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0 Preliminaries
This paper is a shortened version, devoid of any proofs, of the paper A Selberg integral for the Lie algebra
An [17].

1 g-Selberg integrals
In 1944 Selberg published the following remarkable multiple integral [12]. Let k be a positive integer,
t = (t1, . . . , tk) and dt = dt1 · · · dtk.

Theorem 1.1 (Selberg integral) For α, β, γ ∈ C such that

Re(α) > 0, Re(β) > 0, Re(γ) > −min{1/k,Re(α)/(k − 1),Re(β)/(k − 1)}

there holds∫
∆k

k∏
i=1

tα−1
i (1− ti)β−1

∏
1≤i<j≤n

(ti − tj)2γ dt =
k∏
i=1

Γ(α+ (i− 1)γ)Γ(β + (i− 1)γ)Γ(iγ)
Γ(α+ β + (i+ k − 2)γ)Γ(γ)

, (1.1)

where
∆k = {t ∈ Rk : 0 ≤ tk ≤ · · · ≤ t2 ≤ t1 ≤ 1}. (1.2)
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When k = 1 this simplifies to Euler’s famous beta integral [3]∫ 1

0

tα−1(1− t)β−1 dt =
Γ(α)Γ(β)
Γ(α+ β)

, Re(α) > 0, Re(β) > 0. (1.3)

At the time of its publication the Selberg integral was largely overlooked, but now, more than 60 years
later, it is widely regarded as one of the most fundamental and important hypergeometric integrals. It
has connections and applications to orthogonal polynomials, random matrices, finite reflection groups,
hyperplane arrangements, conformal field theory and more, see e.g., [4].

This paper is concerned with the intimate connection between Knizhnik–Zamolodchikov (KZ) equa-
tions and hypergeometric integrals of Selberg type [2, 11, 13, 15].

Let g be a simple Lie algebra of rank n, with simple roots, fundamental weights, and Chevalley gener-
ators given by αi, Λi and ei, fi, hi for 1 ≤ i ≤ n. Let Vλ and Vµ be highest weight representations of g
with highest weights λ and µ, and let u = u(z, w) be a function with values in Vλ ⊗ Vµ solving the KZ
equations

κ
∂u

∂z
=

Ω
z − w

u, κ
∂u

∂w
=

Ω
w − z

u,

where Ω is the Casimir element. Let Singλ,µ[ν] denote the space of singular vectors of weight ν in Vλ⊗Vµ

Singλ,µ[ν] := {v ∈ Vλ ⊗ Vµ : hiv = ν(hi)v, eiv = 0, 1 ≤ i ≤ n}.

Then, according to a theorem of Schechtman and Varchenko [13], solutions u with values in Singλ,µ[λ+
µ−

∑n
i=1 kiαi] are expressible in terms of k := k1 + · · ·+ kn dimensional integrals as follows:

u(z, w) =
∑

uIJ(z, w) f Ivλ ⊗ fJvµ

with coordinate functions uIJ given by

uIJ(z, w) =
∫
γ

Ψ(z, w; t)ωIJ(z, w; t)dt.

In the above the sum is over all ordered multisets I and J with elements taken from {1, . . . , n} such that
their union contains the number i exactly ki times, vλ and vµ are the highest weight vectors of Vλ and Vµ,
f Iv = (

∏
i∈I fi)v, t = (t1, . . . , tk), dt = dt1 · · · dtk and γ is a suitable integration cycle. The function

ωIJ is a rational function that will not concern us here and Ψ, known as the phase function, is defined
as follows. The first k1 integration variables are attached to the simple root α1, the next k2 integration
variables are attached to the simple root α2, and so on, such that αtj := αi if k1 + · · · + ki−1 < j ≤
k1 + · · ·+ ki. Then

Ψ(z, w; t) = (z − w)(λ,µ)/κ
k∏
i=1

(ti − z)−(λ,αti
)/κ(ti − w)−(µ,αti

)/κ
∏

1≤i<j≤k

(ti − tj)(αti
,αtj

)/κ,

with ( , ) the bilinear symmetric form on h∗ (the space dual to the Cartan subalgebra h) normalised such
that (θ, θ) = 2 for the maximal root θ.
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In [11] Mukhin and Varchenko formulated a remarkable conjecture regarding the normalised phase
function

Ψ(t) =
k∏
i=1

t
−(λ,αti

)/κ

i (1− ti)−(µ,αti
)/κ

∏
1≤i<j≤n

|ti − tj |(αti
,αtj

)/κ.

They proposed that if the space Singλ,µ[λ+ µ−
∑n
i=1 kiαi] is one-dimensional, then the integral∫

∆

Ψ(t)dt (1.4)

(with ∆ ⊂ [0, 1]k an appropriate integration domain not explicitly given) is expressible as a product of
gamma functions.

For g = sl2 = A1 the integral (1.4) (with an appropriate choice for ∆) corresponds to the evaluation
of the Selberg integral. Indeed, in this case there is just one fundamental weight and one simple root,
with (Λ1, α1) = 1 and (α1, α1) = 2. The most general choice for the weights λ and µ is λ = λ1Λ1 and
µ = µ1Λ1, so that

Ψ(t) =
k∏
i=1

t
−λ1/κ
i (1− ti)−µ1/κ

∏
1≤i<j≤n

|ti − tj |2/κ.

Identifying (κ, λ1, µ1) = (1/γ, (1−α)/γ, (1−β)/γ) this becomes precisely the integrand of the Selberg
integral.

For g = sln+1 = An, k1 = · · · = kn = 1 and λ = λnΛn, µ =
∑n
i=1 µiΛi the integral (1.4)

was computed by Mukhin and Varchenko [11]. Using the standard ordering of the simple roots, so that
(αi, αj) = 2δij − δ|i−j|,1 one finds

Ψ(t) = t−λn/κ
n

n∏
i=1

(1− ti)−µ1/κ
n∏
i=2

|ti − ti+1|−1/κ.

Assuming ∆ = ∆n (see (1.2)) the integral (1.4) is readily computed by iterating the beta integral (1.3).
Identifying

(κ, λn, µ1, . . . , µn) = (1/γ, (1− α)/γ, (1− β1)/γ, . . . , (1− βn)/γ) (1.5)

this yields

Ψ(t) = Γ(α)Γn−1(1− γ)
n∏
j=1

Γ(β1 + · · ·+ βj + (1− j)γ)
Γ(Aj + β1 + · · ·+ βj + (δj,n − j)γ)

, (1.6)

where Aj = 1 + (1− α)δj,n.
Essentially this same iterative method was applied by Mimachi and Takamuki [10] to deal with the

tensor product of the vector representations of g = Bn, Cn or Dn. Specifically, with λ = µ = Λ1 and

k1 = · · · = kn−2 = 1, kn−1 = r and kn = s

such that

(r, s) =


(2, 2) Bn
(2, 1) Cn
(1, 1) Dn.
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Mimachi and Takamuki computed (1.4) for a suitable choice of ∆ by either iterating the n = 2 case of
the Selberg integral (in the case of Bn) or by iterating the beta integral (in the case of Cn and Dn).

In [14] Tarasov and Varchenko dealt with what is arguably the first nontrivial case of (1.4), proving an
A2 Selberg integral corresponding to (1.4) with λ = λ2Λ2, µ = µ1Λ1 + µ2Λ2 and arbitrary k1 < k2. In
this paper we present the generalisation of the Tarasov–Varchenko formula for all of the Lie algebras of
type A. This result includes the Selberg integral (1.1) and the formula (1.6) as special cases. Specifically,
we give the evaluation of (1.4) for g = sln+1 = An in the case that λ = λnΛn, µ =

∑n
i=1 µiΛi and

0 ≤ k1 ≤ k2 ≤ · · · ≤ kn. Again adopting the identification (1.5) our result is contained on the following
theorem.

Theorem 1.2 (An Selberg integral) For n a positive integer let 0 ≤ k1 ≤ k2 ≤ · · · ≤ kn be integers
and k0 = kn+1 = 0. Assume (1.5) such that α, β1, . . . , βn, γ ∈ C with

Re(α) > 0, Re(β1) > 0, . . . ,Re(βn) > 0,

−min{Re(α)/(kn − 1), 1/kn} < Re(γ) < 1/kn

and
−Re(βs)/(ks − ks−1 − 1) < Re(γ) < Re(βs + · · ·+ βr)/(r − s)

for 1 ≤ s ≤ r ≤ n. Then

∫
∆

Ψ(t)dt =
n∏
s=1

ks∏
i=1

Γ(As + (i− ks+1 − 1)γ)Γ(iγ)
Γ(γ)

×
∏

1≤s≤r≤n

ks−ks−1∏
i=1

Γ(βs + · · ·+ βr + (i+ s− r − 1)γ)
Γ(Ar + βs + · · ·+ βr + (i+ s− r + kr − kr+1 − 2)γ)

,

where Ar = 1 + (α− 1)δr,n.

So far we have failed to specify the integration domain ∆, and we will do so in the next section. Let us
remark now that for n = 1 the domain is given by (1.2) so that we recover the Selberg integral (1.1). For
general n and k1 = · · · = kn = 1 the domain ∆ = ∆n resulting in (1.6).

We also remark that Theorem 1.2 can be further generalised by inclusion of a Jack polynomial in the
integrand. This corresponds to an An generalisation of the integrals of Aomoto (elementary symmetric
function case) [1] and Kadell (the full Jack polynomial case) [6]. We refer the reader to [17] for details.

2 The domain ∆
For general choice of k1, . . . , kn the integration domain ∆ is significantly more complicated than, for
example, (1.2). It takes the form of a chain in the sense of algebraic topology and, in the case of g = A2,
was first described in the work of Tarasov and Varchenko [14].

First we introduce a slight relabelling of the integration variables t1, . . . , tk. Recall that the first k1

variables are attached to the simple root α1, the next k2 variables are attached to α2 and so on. For
1 ≤ s ≤ n we now set

t(s) = (tk1+···+ks−1+1, . . . , tk1+···+ks
)
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so that t(s) contains those ti attached to αs. We also use the notation t(s)i for 1 ≤ i ≤ ks to denote the ti
contained in t(s).

Note that Ψ(t) is symmetric under permutation of the components of t(s) so that without loss of gener-
ality we may assume the ordering

t
(s)
ks
≤ · · · ≤ t(s)2 ≤ t(s)1 (2.1)

consistent with (1.2) when n = 1.
We also need an ordering between t(s)i and t(s+1)

j , i.e., between the variables attached to two adjacent
simple roots (adjacent in the sense of the corresponding Dynkin diagram). To this end we introduce maps

Ms : {1, . . . , ks} → {1, . . . , ks+1}

such that
Ms(i) ≤Ms(i+ 1) and 1 ≤Ms(i) ≤ ks+1 − ks + i.

A standard counting argument shows that there are exactly cks+1,ks
admissible Ms, where cn,k is the row

(n, k) entry in the Catalan triangle, or, equivalently, the number of standard Young tableaux of shape
(n, k).

For example, if k1 = 2 and k2 = 3 then the conditions on M := M1 : {1, 2} → {1, 2, 3} are

1 ≤M(1) ≤ 2, 1 ≤M(2) ≤ 3, and M(1) ≤M(2).

This permits exactly 5 distinct maps, mapping (1, 2) to one of

(1, 1), (1, 2), (1, 3), (2, 2), (2, 3).

Given Ms we fix an ordering among the t(s)i and t(s+1)
j by

t
(s+1)
Ms(i) ≤ t

(s)
i ≤ t

(s+1)
Ms(i)−1 for 1 ≤ i ≤ ks, (2.2)

where t(s+1)
0 :=∞. Given admissible maps M1, . . . ,Mn−1 define Dk1,...,kn

M1,...,Mn−1
as the set of points

(t1, . . . , tk) = (t(1)
1 , . . . , t

(1)
k1
, t

(2)
1 , . . . , t

(2)
k2
, . . . , t

(n)
1 , . . . , t

(n)
kn

) ∈ [0, 1]k

such that (2.2) holds for all 1 ≤ s ≤ n−1 and (2.1) holds for 1 ≤ s ≤ n. Then the domain of integration,
written as a chain, is given by

∆ =
∑

M1,...,Mn−1

F k1,...,kn

M1,...,Mn−1
(γ)Dk1,...,kn

M1,...,Mn−1
, (2.3)

where

F k1,...,kn

M1,...,Mn−1
(γ) =

n−1∏
s=1

ks∏
i=1

sin
(
π(i+ ks+1 − ks −Ms(i) + 1)γ

)
sin
(
π(i+ ks+1 − ks)γ

) .
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3 Remarks about the proof of Theorem 1.2
The proof of the An Selberg integral relies on a new q, t-binomial theorem for Macdonald polynomials
[16, 17]. This q, t-binomial theorem can be reinterpreted as a q-integral, and taking the q → 1 limit
results in Theorem 1.2. This is analogous to the proof of the much simpler beta integral using the classical
q-binomial theorem. In the latter case one makes the substitutions (a, z) 7→ (qβ , qα) in the q-binomial
theorem

1φ0

[
a

–
; q, z

]
:=

∞∑
k=0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

(where (a; q)∞ =
∏

0≥1(1− aqi) and (a; q)z = (a; q)∞/(aqz; q)∞) to obtain∫ 1

0

tα−1(tq; q)β−1 dqt =
Γq(α)Γq(β)
Γq(α+ β)

,

where Γq is the q-gamma function [5] and α, β ∈ C such that Re(α) > 0, −β 6∈ {0, 1, 2, . . . }. Assuming
that q is real and Re(β) > 0 one can take the q → 1− to obtain (1.3).

The Macdonald polynomials Pλ(x; q, t) [8] satisfy a well-known generalisation of the q-binomial the-
orem [7, 9]

1Φ0

[
a

–
; q, t;x

]
:=
∑
λ

tn(λ) (a; q, t)λ
c′λ(q, t)

Pλ(x; q, t) =
∏
i≥1

(axi; q)∞
(xi; q)∞

. (3.1)

where n(λ) =
∑
i≥1(i − 1)λi, (a; q, t)λ =

∏
i≥1(at1−i; q)λi and c′λ(q, t) is a generalisation of (q; q)k,

standard in Macdonald polynomial theory. Writing (3.1) as a q-integral and taking the q → 1− limit yields
the Selberg integral (1.1).

To obtain the more general An Selberg integral the q, t-binomial theorem (3.1) needs further general-
isation. Because this sum is significantly more difficult to describe than (3.1) we will not state it here in
full generality. We remark however that the summand depends on n partitions, each attached to a different
Macdonald polynomial. When all Macdonald polynomials are principally specialised one obtains

1Φ0

[
a

–
; q, t;x(1), . . . , x(n)

]
=

n∏
s=1

ks−ks−1∏
i=1

(azs · · · znti+s+ks−1+···+kn−1−n−1; q)∞
(zs · · · znti+s+ks−1+···+kn−1−n−1; q)∞

×
∏

1≤s≤r≤n−1

ks−ks−1∏
i=1

(qzs · · · zrti+s−r+ks−1+···+kr−kr+1−2; q)∞
(zs · · · zrti+s−r+ks−1+···+kr−1−1; q)∞

,

where 1Φ0 is a suitable An generalisation of the series in (3.1), k0 = 0 and x(s) = zs(1, t, . . . , tks−1) for
1 ≤ s ≤ n. It is this q, t-binomial theorem that gives rise to Theorem 1.2.

4 Two simple examples
To conclude we present the worked-out examples of the An Selberg integral for

1. (k1, . . . , kn−1, kn) = (1, . . . , 1, k)
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2. γ = 0.

Note that in (1) we no longer use k to denote the number of integration variables (i.e., the sum of the ki).
Also note that (1) for k = 1 corresponds to (1.6).

4.1 The case (k1, . . . , kn−1, kn) = (1, . . . , 1, k)

In this case there is only one map Ms for 1 ≤ s ≤ n− 2, corresponding to the identity map Ms(1) = 1.
For s = n− 1, however, there are k different maps, given by Mn−1(1) = a for 1 ≤ a ≤ k.

If we relabel the integration variables t(s)1 → us for 1 ≤ s ≤ n− 1 and t(n)
i → ti for 1 ≤ i ≤ k, then

the above implies the inequalities

O` :


0 ≤ tk ≤ · · · ≤ t1 ≤ 1,
0 ≤ un−1 ≤ · · · ≤ u1 ≤ 1,
t` ≤ un−1 ≤ t`−1

with 1 ≤ ` ≤ k and t0 = 1. As a result we obtain the following (k + n− 1)-dimensional integral:

k∑
`=1

sin(π(k − `+ 1)γ)
sin(πkγ)

∫
O`

n−1∏
i=1

(1− ui)βi−1
k∏
i=1

tα−1
i (1− ti)βn−1

∏
1≤i<j≤k

(ti − tj)2γ

×
n−2∏
i=1

(ui − ui+1)−γ
`−1∏
i=1

(ti − un−1)−γ
k∏
i=`

(un−1 − ti)−γ du dt

= Γ(1− kγ)Γn−2(1− γ)
k∏
i=1

Γ(α+ (i− 1)γ)Γ(iγ)
Γ(γ)

×
k−1∏
i=1

Γ(βn + (i− 1)γ)
Γ(α+ βn + (i+ k − 2)γ)

n∏
i=1

Γ(β1 + · · ·+ βi + (1− i)γ)
Γ(ai + β1 + · · ·+ βi − iγ)

,

where a1 = · · · = an−2 = 1, an−1 = 1 − (k − 1)γ, an = α + kγ, du = du1 · · · dun−1 and dt =
dt1 · · · dtk.

Let us denote the left-hand side of the above by In−1,k(α;β1, . . . , βn; γ). Next let n ≥ 3 and replace
the integration variable u1 by v via

v =
u1 − u2

1− u2
.

Noting that 1− u1 = (1− v)(1− u2) and u1 − u2 = v(1− u2) the integral over v may be identified as
Euler’s beta integral (1.3) with α = 1− γ. Therefore

In−1,k(α;β1, . . . , βn; γ) = In−2,k(α;β1 + β2 − γ, β3, . . . , βn; γ)
Γ(1− γ)Γ(β1)
Γ(β1 − γ + 1)

.
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Iterating this recursion it follows that In−1,k can be reduced to I1,k, given by

k∑
`=1

sin(π(k − `+ 1)γ)
sin(πkγ)

∫
O′`

(1− u)β1−1
k∏
i=1

tα−1
i (1− ti)β2−1

∏
1≤i<j≤k

(ti − tj)2γ

×
`−1∏
i=1

(ti − u)−γ
k∏
i=`

(u− ti)−γ du dt

=
Γ(β1)Γ(1− kγ)
Γ(1 + β1 − kγ)

Γ(α+ β2 + (2k − 2)γ)
Γ(α+ β1 + β2 + (k − 2)γ)

Γ(β1 + β2 − γ)
Γ(β2 + (k − 1)γ)

×
k∏
i=1

Γ(α+ (i− 1)γ)Γ(β2 + (i− 1)γ)Γ(iγ)
Γ(α+ β2 + (i+ k − 2)γ)Γ(γ)

,

where
O′` : 0 ≤ tk ≤ · · · ≤ t` ≤ u ≤ t`−1 ≤ · · · ≤ t1 ≤ 1.

4.2 The case γ = 0

When γ = 0 Theorem 1.2 collapses to the integral

∫
∆

n∏
s=1

ks∏
i=1

(
1− t(s)i

)βs−1
kn∏
i=1

(
t
(n)
i

)α−1
dt(1) · · · dt(n)

=
n∏
s=1

1
(ks)!

(
Γ(α)Γ(βs + · · ·+ βn)
Γ(α+ βs + · · ·+ βn)

)ks−ks−1

,

where ∆ is given by the γ → 0 limit of (2.3). Because the t(s)i in the integrand are completely decoupled
the problem of evaluating this integral is purely combinatorial. Introducing the partitions λ(s) for 1 ≤ s ≤
n− 1 as λ(s) = (Ms(ks), . . . ,Ms(1)) so that λ(s) has exactly ks parts and λ(s)

i ≤ ks+1− i+ 1 the γ = 0
integral may also be stated more explicitly as

∑
λ(1),...,λ(n−1)

1≤λ(s)
i ≤ks+1−i+1

n−1∏
s=1

ks∏
i=1

ks+1 − i− λi + 2
ks+1 − i+ 1

×
∫ n∏

s=1

ks∏
i=1

(
1− t(s)i

)βs−1
kn∏
i=1

(
t
(n)
i

)α−1
dt(1) · · · dt(n)

=
n∏
s=1

1
(ks)!

(
Γ(α)Γ(βs + · · ·+ βn)
Γ(α+ βs + · · ·+ βn)

)ks−ks−1

,

where the integration domain is given by

max
{
t
(s+1)

λ
(s)
ks−i+1

, t
(s)
i+1

}
≤ t(s)i ≤ min

{
t
(s)
i−1, t

(s+1)

λ
(s)
ks−i+1−1

}
(4.1a)
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for 1 ≤ s ≤ n− 1 and 1 ≤ i ≤ ks (with t(s)0 = 1 and t(s)ks+1 = 0), and

t
(n)
i+1 ≤ t

(n)
i ≤ t(n)

i−1 (4.1b)

for 1 ≤ i ≤ kn.
Thanks to the factor

∏n−1
s=1

∏ks

i=1(ks+1 − i− λi + 2) we may relax the condition λ(s)
i ≤ ks+1 − i+ 1

to λ(s)
1 ≤ ks+1 so that the sum becomes ∑

λ(1),...,λ(n−1)

l(λ(s))=ks

λ
(s)
1 ≤ks+1

.

This result may be proved by elementary means using the following representation of the elementary
symmetric function:

er(x) =
∑
λ

l(λ)=r

λ1≤n

n∏
j=1

1
mj !

r∏
i=1

(n− λi − i+ 2)(xλi
− xλi−1),

with x0 = 0, x = (x1, . . . , xn), mj the multiplicity of the part j in λ.
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