2, q1/2−n, . . . , q1/2, q−1/2; q2n)

= q2n|λ|P ′2λ(q
1/2−n, q3/2−n, . . . , qn−1/2; q2n) by symmetry

= q|λ|P ′2λ(1, q, . . . , q
2n−1; q2n) by homogeneity

= q|λ|P2λ(1, q, q
2, . . . ; q2n) by (2.5),

we obtain

(3.10)
∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n

)
=

(q2; q2)∞
(q)n+1
∞

M ,

where

M :=
∑
r∈Zn

∆C(x̂q2nr)
n∏
i=1

x̂κri−i+1
i qnκr

2
i−2n2ri .
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We must express M in product form. As a first step, we use the Cn Weyl denominator
formula [46, Lemma 2]

(3.11) ∆C(x) = det
1≤i,j≤n

(
xj−1
i − x2n−j+1

i

)
,

as well as multilinearity, to write M as

(3.12) M = det
1≤i,j≤n

(∑
r∈Z

x̂κr−i+1
i qnκr

2−2n2r
(

(x̂iq
2nr)j−1 − (x̂iq

2nr)2n−j+1
))

.

We now replace (i, j) 7→ (n − j + 1, n − i + 1) and, viewing the resulting determinant as
being of the form det

(∑
r uij;r −

∑
r vij;r

)
, we change the summation index r 7→ −r − 1

in the sum over vij;r. Then we find that

(3.13) M = det
1≤i,j≤n

(
qaij

∑
r∈Z

y2nr−i+1
i q2nκ(r2)+ 1

2
κr
(

(yiq
κr)j−1 − (yiq

κr)2n−j
))

,

where yi = qκ/2−i and aij = j2 − i2 + (i − j)(κ + 1)/2. Since the factor qaij does not
contribute to the determinant, we can apply the Bn Weyl denominator formula [46]

(3.14) det
1≤i,j≤n

(
xj−1
i − x2n−j

i

)
=

n∏
i=1

(1− xi)
∏

1≤i<j≤n

(xi − xj)(xixj − 1) =: ∆B(x)

to obtain

M =
∑
r∈Zn

∆B(yqκr)
n∏
i=1

y2nri−i+1
i q2nκ(ri2 )+ 1

2
κri .

By the D
(2)
n+1 Macdonald identity [57]

∑
r∈Zn

∆B(xqr)
n∏
i=1

x2nri−i+1
i q2n(ri2 )+ 1

2
ri

= (q1/2; q1/2)∞(q)n−1
∞

n∏
i=1

θ(xi; q
1/2)∞

∏
1≤i<j≤n

θ(xi/xj, xixj; q)

with (q, x) 7→ (qκ, y) this yields

(3.15) M = (qκ/2; qκ/2)∞(qκ; qκ)n−1
∞

n∏
i=1

θ
(
qi; qκ/2

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j; qκ

)
,

where we have also used the simple symmetry θ(qa−b; qa) = θ(qb; qa). Substituting (3.15)
into (3.10) proves the first equality of (1.9).

Establishing the second equality is a straightforward exercise in manipulating infinite
products, and we omit the details. �
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There is a somewhat different approach to (1.9) based on the representation theory of

the affine Kac–Moody algebra C
(1)
n [43]. Let I = {0, 1, . . . , n}, and αi, α

∨
i and Λi for i ∈ I

the simple roots, simple coroots and fundamental weights of C
(1)
n . Let 〈·, ·〉 denote the

usual pairing between the Cartan subalgebra h and its dual h∗, so that 〈Λi, α
∨
j 〉 = δij.

Finally, let V (Λ) be the integrable highest-weight module of C
(1)
n of highest weight Λ with

character chV (Λ).
The homomorphism

(3.16) F1 : C[[e−α0 , . . . , e−αn ]]→ C[[q]], F1(e−αi) = q for all i ∈ I

is known as principal specialization [48]. Subject to this specialization, chV (Λ) admits a
simple product form as follows. Let ρ be the Weyl vector (that is 〈ρ, α∨i 〉 = 1 for i ∈ I)
and mult(α) the multiplicity of α. Then [42, 49] we have

(3.17) F1

(
e−Λ chV (Λ)

)
=
∏
α∈∆∨+

(
1− q〈Λ+ρ,α〉

1− q〈ρ,α〉

)mult(α)

,

where ∆∨+ is the set of positive coroots. This result, which is valid for all types X
(r)
N , can

be rewritten in terms of theta functions. Assuming C
(1)
n and setting

(3.18) Λ = (λ0 − λ1)Λ0 + (λ1 − λ2)Λ1 + · · ·+ (λn−1 − λn)Λn−1 + λnΛn,

for λ = (λ0, λ1, . . . , λn) a partition, this rewriting takes the form

(3.19) F1

(
e−Λ chV (Λ)

)
=

(q2; q2)∞(qκ/2; qκ/2)∞(qκ; qκ)n−1
∞

(q; q)n+1
∞

×
n∏
i=1

θ
(
qλi+n−i+1; qκ/2

) ∏
1≤i<j≤n

θ
(
qλi−λj−i+j, qλi+λj+2n+2−i−j; qκ

)
,

where κ = 2n+ 2λ0 + 2.
The earlier product form now arises by recognizing (see e.g., [8, Lemma 2.1]) the right-

hand side of (3.8) as

(3.20) e−mΛ0 chV (mΛ0)

upon the identification

q = e−α0−2α1−···−2αn−1−αn and xi = e−αi−···−αn−1−αn/2 (1 ≤ i ≤ n).

Indeed, the equality between the left-hand side of (3.8) and (3.20) is exactly the first
part of the previously mentioned [8, Theorem 1.1]. Since (3.9) corresponds exactly to the
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principal specialization (3.16), it follows from (3.19) with λ = (m, 0n), that

F1

(
e−mΛ0 chV (mΛ0)

)
=

(q2; q2)∞(qκ/2; qκ/2)∞(qκ; qκ)n−1
∞

(q; q)n+1
∞

×
n∏
i=1

θ
(
qn−i+1; qκ/2

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j; qκ

)
.

This representation-theoretic approach is not essentially different from our earlier q-series
proof. The principal specialization formula (3.19) itself is an immediate consequence of

the D
(2)
n+1 Macdonald identity, and if instead of the right-hand side of (3.8) we consider the

more general

e−Λ chV (Λ) =
1

(q)n∞
∏n

i=1 θ(x
2
i ; q)

∏
1≤i<j≤n θ(xi/xj, xixj; q)

×
∑
r∈Zn

det
1≤i,j≤n

(
(xiq

ri)j−λj−1 − (xiq
ri)2n−j+λj+1

) n∏
i=1

xκri+λi−i+1
i q

1
2
κr2i−nri

for κ = 2n+ 2λ0 + 2, then all of the steps carried out between (3.8) and (3.15) carry over
to this more general setting. The only notable changes are that (3.12) generalizes to

M = det
1≤i,j≤n

(∑
r∈Z

x̂κr+λi−i+1
i qnκr

2−2n2r ·
(

(x̂iq
2nr)j−λj−1 − (x̂iq

2nr)2n−j+λj+1
))

,

and that in (3.13) we have to redefine yi as qκ/2−λn−i+1−i, and aij as

j2 − i2 + (i− j)(κ+ 1)/2 + (j − 1/2)λn−j+1 − (i− 1/2)λn−i+1.

3.3. Proof of Theorem 1.1 (1.7a). Here we prove (1.7a) by making use of the B
(1)
n

Macdonald identity.

Proof of Theorem 1.1(1.7a). Again we iterate (3.7), but this time the variable xn, remains
unpaired:

lim
y1→x−1

1

. . . lim
yn−1→x−1

n−1

L(0)
m (x1, y1, . . . , xn−1, yn−1, xn) = L(n−1)

m (x1, . . . , xn).

Therefore, if we replace x 7→ (x1, y1, . . . , xn−1, yn−1, xn) in (3.3) (changing the rank from n
to 2n− 1) and take the yi → x−1

i limit for 1 ≤ i ≤ n− 1, we obtain∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, xn; q

)
(3.21)

=
1

(q)n−1
∞ (qx2

n)∞
∏n−1

i=1 (qx±i xn, qx
±2
i )∞

∏
1≤i<j≤n−1(qx±i x

±
j )∞

×
∑
r∈Zn

∆C(xqr)

∆C(x)

n∏
i=1

(
−x

κ
i

xn

)ri
q

1
2
κr2i−

1
2

(2n−1)ri
(xixn)ri

(qxi/xn)ri
,
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where κ = 2m+ 2n+ 1, (ax±i )∞ := (axi)∞(ax−1
i )∞ and

(ax±i x
±
j )∞ := (axixj)∞(ax−1

i xj)∞(axix
−1
j )∞(ax−1

i x−1
j )∞.

Recalling the comment immediately after (3.6), the summand of (3.21) vanishes unless
rn ≥ 0.

Let x̂ := (−x1, . . . ,−xn−1,−1) and

(3.22) φr =

{
1 if r = 0

2 if r = 1, 2, . . . .

Letting xn tend to 1 in (3.21), and using

lim
xn→1

∆C(xqr)

∆C(x)

n∏
i=1

(xixn)ri
(qxi/xn)ri

= φrn
∆B(x̂qr)

∆B(x̂)
,

we find that ∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, 1; q

)
=

1

(q)n∞
∏n−1

i=1 (qx±i , qx
±2
i )∞

∏
1≤i<j≤n−1(qx±i x

±
j )∞

×
∞∑

r1,...,rn−1=−∞

∞∑
rn=0

φrn
∆B(x̂qr)

∆B(x̂)

n∏
i=1

x̂κrii q
1
2
κr2i−

1
2

(2n−1)ri .

It is easily checked that the summand on the right (without the factor φrn) is invariant
under the variable change rn 7→ −rn. Using the elementary relations

(3.23) θ(−1; q) = 2(−q)2
∞, (−q)∞(q; q2)∞ = 1, θ(z,−z; q)θ(qz2; q2) = θ(z2),

we can then simplify the above to obtain∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, 1; q

)
(3.24)

=
1

(q)n∞
∏n

i=1 θ(x̂i; q)θ(qx̂
2
i ; q

2)
∏

1≤i<j≤n θ(x̂i/x̂j, x̂ix̂j; q)

×
∑
r∈Zn

∆B(x̂qr)
n∏
i=1

x̂κri−i+1
i q

1
2
κr2i−

1
2

(2n−1)ri .

The remainder of the proof is similar to that of (1.9). We make the simultaneous
substitutions

(3.25) q 7→ q2n−1, xi 7→ qn−i (1 ≤ i ≤ n),
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so that from here on x̂i := −qn−i. By the identity

(q2n−1; q2n−1)n∞

n∏
i=1

θ(−qn−i; q2n−1)θ(q2n−2i+1; q4n−2)

×
∏

1≤i<j≤n

θ(qj−i, q2n−i−j; q2n−1) = 2(q)n∞

and (2.5), we find that

∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)
=

M

2(q)n∞
,

where we have that

M :=
∑
r∈Zn

∆B

(
x̂q(2n−1)r

) n∏
i=1

x̂κri−i+1
i q

1
2

(2n−1)κr2i−
1
2

(2n−1)2ri .

By (3.14) and multilinearity, M can be rewritten in the form

M = det
1≤i,j≤n

(∑
r∈Z

x̂κr−i+1
i q

1
2

(2n−1)κr2− 1
2

(2n−1)2r ·
((
x̂iq

(2n−1)r
)j−1 −

(
x̂iq

(2n−1)r
)2n−j

))
.

Following the same steps that led from (3.12) to (3.13), we obtain

(3.26) M = det
1≤i,j≤n

(
(−1)i−jqbij

∑
r∈Z

(−1)ry
(2n−1)r−i+1
i q(2n−1)κ(r2)

×
(

(yiq
κr)j−1 − (yiq

κr)2n−j
))

,

where

(3.27) yi = q
1
2

(κ+1)−i and bij := j2 − i2 +
1

2
(i− j)(κ+ 3).

Again, the factor (−1)i−jqbij does not contribute, and so (3.14) then gives

M =
∑
r∈Zn

∆B(yiq
κr)

n∏
i=1

(−1)riy
(2n−1)ri−i+1
i q(2n−1)κ(ri2 ).
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To complete the proof, we apply the following variant of the B
(1)
n Macdonald identity4

(3.28)
∑
r∈Zn

∆B(xqr)
n∏
i=1

(−1)rix
(2n−1)ri−i+1
i q(2n−1)(ri2 )

= 2(q)n∞

n∏
i=1

θ(xi; q)
∏

1≤i<j≤n

θ(xi/xj, xixj; q),

with (q, x) 7→ (qκ, y). �

Identity (1.7a) can be understood representation-theoretically, but this time the relevant

Kac–Moody algebra is A
(2)
2n . According to [8, Lemma 2.3] the right-hand side of (3.24),

with x̂ interpreted (not as x̂ = (−x1, . . . ,−xn−1,−1)) as

x̂i = e−α0−···−αn−i (1 ≤ i ≤ n)

and q as

(3.29) q = e−2α0−···−2αn−1−αn ,

is the A
(2)
2n character

e−mΛn chV (mΛn).

The substitution (3.25) corresponds to

(3.30) e−α0 7→ −1 and e−αi 7→ q (1 ≤ i ≤ n).

Denoting this by F , it is not hard to derive the general specialization formula
(3.31)

F
(
e−Λ chV (Λ)

)
=

(qκ; qκ)n∞
(q)n∞

n∏
i=1

θ
(
qλi+n−i+1; qκ

) ∏
1≤i<j≤n

θ
(
qλi−λj−i+j, qλi+λj−i−j+2n+2; qκ

)
,

where Λ is again parametrized as in (3.18), λ0 − λ1 is even5, and κ = 2n + λ0 + λ1 + 1.
For λ = (mn+1) (so that Λ = mΛn) this yields the right-hand side of (1.7a).

3.4. Proof of Theorem 1.1 (1.7b). Here we prove the companion result to (1.7a).

4The actual B
(1)
n Macdonald identity has the restriction |r| ≡ 0 (mod 2) in the sum over r ∈ Zn, which

eliminates the factor 2 on the right. To prove the form used here it suffices to take the a1, . . . , a2n−1 → 0

and a2n → −1 limit in Gustafson’s multiple 6ψ6 summation for the affine root system A
(2)
2n−1, see [38].

5For λ0 − λ1 odd, F
(
e−Λ chV (Λ)

)
= 0.
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Proof of Theorem 1.1 (1.7b). In (3.21) we set xn = q1/2 so that∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, q

1/2; q
)

=
1

(q)n−1
∞ (q2)∞

∏n−1
i=1 (q3/2x±i , qx

±2
i )∞

∏
1≤i<j≤n−1(qx±i x

±
j )∞

×
∞∑

r1,...,rn−1=−∞

∞∑
rn=0

∆C(x̂qr)

∆C(x̂)

n∏
i=1

(−1)rix̂κrii q
1
2
κr2i−nri ,

where κ = 2m+2n+1 and x̂ = (x1, . . . , xn−1, q
1/2). The rn-dependent part of the summand

is

(−1)rnqκ(
rn+1

2 )−nrn 1− q2rn+1

1− q

n−1∏
i=1

xiq
ri − qrn+1/2

xi − q1/2
· xiq

rn+ri+1/2 − 1

xiq1/2 − 1
,

which is readily checked to be invariant under the substitution rn 7→ −rn − 1. Hence∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, q

1/2; q
)

=
1

2(q)n∞
∏n−1

i=1 (−1)θ(q1/2xi, x2
i ; q)

∏
1≤i<j≤n−1 θ(xi/xj, xixj; q)

×
∑
r∈Zn

∆C(x̂qr)
n∏
i=1

(−1)rix̂κri−ii q
1
2
κr2i−nri+

1
2 .

Our next step is to replace xi 7→ xn−i+1 and ri 7→ rn−i+1. By θ(x; q) = −xθ(x−1; q) and
(3.23), this leads to∑

λ
λ1≤m

q|λ|P ′2λ
(
q1/2, x±2 , . . . , x

±
n ; q
)

(3.32)

=
1

(q)n∞
∏n

i=1 θ(−q1/2x̂i; q)θ(x̂2
i ; q

2)
∏

1≤i<j≤n θ(x̂i/x̂j, x̂ix̂j; q)

×
∑
r∈Zn

∆C(x̂qr)
n∏
i=1

(−1)rix̂κri−i+1
i q

1
2
κr2i−nri ,

where now x̂ = (q1/2, x2, . . . , xn). Again we are at the point where we can specialize, letting

(3.33) q 7→ q2n−1, xi 7→ qn−i+1/2 =: x̂i (1 ≤ i ≤ n).
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This is consistent, since x1 = q1/2 7→ qn−1/2. By the identity

(q2n−1; q2n−1)n∞

n∏
i=1

θ(−q2n−i; q2n−1)θ(q2n−2i+1; q4n−2)

×
∏

1≤i<j≤n

θ(qj−i, q2n−i−j+1; q2n−1) = 2(q)n∞,

we obtain ∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)
=

M

2(q)n∞
,

where

M :=
∑
r∈Zn

∆C(x̂q(2n−1)r)
n∏
i=1

(−1)rix̂κri−i+1
i q

1
2

(2n−1)κr2i−(2n−1)nri .

Expressing M in determinantal form using (3.11) yields

M = det
1≤i,j≤n

(∑
r∈Z

(−1)rx̂κr−i+1
i q

1
2

(2n−1)κr2−(2n−1)nr

×
(

(x̂iq
(2n−1)r)j−1 − (x̂iq

(2n−1)r)2n−j+1
))

.

We now replace (i, j) 7→ (j, i) and, viewing the resulting determinant as of the form
det
(∑

r uij;r −
∑

r vij;r
)
, we change the summation index r 7→ −r in the sum over uij;r.

The expression for M we obtain is exactly (3.26) except that (−1)i−jqbij is replaced by
qcij and yi is given by qn−i+1 instead of q(κ+1)/2−i. Following the previous proof results in
(1.7b). �

To interpret (1.7b) in terms of A
(2)
2n , we note that by [8, Lemma 2.2] the right-hand side

of (3.32) in which x̂ is interpreted as

x̂i = −q1/2eα0+···+αi−1 (1 ≤ i ≤ n)

(and q again as (3.29)) corresponds to the A
(2)
2n character

e−2mΛ0 chV (2mΛ0).

The specialization (3.33) is then again consistent with (3.30). From (3.31) with λ =
(2m, 0n), the first product-form on the right of (1.7b) immediately follows. By level-rank

duality, we can also identify (1.7b) as a specialization of the A
(2)
2m character e−2nΛ0 chV (2nΛ0).
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3.5. Proof of Theorem 1.3. This proof, which uses the D
(1)
n Macdonald identity, is the

most complicated of the four.

Proof of Theorem 1.3. Once again we iterate (3.7), but now both xn−1 and xn remain
unpaired:

lim
y1→x−1

1

. . . lim
yn−2→x−1

n−2

L(0)
m (x1, y1, . . . , xn−2, yn−2, xn−1, xn) = L(n−2)

m (x1, . . . , xn).

Accordingly, if we replace x 7→ (x1, y1, . . . , xn−2, yn−2, xn−1, xn) in (3.3) (thereby changing
the rank from n to 2n− 2) and take the yi → x−1

i limit, for 1 ≤ i ≤ n− 2, we obtain

∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−2, xn−1, xn; q

)
=

1

(q)n−2
∞ (qx2

n−1, qxn−1xn, qx2
n)∞

× 1∏n−2
i=1 (qx±2

i , qx±i xn−1, qx
±
i xn)∞

∏
1≤i<j≤n−2(qx±i x

±
j )∞

×
∑
r∈Zn

∆C(xqr)

∆C(x)

n∏
i=1

(
xκi

xn−1xn

)ri
q

1
2
κr2i−(n−1)ri

(xixn−1, xixn)ri
(qxi/xn−1, qxi/xn)ri

,

where κ = 2m + 2n. It is important to note that the summand vanishes unless rn−1 and
rn are both nonnegative. Next we let (xn−1, xn) tend to (q1/2, 1) using

lim
(xn−1,xn)→(q1/2,1)

∆C(xqr)

∆C(x)

n∏
i=1

(xixn−1, xixn)ri
(qxi/xn−1, qxi/xn)ri

= φrn
∆B(x̂qr)

∆B(x̂)
,

with φr as in (3.22) and x̂ := (−x1, . . . ,−xn−2,−q1/2,−1). Hence we find that

∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−2, q

1/2, 1; q
)

=
1

(q)n−1
∞ (q3/2; q1/2)∞

∏n−2
i=1 (qx±i ; q1/2)∞(qx±2

i )∞
∏

1≤i<j≤n−2(qx±i x
±
j )∞

×
∞∑

r1,...,rn−2=−∞

∞∑
rn−1,rn=0

φrn
∆B(x̂qr)

∆B(x̂)

n∏
i=1

x̂κrii q
1
2
κr2i−

1
2

(2n−1)ri .
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Since the summand (without the factor φrn) is invariant under the variable change rn 7→
−rn, as well as the change rn−1 7→ −rn−1 − 1, we can rewrite this as∑

λ
λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−2, q

1/2, 1; q
)

=
1

(q)n−1
∞ (q1/2; q1/2)∞

∏n
i=1 θ(x̂i; q

1/2)
∏

1≤i<j≤n θ(x̂i/x̂j, x̂ix̂j)

×
∑
r∈Zn

∆B(x̂qr)
n∏
i=1

x̂κri−i+1
i q

1
2
κr2i−

1
2

(2n−1)ri ,

where, once again, we have used (3.23) to clean up the infinite products. Before we can
carry out the usual specialization, we need to relabel x1, . . . , xn−2 as x2, . . . , xn−1 and,
accordingly, we redefine x̂ as (−q1/2,−x2, . . . ,−xn−1,−1). For n ≥ 2, we then find that∑

λ
λ1≤m

q|λ|P ′2λ
(
q1/2, x±2 , . . . , x

±
n−1, 1; q

)
(3.34)

=
1

(q)n−1
∞ (q1/2; q1/2)∞

∏n
i=1 θ(x̂i; q

1/2)
∏

1≤i<j≤n θ(x̂i/x̂j, x̂ix̂j)

×
∑
r∈Zn

∆B(x̂qr)
n∏
i=1

x̂κri−i+1
i q

1
2
κr2i−

1
2

(2n−1)ri .

We are now ready to make the substitutions

(3.35) q 7→ q2n−2, xi 7→ qn−i (2 ≤ i ≤ n− 1),

so that x̂i := −qn−i for 1 ≤ i ≤ n. By the identity

(q2n−2; q2n−2)n−1
∞ (qn−1; qn−1)∞

n∏
i=1

θ(−qn−i; qn−1)

×
∏

1≤i<j≤n

θ(qj−i, q2n−i−j; q2n−2) = 4(q2; q2)∞(q)n−1
∞

and (2.5), we obtain∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−3

)
=

M

4(q2; q2)∞(q)n−1
∞

,

where M is given by

M :=
∑
r∈Zn

∆B(x̂q2(n−1)r)
n∏
i=1

x̂κri−i+1
i q(n−1)κr2i−(n−1)(2n−1)ri .
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By the Bn determinant (3.14), we find that

M = det
1≤i,j≤n

(∑
r∈Z

x̂κr−i+1
i q(n−1)κr2−(n−1)(2n−1)r ·

((
x̂iq

2(n−1)r
)j−1 −

(
x̂iq

2(n−1)r
)2n−j

))
.

By the same substitutions that transformed (3.12) into (3.13), we obtain

M = det
1≤i,j≤n

(
(−1)i−jqbij

∑
r∈Z

y
2(n−1)r−i+1
i q2(n−1)κ(r2) ·

((
yiq

κr
)j−1

+
(
yiq

κr
)2n−j−1

))
,

where yi and bij are as in (3.27). Recalling the Weyl denominator formula for Dn [46]

1

2
det

1≤i,j≤n

(
xj−1
i + x2n−j−1

i

)
=

∏
1≤i<j≤n

(xi − xj)(xixj − 1) =: ∆D(x)

we can rewrite M in the form

M = 2
∑
r∈Zn

∆D(xqr)
n∏
i=1

y
2(n−1)ri−i+1
i q2(n−1)κ(ri2 ).

Taking the a1, . . . , a2n−2 → 0, a2n−1 → 1 and a2n → −1 limit in Gustafson’s multiple 6ψ6

summation for the affine root system A
(2)
2n−1 [38] leads to the following variant of the D

(1)
n

Macdonald identity6∑
r∈Zn

∆D(xqr)
n∏
i=1

x
2(n−1)ri−i+1
i q2(n−1)(ri2 ) = 2(q)n∞

∏
1≤i<j≤n

θ(xi/xj, xixj; q).

This implies the claimed product form for M and completes our proof. �

Identity (1.10) has a representation-theoretic interpretation. By [8, Lemma 2.4], the
right-hand side of (3.34) in which x̂ is interpreted as

x̂i = e−αi−···−αn (1 ≤ i ≤ n)

and q as
q = e−2α0−···−2αn

yields the D
(2)
n+1 character

e−2mΛ0 chV (2mΛ0).

The specialization (3.35) then corresponds to

e−α0 , e−αn 7→ −1 and e−αi 7→ q (2 ≤ i ≤ n− 1).

Denoting this by F , we have

F
(
e−Λ chV (Λ)

)
=

(qκ; qκ)n∞
(q2; q2)∞(q)n−1

∞

∏
1≤i<j≤n

θ
(
qλi−λj−i+j, qλi+λj−i−j+2n+1; qκ

)
,

6As in the B
(1)
n case, the actual D

(1)
n Macdonald identity contains the restriction |r| ≡ 0 (mod 2) on

the sum over r.
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where κ = 2n+ 2λ0 and

Λ = 2(λ0 − λ1)Λ0 + (λ1 − λ2)Λ1 + · · ·+ (λn−1 − λn)Λn−1 + 2λnΛn,

for λ = (λ0, λ1, . . . , λn) a partition or half-partition (i.e., all λi ∈ Z+1/2). For λ = (m, 0n)
this agrees with (1.10).

4. Proof of Theorem 1.5

For integers k and m, where 0 ≤ k ≤ m, we denote the the nearly-rectangular partition
(m, . . . ,m︸ ︷︷ ︸

r times

, k) as (mr, k). Using these partitions, we have the following “limiting” Rogers–

Ramanujan-type identities, which imply Theorem 1.5 when k = 0 or k = m.

Theorem 4.1 (A
(1)
n−1 RR and AG identities). If m and n are positive integers and 0 ≤

k ≤ m, then we have

(4.1) lim
r→∞

q−m(r2)−krQ(mr,k)(1, q, q
2, . . . ; qn)

=
(qn; qn)∞(qκ; qκ)n−1

∞
(q)n∞

·
n−1∏
i=1

θ(qi+k; qκ) ·
∏

1≤i<j≤n−1

θ(qj−i; qκ),

where κ = m+ n.

Remark. A similar calculation when k ≥ m gives

lim
r→∞

q−m(r+1
2 )Q(k,mr)(1, q, q

2, . . . ; qn)

=

[
k −m+ n− 1

n− 1

]
q

(qn; qn)∞(qκ; qκ)n−1
∞

(q)n∞

∏
1≤i<j≤n

θ(qj−i; qκ).

Proof of Theorem 4.1. It suffices to prove the identity for 0 ≤ k < m, and below we assume
that k satisfies this inequality.

The following identity for modified Hall–Littlewood polynomials indexed by near-rectangular
partitions is a special case of [8, Corollary 3.2]:

Q′(mr,k)(x; q) = (q)r(q)1

∑
u∈Zn+
|u|=r+1

∑
v∈Zn+
|v|=r

n∏
i=1

x
kui+(m−k)vi
i qk(

ui
2 )+(m−k)(vi2 )

×
n∏

i,j=1

(qxi/xj)ui−uj
(qxi/xj)ui−vj

·
(qxi/xj)vi−vj

(qxi/xj)vi
.

It is enough to compute the limit on the left-hand side of (4.1) for r a multiple of n. Hence
we replace r by nr in the above expression, and then shift ui 7→ ui + r and vi 7→ vi + r,
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for all 1 ≤ i ≤ n, to obtain

Q′(mnr,k)(x; q) = (x1 · · ·xn)mrqmn(
r
2)+kr(q)nr(q)1

×
∑
u∈Zn
|u|=1

∑
v∈Zn
|v|=0

n∏
i=1

x
kui+(m−k)vi
i qk(

ui
2 )+(m−k)(vi2 )

n∏
i,j=1

(qxi/xj)ui−uj
(qxi/xj)ui−vj

·
(qxi/xj)vi−vj
(qxi/xj)r+vi

.

Since the summand vanishes unless ui ≥ vi for all i and |u| = |v| + 1, it follows that
u = v + ε`, for some ` = 1, . . . , n, where (ε`)i = δ`i. Hence we find that

Q′(mnr,k)(x; q) = (x1 · · ·xn)mrqmn(
r
2)+kr(q)nr

×
∑
v∈Zn
|v|=0

n∏
i=1

xmvii qm(vi2 )
n∏

i,j=1

(qxi/xj)vi−vj
(qxi/xj)r+vi

n∑
`=1

(
x`q

v`
)k n∏

i=1
i 6=k

1

1− qvi−v`xi/x`
.

Next we use
n∏

i,j=1

(qxi/xj)vi−vj =
∆(xqv)

∆(x)
(−1)(n−1)|v|q−(|v|2 )

n∏
i=1

x
nvi−|v|
i qn(

vi
2 )+(i−1)vi ,

where ∆(x) :=
∏

1≤i<j≤n(1− xi/xj), and

n∑
`=1

xk`

n∏
i=1
i 6=k

1

1− xi/x`
=

∑
1≤i1≤i2≤···≤ik≤n

xi1xi2 · · ·xik = hk(x) = s(k)(x),

where hk and sλ are the complete symmetric and Schur function, respectively. Thus we
have

Q′(mnr,k)(x; q) = (x1 · · ·xn)mrqmn(
r
2)+kr(q)nr

×
∑
v∈Zn
|v|=0

s(k)(xq
v)

∆(xqv)

∆(x)

n∏
i=1

xκvii q
1
2
κv2i+ivi

n∏
i,j=1

1

(qxi/xj)r+vi
,

where κ := m+ n. Note that the summand vanishes unless vi ≥ −r for all i. This implies
the limit

lim
r→∞

q−mn(
r
2)−kr

Q′(mnr,k)(x; q)

(x1 · · ·xn)mr

=
1

(q)n−1
∞
∏

1≤i<j≤n θ(xi/xj; q)

∑
v∈Zn
|v|=0

s(k)(xq
v)∆(xqv)

n∏
i=1

xκvii q
1
2
κv2i+ivi .

The expression on the right is exactly the Weyl–Kac formula for the level-m A
(1)
n−1 character

[43]
e−Λ chV (Λ), Λ = (m− k)Λ0 + kΛ1,
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provided we identify

q = e−α0−α1−···−αn−1 and xi/xi+1 = e−αi (1 ≤ i ≤ n− 1).

Hence

lim
r→∞

q−mn(
r
2)−kr

Q′(mnr,k)(x; q)

(x1 · · ·xn)mr
= e−Λ chV (Λ),

with Λ as above. For m = 1 and k = 0 this was obtained in [45] by more elementary
means. The simultaneous substitutions q 7→ qn and xi 7→ qn−i correspond to the principal
specialization (3.16). From (3.17) we can then read off the product form claimed in (4.1).

�

5. Siegel Functions

The normalizations for the series Φ∗ were chosen so that the resulting q-series are mod-
ular functions on the congruence subgroups Γ(N), where

Γ(N) :=
{(

a b
c d

)
∈ SL2(Z) : a ≡ d ≡ 1 (mod N), b ≡ c ≡ 0 (mod N)

}
.

These groups act on H, the upper-half of the complex plane, by γτ := aτ+b
cτ+d

, where γ =(
a b
c d

)
. If f is a meromorphic function on H and γ ∈ SL2(Z), then we define

(f |kγ)(τ) := (cτ + d)−kf(γτ).

Modular functions are meromorphic functions which are invariant with respect to this
action. More precisely, a meromorphic function f on H is a modular function on Γ(N) if
for every γ ∈ Γ(N) we have

f(γτ) = (f |0γ)(τ) = f(τ).

The set of such functions forms a field. We let FN denote the canonical subfield of those
modular functions on Γ(N) whose Fourier expansions are defined over Q(ζN), where ζN :=
e2πi/N .

The important work of Kubert and Lang [47] plays a central role in the study of these
modular function fields. Their work, which is built around the Siegel ga functions and the
Klein ta functions, allows us to understand the fields FN , as well as the Galois theoretic
properties of the extensions FN/F1. These results will be fundamental tools in the proofs
of Theorems 1.6 and 1.7.

5.1. Basic Facts about Siegel functions. We begin by recalling the definitions of the
Siegel and Klein functions. Let B2(x) := x2 − x + 1

6
be the second Bernoulli polynomial

and e(x) := e2πix. If a = (a1, a2) ∈ Q2, then the Siegel function ga is defined as

(5.1) ga(τ) := q
1
2
B2(a1)e

(
a2(a1 − 1)/2

) ∞∏
n=1

(
1− qn−1+a1e(a2)

)(
1− qn−a1e(−a2)

)
.
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Notice this is a change of sign from the usual normalization of the Siegel function. The
Klein function ta is defined as

(5.2) ta(τ) := −ga(τ)

η(τ)2

where η(τ) := q1/24
∏∞

n=1(1− qn) is the Dedekind η-function.
Neither ga nor ta are modular on Γ(N), however if N · a ∈ Z2, then t2Na is on Γ(N) (or

tNa if N is odd). Therefore if g
lcm(12,2N)
a ∈ FN , and if N · a′ ∈ Z2, then

( ga(τ)
ga′ (τ)

)2N ∈ FN if

N is even and
( ga(τ)
ga′ (τ)

)N ∈ FN if N is odd. Given a ∈ Q2, we denote the smallest N ∈ N
such that N · a ∈ Z2 by Den(a).

Theorem 5.1 ([47, Ch. 2 of K1 and K2]). Assuming the notation above, the following are
true:

(1) If γ ∈ SL2(Z), then
(ta|−1γ)(τ) = taγ(τ).

(2) If b = (b1, b2) ∈ Z2, then

ta+b(τ) = e
(
1/2 · (b1b2 + b1 + b2 − b1a2 + b2a1)

)
taγ(τ).

These properties for ta, (5.1), and the fact that η(τ)24 = ∆(τ) is modular on SL2(Z),
lead to the following properties for ga.

Theorem 5.2 ([47, Ch. 2, Thm 1.2]). If a ∈ Z2/N and Den(a) = N , then the following
are true:

(1) If γ ∈ SL2(Z), then
(g12
a |0γ)(τ) = g12

aγ(τ).

(2) If b = (b1, b2) ∈ Z2, then

ga+b(τ) = e
(
1/2 · (b1b2 + b1 + b2 − b1a2 + b2a1)

)
ga(τ).

(3) We have that g−a(τ) = −ga(τ).
(4) The ga(τ)12N are modular functions on Γ(N). Moreover, if γ ∈ SL2(Z), then we

have
(g12
a |0γ)(τ) = g12

aγ(τ).

The following theorem addresses the modularity properties of products and quotients of
Siegel functions.

Theorem 5.3 ([47, Ch. 3, Lemma 5.2, Thm 5.3]). Let N ≥ 2 be an integer, and let
{m(a)}r∈ 1

N
Z2/Z2 be a set of integers. Then the product of Siegel functions∏

a∈ 1
N
Z2/Z2

gm(a)
a (τ)

belongs to FN if {m(a)} satisfies the following:

(1) We have that
∑

am(a)(Na1)2 ≡
∑

am(a)(Na2)2 ≡ 0 (mod gcd(2, N) ·N).
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(2) We have that
∑

am(a)(Na1)(Na2) ≡ 0 (mod N).
(3) We have that gcd(12, N) ·

∑
am(a) ≡ 0 (mod 12).

Additionally, we have the following important results about the algebraicity of the sin-
gular values of the Siegel functions in relation to the singular values of the SL2(Z) modular
function

j(τ) :=

(
1 + 240

∑∞
n=1

∑
d|n d

3qn
)3

q
∏∞

n=1(1− qn)24

=
η(τ)24

η(2τ)24
+ 3 · 28 + 3 · 216 η(2τ)24

η(τ)24
+ 224 η(2τ)48

η(τ)48

= q−1 + 744 + 196884q + · · · ,

which are well known to be algebraic by the theory of complex multiplication (for example,
see [14, 26]).

Theorem 5.4 ([47, Ch. 1, Thm. 2.2]). If τ is a CM point and N = Den(a), then the
following are true:

(1) We have that ga(τ) is an algebraic integer.
(2) If N has at least two prime factors, then ga(τ) is a unit over Z[j(τ)].
(3) If N = pr is a prime power, then ga(τ) is a unit over Z[1/p][j(τ)].
(4) If c ∈ Z and (c,N) = 1, then (gca/ga) is a unit over Z[j(τ)].

5.2. Galois theory of singular values of products of Siegel functions. We now
recall the Galois-theoretic properties of extensions of modular function fields, and we then
relate these properties to the Siegel and Klein functions.

The Galois group Gal(FN/F1) is isomorphic to GL2(N)/{±I} = GL2(Z/NZ)/{±I}
(see [47, Ch. 3, Lemma 2.1]), where I is the identity matrix. This group factors naturally
as {(

1 0
0 d

)
: d ∈ (Z/NZ)×

}
× SL2(N)/{±I},

where an element ( 1 0
0 d ) acts on the Fourier coefficients by sending ζN → ζdN , and a matrix

γ ∈ SL2(Z) acts by the standard fractional linear transformation on τ . If f(τ) ∈ FN and
γ ∈ GL2(N), then we use the notation f(τ)(γ) := (γ ◦ f)(τ). Applying these facts to the
Siegel functions, we obtain the following.

Proposition 5.5. If a ∈ Q2, and Den(a) divides N , then the multiset{
g12N
a (τ)(γ) := g12N

aγ (τ) : γ ∈ GL2(N)
}

is a union of Galois orbits for g12N
a (τ) over F1.

If θ is a CM point of discriminant −D, we define the field

K(N)(θ) := Q(θ)
(
f(θ) : f ∈ FN s.t. f is defined and finite at θ

)
,
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and H := Q(θ, j(θ)) be the Hilbert class field over Q(θ). The Galois group K(N)(θ)/H is
isomorphic to the matrix group WN,θ (see [73]) defined by

WN,θ =

{(
t− sB −sC
sA t

)
∈ GL2(Z/NZ)

}
/

{
±
(

1 0
0 1

)}
,

where Ax2 +Bx+C is a minimal polynomial for θ over Z. The Galois group Gal(H/Q) is
isomorphic to the group QD of primitive reduced positive-definite integer binary quadratic
forms of negative discriminant −D. For each Q = ax2 + bxy + cy2 ∈ QD, we define the

corresponding CM point τQ = −b+
√
−D

2a
. In order to define the action of this group, we

must also define corresponding matrices βQ ∈ GL2(Z/NZ) which we may build up by
way of the Chinese Remainder Theorem and the following congruences. For each prime p
dividing N , we have the following congruences which hold (mod pordp(N)):

βQ ≡



(
a b

2

0 1

)
if p - a(

− b
2 −c

1 0

)
if p|a, and p - c(

− b
2 − a − b

2 − c
1 −1

)
if p|a, and p|c

if −D ≡ 0 (mod 4), and

βQ ≡



(
a b−1

2

0 1

)
if p - a(

− b+1
2 −c

1 0

)
if p|a, and p - c(

− b+1
2 − a

1−b
2 − c

1 −1

)
if p|a, and p|c

if −D ≡ 1 (mod 4). Then given θ = τQ′ for some Q′ ∈ QD, define δQ(θ) := β−1
Q′ βQ. The

Galois group Gal(H/Q) can be extended into Gal(K(N)(θ)/Q) by taking the action of a
quadratic form Q on the element f(θ) ∈ K(N)(θ) to be given by

Q ◦ f(θ) = f(τQ)(δQ(θ)).

We combine these facts into the following theorem.

Theorem 5.6. Let F (τ) be in FN and let θ be a CM point of discriminant −D < 0. Then
the multiset {

F (τQ)(γ·δQ(θ)) : (γ,Q) ∈ Wκ,τ ×QD
}

is a union of the Galois orbits of F (θ) over Q.

6. Proofs of Theorems 1.6 and 1.7

Here we prove Theorems 1.6 and 1.7. We shall prove these theorems using the results
of the previous section.
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6.1. Reformulation of the Φ∗(m,n; τ) series. To ease the proofs of Theorems 1.6
and 1.7, we begin by reformulating each of the Φ∗(m,n; τ) series, as well as

Φ1a(m,n; τ)

Φ1b(m,n; τ)
,

as pure products of modified theta functions. These factorizations will be more useful for
our purposes. In order to ease notation, for a fixed κ, if 1 ≤ j < κ/2, then we let

θj,κ := θ(qj; qκ),

If κ is even, then we let

θκ/2,κ := (qκ/2; qκ)∞ = θ(qκ/2; q2κ),

which is a square root of θ(qκ/2; qκ).
The reformulations below follow directly from (1.15) by making use of the fact that

(qκ; qκ)∞
(q)∞

=

bκ/2c∏
j=1

θj,κ.

Lemma 6.1. Let m and n be positive integers and κ∗ = κ∗(m,n) as in (1.14). Then the
following are true:

(1a) With κ = κ1,

Φ1a(m,n; τ) = q
mn(4mn−4m+2n−3)

12κ

m∏
j=1

θ−1
j,κ

m+n∏
j=1

θ
−min(m,n−1,dj/2e−1)
j,κ .

(1b) With κ = κ1,

Φ1b(m,n; τ) = q
mn(4mn+2m+2n+3)

12κ

m+n∏
j=1

θ
−min(m,n,bj/2c)
j,κ .

(2) With κ = κ2,

Φ2(m,n; τ) = q
m(2n+1)(2mn−m+n−1)

12κ

m∏
j=1

θ−1
j,κ

m+n+1∏
j=1

θ
−min(m,n−1,dj/2e−1)
j,κ

b(m+n)/2c∏
j=n

θ−1
2j+1,κ.

(3) For n ≥ 2 and κ = κ3,

Φ3(m,n; τ) = q
m(2n−1)(2mn+n+1)

12κ

m∏
j=1

θ(q2j; qκ)−1

m+n∏
j=1

θ
−min(m,n−2,dj/2e−1)
j,κ

b(m+n+1)/2c∏
j=n

θ−1
2j−1,κ.

Moreover, with κ = κ1(m,n),

Ψ1(m,n; τ) :=
Φ1a(m,n; τ)

Φ1b(m,n; τ)
= q−

mn(m+1)
2κ

m∏
j=1

θ(q2j; qκ)

θ(qj; qκ)
,
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and with κ = κ2(m,n) = κ3(m,n+ 1),

Ψ2(m,n; τ) :=
Φ2(m,n; τ)

Φ3(m,n+ 1; τ)
= q−

m(m+1)(2n+1)
4κ

m∏
j=1

θ(q2j; qκ)

θ(qj; qκ)
.

Proof. Since the proofs of the four cases are essentially the same, we only prove Lemma 6.1 (1a).
Let ϕ = mn(4mn− 4m+ 2n− 3)/(12κ1). By Theorem 1.1, we have that

Φ1a(m,n; τ) = qϕ · (qκ; qκ)n∞
(q)n∞

n∏
i=1

θ(qi+m; qκ)
∏

1≤i<j≤n

θ(qj−i, qi+j−1; qκ)

= qϕ · (qκ; qκ)m∞
(q)m∞

m∏
i=1

θ(qi+1; qκ)
∏

1≤i<j≤m

θ(qj−i, qi+j+1; qκ).

Using the simple identity

(qκ; qκ)∞
(q)∞

=
m+n∏
j=1

θ(qj; qκ)−1,

we can rewrite these two forms as

Φ1a(m,n; τ) = qϕ ·
∏n

i=1 θ(q
i+m; qκ)∏m+n

i=1 θ(qj; qκ)
·
n∏
j=2

∏j−1
i=1 θ(q

j−i, qi+j−1; qκ)∏m+n
i=1 θ(qi, qκ)

= qϕ ·
∏m

i=1 θ(q
i+1; qκ)∏m+n

i=1 θ(qj; qκ)
·
m∏
j=2

∏j−1
i=1 θ(q

j−i, qi+j+1; qκ)∏m+n
i=1 θ(qi; qκ)

.

If m ≥ n− 1 then the first identity reduces to

Φ1a(m,n; τ) = qϕ ·
( m∏

j=1

θ(qj; qκ)

)−1 n∏
j=2

( m+n∏
i=2j−1

θ(qi; qκ)

)−1

= qϕ ·
( m∏

j=1

θ(qj; qκ)

)−1 n−1∏
j=1

( m+n∏
i=2j+1

θ(qi; qκ)

)−1

.

If m ≤ n− 1 then the second identity reduces to

Φ1a(m,n; τ) = qϕ ·
(
θ(q; qκ)

m+n∏
j=m+2

θ(qj; qκ)

)−1

×
m∏
j=2

(
θ(qj, qj+1; qκ)

m+n∏
i=2j+1

θ(qi; qκ)

)−1

= qϕ ·
( m∏

j=1

θ(qj; qκ)

)−1 m∏
j=1

( m+n∏
i=2j+1

θ(qi; qκ)

)−1

.

Together these imply Lemma 6.1 (1a). �
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Since the modified θ-functions θ(q`; qκ) are essentially Siegel functions (up to powers of
q), we can immediately rewrite Lemma 6.1 in terms of modular functions. We shall omit
the proofs for brevity.

Lemma 6.2. Let m and n be positive integers and κ∗ = κ∗(m,n) as in (1.14). Then the
following are true:

(1a) With κ = κ1,

Φ1a(m,n; τ) =
m∏
j=1

gj/κ,0(κτ)−1

m+n∏
j=1

gj/κ,0(κτ)−min(m,n−1,dj/2e−1).

(1b) With κ = κ1,

Φ1b(m,n; τ) =
m+n∏
j=1

gj/κ,0(κτ)−min(m,n,bj/2c).

(2) With κ = κ2,

Φ2(m,n; τ) = g 1
4
,0(2κτ)−min(m,n−1)−δ

m∏
j=1

g j
κ
,0(κτ)−1

×
m+n∏
j=1

g j
κ
,0(κτ)−min(m,n−1,dj/2e−1)

b(m+n−1)/2c∏
j=n

g (2j+1)
κ

,0
(κτ)−1.

(3) For n ≥ 2 and κ = κ3,

Φ3(m,n; τ) = g 1
4
,0(2κτ)−min(m,n−2)−δ

m∏
j=1

g 2j
κ
,0(κτ)−1

×
m+n−1∏
j=1

g j
κ
,0(κτ)−min(m,n−2,dj/2e−1)

b(m+n)/2c∏
j=n

g (2j−1)
κ

,0
(κτ)−1.

(4) With κ = κ1,

Ψ1(m,n; τ) :=
Φ1a(m,n; τ)

Φ1b(m,n; τ)
=

m∏
j=1

g 2j
κ
,0(κτ)

g j
κ
,0(κτ)

.

(5) With κ = κ2(m,n) = κ3(m,n+ 1),

Ψ2(m,n; τ) :=
Φ2(m,n; τ)

Φ3(m,n+ 1; τ)
=

m∏
j=1

g 2j
κ
,0(κτ)

g j
κ
,0(κτ)

.

In parts (2) and (3) we have δ = 0 or 1 depending on if κ/2 is even or odd respectively.
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6.2. Proofs of Theorems 1.6 and 1.7. We now apply the results in Section 5 to prove
Theorems 1.6 and 1.7.

Proof of Theorem 1.6 (1) and (2). Lemma 6.2 shows that each of the Φ∗(m,n; τ) is exactly
a pure product of Siegel functions. Therefore, we may apply Theorem 5.2 directly to each
of the Siegel function factors, and as a consequence to each Φ∗(m,n; τ).

Since by Theorem 5.2 (4), ga(τ)12N is in FN if N = Den(a), we may take N = κ∗(m,n),
and so we have that Φ∗(m,n; τ)12κ ∈ Fκ∗(m,n). We now apply Theorem 5.6 to obtain
Theorem 1.6 (1) and (2). �

Sketch of the Proof of Theorem 1.6 (3). By Theorem 1.6 (2), we have that this multiset
consists of multiple copies of a single Galois orbit of conjugates over Q. Therefore to
complete the proof, it suffices to show that the given conditions imply that there are
singular values which are not repeated. To this end, we focus on those CM points with
maximal imaginary parts. Indeed, because each Φ∗(m,n; τ) begins with a negative power
of q, one generically expects that these corresponding singular values will be the ones with
maximal complex absolute value.

To make this argument precise requires some cumbersome but unenlightening details
(which we omit)7. One begins by observing why the given conditions are necessary. For
small κ it can happen that the matrices in Wκ,τ permute the Siegel functions in the
factorizations of Φ∗(m,n; τ) obtained in Lemma 6.2. However, if κ > 9, then this does
not happen. The condition that gcd(D0, κ) = 1 is required for a similar reason. More
precisely, the group does not act faithfully. However, under these conditions, the only
obstruction to the conclusion would be a nontrivial identity between the evaluations of
two different modular functions. In particular, under the given assumptions, we may view
these functions as a product of distinct Siegel functions. Therefore, the proof follows by
studying the asymptotic properties of the CM values of individual Siegel functions, and
then considering the Φ∗ functions as a product of these values.

The relevant asymptotics arise by considering, for each −D, a canonical CM point with
discriminant −D. Namely, we let

τ∗ :=

{√
−D
2

if −D ≡ 0 (mod 4),
1+
√
−D

2
if −D ≡ 1 (mod 4).

By the theory of reduced binary quadratic forms, these points are the CM points with
maximal imaginary parts corresponding to reduced forms with discriminant −D. More-
over, every other CM point with discriminant −D has imaginary part less than |

√
−D|/3.

Now the singular values of each Siegel function then essentially arise from the values of
the second Bernoulli polynomial. The point is that one can uniformly estimate the infinite
product portion of each singular value, and it turns out that they are exponentially close
to the number 1. By assembling these estimates carefully, one obtains the result. �

7A similar analysis is carried out in detail by Jung, Koo, and Shin in [41, Sec. 4].
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Proof of Theorem 1.7. Lemma 6.2 reformulates each Φ∗ function in terms of products
of negative powers of Siegel functions of the form gj/κ,0(κτ), where 1 ≤ j ≤ κ/2, and
g1/4,0(2κτ), when κ is even. Theorem 5.4 (1) then implies Theorem 1.7 (1).

Since Den(j/κ, 0) may be any divisor of κ, and since j(τ) is an algebraic integer [14, 26],
Theorem 5.4 (2) and (3) imply Theorem 1.7 (2).

Using Theorem 6.2 (5), we have that

Φ1a(m,n; τ)

Φ1b(m,n; τ)
=

m∏
j=1

g 2j
κ
,0(κτ)

g j
κ
,0(κτ)

,

where κ = κ1 = 2m+ 2n+ 1. Since κ is odd, Theorem 5.4 (4) implies that each term

g 2j
κ
,0(κτ)

g j
κ
,0(κτ)

in the product is a unit. Therefore, Theorem 1.7 (3) follows. �

7. Examples

Here we give two examples of the main results in this paper.

Example. This is a detailed discussion of the example in Section 1.
Consider the q-series

Φ1a(2, 2; τ) = q1/3

∞∏
n=1

(1− q9n)

(1− qn)

= q1/3 + q4/3 + 2q7/3 + 3q10/3 + 5q13/3 + 7q16/3 + · · · ,

and

Φ1b(2, 2; τ) = q
∞∏
n=1

(1− q9n)(1− q9n−1)(1− q9n−8)

(1− qn)(1− q9n−4)(1− q9n−5)

= q + q3 + q4 + 3q5 + 3q6 + 5q7 + 6q8 + · · ·
For τ = i/3, the first 100 coefficients of the q-series respectively give the numerical ap-
proximations

Φ1a(2, 2; i/3) = 0.577350 · · · ?
=

1√
3

Φ1b(2, 2; i/3) = 0.125340 . . .

Here we have that κ1(2, 2) = 9. Theorem 5.3 tells us that Φ1a(2, 2; τ)3 and Φ1b(2, 2; τ)3

are in F9, so we may use Theorem 5.6 to find the conjugates of the values of the functions
at τ = i/3. We have κ1(2, 2) · i/3 = 3i and

W9,3i =

{(
t 0
s t

)
∈ GL2(Z/9Z)

}
/

{
±
(

1 0
0 1

)}
,
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which has 27 elements. However each of these acts like the identity on Φ1a(2, 2; τ), and the
group has an orbit of size three when acting on Φ1b(2, 2; τ). The set Q36 has two elements
Q1 = x2 + 9y2 and Q2 = 2x2 + 2xy + 5y2. These qive us βQ1 which is the identity, and
βQ2 =

(
2 1
0 1

)
. Therefore Φ1a(2, 2; i/3)3 has only one other conjugate,(

g2/9,1/9

(−1 + 3i

2

)
g4/9,2/9

(−1 + 3i

2

)
g6/9,3/9

(−1 + 3i

2

)
g8/9,4/9

(−1 + 3i

2

))−3

,

although the multiset described in Theorem 1.6 (2) contains 27 copies of these two num-
bers. On the other hand, Φ1b(2, 2; i/3)3 has an orbit of six conjugates, and the multiset
from Theorem 1.6 (2) contains nine copies of this orbit. Theorem 1.7 (2) tells us that
Φ1a(2, 2; i/3) and Φ1b(2, 2; i/3) may have denominators which are powers of three, whereas
Theorem 1.7 (1) tells us that their inverses are algebraic integers. Therefore, we find the
minimal polynomials for the inverses and then invert the polynomials. In this way, we find
that Φ1a(2, 2; i/3) and Φ1b(2, 2; i/3) are roots of the irreducible polynomials

3x2 − 1

19683x18 − 80919x12 + 39366x9 + 11016x6 + 486x3 − 1.

The full polynomials whose roots are the elements of the multisets corresponding to
Φ1a(2, 2; i/3)3 and Φ1b(2, 2; i/3)3, counting multiplicity are

(27x2 − 1)27

(19683x6 − 80919x4 − 39366x3 + 11016x2 − 486x2 − 1)9.

Applying Theorem 1.7(2), we find that
√

3Φ1a(2, 2; i/3) and
√

3Φ1b(2, 2; i/3) are units
and roots of the polynomials

x− 1

x18 + 6x15 − 93x12 − 304x9 + 420x6 − 102x3 + 1.

Lastly, Theorem 1.7 (3) applies, and we know that the ratio

Φ1a(2, 2; τ)

Φ1b(2, 2; τ)
= q−2/3

∞∏
n=1

(1− q9n−4)(1− q9n−5)

(1− q9n−1)(1− q9n−8)

= q−2/3(1 + q + q2 + q3 − q5 − q6 − q7 + · · · )

evaluates to a unit at τ = i/3. In fact we find that

Φ1a(2, 2; i/3)

Φ1b(2, 2; i/3)
= 4.60627 . . .

is a unit. Indeed, it is a root of

x18 − 102x15 + 420x12 − 304x9 − 93x6 + 6x3 + 1.
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Example. Here we give an example which illustrates the second remark after Theorem 1.7.
This is the discussion concerning ratios of singular values of Φ2 and Φ3 with the same κ∗.
Here we show that these ratios are not generically algebraic integral units as Theorem 1.7(3)

guarantees for the A
(2)
2n cases.

We consider Φ2(1, 1; τ) and Φ3(1, 2; τ), with τ =
√
−1/3. For these example we have

κ2(1, 1) = κ3(1, 2) = 6. A short computation by way of the q-series shows that

Φ2

(
1, 1;

√
−1/3

)
= 0.883210 . . . ,

and
Φ3

(
1, 2;

√
−1/3

)
= 0.347384 . . . .

Since Φ2(1, 1; τ)24 and Φ3(1, 2; τ)24 are in F12, we find that

Φ2

(
1, 1;

√
−1/3

)24
and Φ3

(
1, 2;

√
−1/3

)24

each have one other conjugate, namely(
g1/2,1/3

(√
−4/3

)
· g1/4,0

(
2
√
−4/3

))−24

and
(
g0,1/3

(√
−4/3

)
· g1/2,0

(
2
√
−4/3

))−24

respectively, and the corresponding multisets described in Theorem 1.6 (2) each contain

six copies of the respective orbits. In this way we find that Φ2

(
1, 1;

√
−1/3

)
is a root of

220 x48 − 212 · 13x24 + 1

and Φ3(1, 2;
√
−1/3) is a root of

220312x48 − 126 · 35113x24 + 1.

Therefore, their ratio

Φ2(1, 1;
√
−1/3)

Φ3(1, 2;
√
−1/3)

= 2.542459 . . .

is not a unit. Its minimal polynomial is

x4 − 6x2 − 3.
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8. N. Bartlett and S. O. Warnaar, Hall–Littlewood polynomials and characters of affine Lie algebras,
Adv. in Math. 285 (2015), 1066–1105.

9. R. J. Baxter, Rogers–Ramanujan identities in the hard hexagon model, J. Statist. Phys. 26 (1981),
427–452.

10. A. Berkovich and B. M. McCoy, Rogers–Ramanujan identities: a century of progress from mathematics
to physics, Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), Doc.
Math. 1998, Extra Vol. III, 163–172.

11. B. C. Berndt, H. H. Chan and L.-C. Zhang, Explicit evaluations of the Rogers–Ramanujan continued
fraction, J. Reine Angew. Math. 480 (1996), 141-159.

12. B. C. Berndt and R. A. Rankin, Ramanujan. Letters and commentary, Amer. Math. Soc., Providence,
RI, 1995.

13. D. M. Bressoud, An analytic generalization of the Rogers–Ramanujan identities with interpretation,
Quart. J. Maths. Oxford (2) 31 (1980), 385–399.

14. A. Borel, S. Chowla, C. S. Herz, K. Iwasawa and J.-P. Serre, Seminar on Complex Multiplication,
Lecture Notes in Mathematics, No. 21, Springer-Verlag, Berlin–New York 1966.

15. D. M. Bressoud, On partitions, orthogonal polynomials and the expansion of certain infinite products,
Proc. London Math. Soc. (3) 42 (1981), 478–500.

16. K. Bringmann, C. Calinescu, A. Folsom, and S. Kimport, Graded dimensions of principal subspaces
and modular Andrews–Gordon series, Commun. Contemp. Math. 16 (2014), 1350050, 20 pp.

17. K. Bringmann, A. Folsom, and K. Mahlburg, Quasimodular forms and sl(m|m)∧ characters, Ramanu-
jan J. 36 (2015), 103–116.

18. K. Bringmann and A. Folsom, On the asymptotic behavior of Kac–Wakimoto characters, Proc. Amer.
Math. Soc. 141 (2013), 1567–1576.

19. K. Bringmann and A. Folsom, Almost harmonic Maass forms and Kac–Wakimoto characters, J. Reine
Angew. Math. 694 (2014), 179–202.

20. K. Bringmann and K. Mahlburg, Asymptotic formulas for coefficients of Kac–Wakimoto characters,
Math. Proc. Cambridge Phil. Soc. 155 (2013), 51–72.

21. K. Bringmann and K. Ono, Some characters of Kac and Wakimoto and nonholomorphic modular
functions, Math. Ann. 345 (2009), 547–558.

22. K. Bringmann, K. Ono and R. Rhoades, Eulerian series as modular forms, J. Amer. Math. Soc. 21
(2008), 1085–1104.

23. C. Bruschek, H. Mourtada and J. Schepers, Arc spaces and the Rogers–Ramanujan identities, Ra-
manujan J. 30 (2013), 9–38.

24. B. Cais and B. Conrad, Modular curves and Ramanujan’s continued fraction, J. Reine Angew. Math.
597 (2006), 27–104.

25. I. Cherednik and B. Feigin, Rogers–Ramanujan type identities and Nil-DAHA, Adv. in Math. 248
(2013), 1050–1088.

26. D. A. Cox, Primes of the Form x2 + ny2. Fermat, Class Field Theory, and Complex Multiplication,
J. Wiley and Sons, Inc., New York, 1989.

27. W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137–162.
28. J. L. Dupont and C.-H. Sah, Dilogarithm identities in conformal field theory and group homology,

Comm. Math. Phys. 161 (1994), 265–282.
29. F. Dyson, A walk through Ramanujan’s garden, Ramanujan revisited, AMS, Providence, 2001, 7–28.
30. B. Feigin, O. Foda and T. Welsh, Andrews–Gordon type identities from combinations of Virasoro

characters, Ramanujan J. 17 (2008), 33–52.



ROGERS–RAMANUJAN IDENTITIES AND THEIR ARITHMETIC PROPERTIES 43

31. B. Feigin and E. Frenkel, Coinvariants of nilpotent subalgebras of the Virasoro algebra and partition
identities, in I. M. Gel’fand Seminar, pp. 139–148, Adv. Soviet Math., 16, Part 1, AMS, Providence,
RI, 1993.

32. J. Fulman, The Rogers–Ramanujan identities, the finite general linear groups, and the Hall–Littlewood
polynomials, Proc. Amer. Math. Soc. 128 (2000), 17–25.

33. J. Fulman, A probabilistic proof of the Rogers–Ramanujan identities, Bull. London Math. Soc. 33
(2001), 397–407.

34. I. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the Monster, Pure and Applied
Mathematics, No. 134, Academic Press, Inc., Boston, MA, 1988.

35. K. Garrett, M. E. H. Ismail and D. Stanton, Variants of the Rogers–Ramanujan identities, Adv. in
Appl. Math. 23 (1999), 274–299.

36. B. Gordon, A combinatorial generalization of the Rogers–Ramanujan identities, Amer. J. Math. 83
(1961), 393–399.

37. E. Gorsky, A. Oblomkov and J. Rasmussen, On stable Khovanov homology of torus knots, Exp. Math.
22 (2013), 265–281

38. R. A. Gustafson, The Macdonald identities for affine root systems of classical type and hypergeomet-
ric series very-well-poised on semisimple Lie algebras, in Ramanujan International Symposium on
Analysis, pp. 187–224, Macmillan of India, New Delhi, 1989.

39. K. Hikami, Volume conjecture and asymptotic expansion of q-series, Experiment. Math. 12 (2003),
319–337.

40. K. Hikami, q-Series and L-functions related to half-derivatives of the Andrews–Gordon identity, Ra-
manujan J. 11 (2006), 175–197.

41. H. Y. Jung, J. K. Koo and D. H. Shin, On some arithmetic properties of Siegel functions (II), Forum
Math. 26, (2014), 25–58.

42. V. G. Kac, Infinite-dimensional algebras, Dedekind’s η-function, classical Möbius function and the
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