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Abstract: We present a generalisation of the famous Selberg integral. This confirms the g = A,, case of a conjecture
by Mukhin and Varchenko concerning the existence of a Selberg integral for each simple Lie algebra g.

Résumé: On présent une généralisation de la bien connue intégrale de Selberg. Cette généralisation vérifie le cas
g = A, de la conjecture de Mukhin et Varchenko concernant I’existence d’une intégrale de Selberg pour chaque
algebre simple de Lie g.
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0 Preliminaries

This paper is a shortened version, devoid of any proofs, of the paper A Selberg integral for the Lie algebra
A, [17].

1 g-Selberg integrals

In 1944 Selberg published the following remarkable multiple integral [12]. Let k be a positive integer,
t = (t1,...,tg) and dt = dt; - - - dty,.

Theorem 1.1 (Selberg integral) For o, 3, € C such that
Re(a) > 0, Re(3) > 0, Re(y) > —min{1/k,Re(a)/(k — 1),Re(B)/(k — 1)}

there holds

E i . oy o 1y Dla+ (i = Dy)I(B + (i — DYL(iy)
/Ak il;[lti (1—1t;)? lgggn(ti—tj) dt—};[l O N E Gy oo (1.1)

where
Ap={teRF: 0<tp <--- <ty <t <1} (1.2)
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When k = 1 this simplifies to Euler’s famous beta integral [3]

! a—1 -1 35 _ L(a)I'(B)
/O t (1 —t)f~tdt = Tlatd) Re(a) > 0, Re(3) > 0. (1.3)

At the time of its publication the Selberg integral was largely overlooked, but now, more than 60 years
later, it is widely regarded as one of the most fundamental and important hypergeometric integrals. It
has connections and applications to orthogonal polynomials, random matrices, finite reflection groups,
hyperplane arrangements, conformal field theory and more, see e.g., [4].

This paper is concerned with the intimate connection between Knizhnik—Zamolodchikov (KZ) equa-
tions and hypergeometric integrals of Selberg type [2,11,13,15].

Let g be a simple Lie algebra of rank n, with simple roots, fundamental weights, and Chevalley gener-
ators given by oy, A; and e;, f;, h; for 1 < ¢ < n. Let V) and V,, be highest weight representations of g
with highest weights A and (i, and let u = u(z, w) be a function with values in V\ ® V,, solving the KZ

equations
ou Q ou Q

R— =
0z z—w

R— =
ow w—=z

U, u,

where (2 is the Casimir element. Let Sing, , [v] denote the space of singular vectors of weight v in VA ® V),
Sing, ,[v]:=={v e Va®@V,:hiv=v(hi)v, e;v =0, 1 <i <n}.

Then, according to a theorem of Schechtman and Varchenko [13], solutions « with values in Sing A, M[A +
pw—Yi kia;) are expressible in terms of k := ky + - - - + k,, dimensional integrals as follows:

u(z,w) = Zuu(z,w) floy® o,

with coordinate functions uyy given by
ury(z,w) = / U (z, w; t)wrs(z, w;t)dt.
gl

In the above the sum is over all ordered multisets I and J with elements taken from {1,...,n} such that
their union contains the number 7 exactly k; times, v and v,, are the highest weight vectors of V) and V,,,
ffo = ([T;e; fi)v, t = (t1, ..., tx), dt = dty - --dt), and v is a suitable integration cycle. The function
wry is a rational function that will not concern us here and W, known as the phase function, is defined
as follows. The first k; integration variables are attached to the simple root a, the next ko integration
variables are attached to the simple root ap, and so on, such that oy, := «; if ki+--+ ki1 <j<
ki+---+ k;. Then

k
U(z,wit) = (z —w)MH/E H(ti — 2)" e/ (g )~ (an)/k H (t: — tj)(mivat]-)/n’

i=1 1<i<j<k

with (,) the bilinear symmetric form on h* (the space dual to the Cartan subalgebra fj) normalised such
that (6, 0) = 2 for the maximal root 6.
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In [11] Mukhin and Varchenko formulated a remarkable conjecture regarding the normalised phase
function

k
_(Avati)/’i —(p,at.) /K QO ) [ K
t):th‘ (1_ti) (myce;)/ H |ti—tj|( i)/ )
i=1 1<i<j<n

They proposed that if the space Sing, ,[A + 1 — >, kioy] is one-dimensional, then the integral

/ W(t)dt (1.4)
A

(with A C [0, 1]* an appropriate integration domain not explicitly given) is expressible as a product of
gamma functions.

For g = sly = A; the integral (1.4) (with an appropriate choice for A) corresponds to the evaluation
of the Selberg integral. Indeed, in this case there is just one fundamental weight and one simple root,
with (A1, 1) = 1 and (a3, 1) = 2. The most general choice for the weights A and pis A = A1 Ay and
= u1Aq, so that

- /K — K K
w(t) = [t -ty I 1t -2~

i=1 1<i<j<n

Identifying (k, A1, 1) = (1/v, (1 —«)/v, (1 —3)/~) this becomes precisely the integrand of the Selberg
integral.

Forg = slpy1 = Ay, k1 = -+ = ky, = land A = X\,Ap, = > /A, the integral (1.4)
was computed by Mukhin and Varchenko [11]. Using the standard ordering of the simple roots, so that
(i, aj) = 2045 — )i—j),1 one finds

n

U(t) =t /" H(l —t;)TH/n H|tz — tig| "

i=1 1=2

Assuming A = A, (see (1.2)) the integral (1.4) is readily computed by iterating the beta integral (1.3).
Identifying
(’{7 )‘na M1y nu'n) = (1/73 (1 - a)/’}/a (1 - 61)/77 ceey (1 - ﬂn)/ﬁ)/) (15)

this yields

U(t) =T(a)T" Y

H FBr+---+6;+(1—7)) 7 (1.6)

DA+ 00+ + B+ (00 = 5)7)
where A; =1+ (1 — a)djpn.

Essentially this same iterative method was applied by Mimachi and Takamuki [10] to deal with the
tensor product of the vector representations of g = B,,, C,, or D,,. Specifically, with A = y = A; and

k1:-~~:kn_2:17 kn_lzr and knzs

such that

m

3

3

B
(rs) =421 C
D
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Mimachi and Takamuki computed (1.4) for a suitable choice of A by either iterating the n = 2 case of
the Selberg integral (in the case of B,,) or by iterating the beta integral (in the case of C,, and D,,).

In [14] Tarasov and Varchenko dealt with what is arguably the first nontrivial case of (1.4), proving an
A, Selberg integral corresponding to (1.4) with A = AoAg, p = p1 Ay + poAo and arbitrary k1 < ko. In
this paper we present the generalisation of the Tarasov—Varchenko formula for all of the Lie algebras of
type A. This result includes the Selberg integral (1.1) and the formula (1.6) as special cases. Specifically,
we give the evaluation of (1.4) for g = sl,,;1 = A,, in the case that A = A\, A, p = Z?:l i A; and
0<ky <ky<--- <k, Again adopting the identification (1.5) our result is contained on the following
theorem.

Theorem 1.2 (A,, Selberg integral) For n a positive integer let 0 < ki1 < ko < --- < k, be integers
and ko = k41 = 0. Assume (1.5) such that o, 31, . . ., Bn, 7y € C with

Re(a) > 0, Re(B1) > 0,...,Re(Br) > 0,

—min{Re(a)/(kn, — 1),1/kn} < Re(v) < 1/ky,

and
_Re(ﬁs)/(ks - ks—l - 1) < Re(’}/) < Re(ﬁs +--+ 67)/(7n - 8)
forl < s <r <n.Then

Ty DA + (= ke — DY)T(#)
/A\I/(t)dt—l:[“l:[l )

S

s—ks—1

k
T(Bs+ -+ B+ (i+s—1—1))
< 11 DA+ Bs+-+Br + (i +s5—1+ ke — kg1 —2)7)

1<s<r<n  i=1

where A, =1+ (o — 1)0y .

So far we have failed to specify the integration domain A, and we will do so in the next section. Let us
remark now that for n = 1 the domain is given by (1.2) so that we recover the Selberg integral (1.1). For
general n and k; = - - - = k, = 1 the domain A = A,, resulting in (1.6).

We also remark that Theorem 1.2 can be further generalised by inclusion of a Jack polynomial in the
integrand. This corresponds to an A,, generalisation of the integrals of Aomoto (elementary symmetric
function case) [1] and Kadell (the full Jack polynomial case) [6]. We refer the reader to [17] for details.

2 The domain A

For general choice of k1, ..., k, the integration domain A is significantly more complicated than, for
example, (1.2). It takes the form of a chain in the sense of algebraic topology and, in the case of g = Ao,
was first described in the work of Tarasov and Varchenko [14].

First we introduce a slight relabelling of the integration variables ¢1,...,%;. Recall that the first kq
variables are attached to the simple root o, the next ko variables are attached to ay and so on. For
1 < s < n wenow set

£ = (bbbt bk
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so that t(®) contains those ¢; attached to «is. We also use the notation tl(-s) for 1 < ¢ < kg to denote the ¢;
contained in t(*).

Note that ¥ (t) is symmetric under permutation of the components of t(*) so that without loss of gener-
ality we may assume the ordering

1) <<t <t @.1)

consistent with (1.2) whenn = 1.

We also need an ordering between tl(.s) and t;sﬂ), i.e., between the variables attached to two adjacent
simple roots (adjacent in the sense of the corresponding Dynkin diagram). To this end we introduce maps

Mg :{1,... ks} = {1,... ks1}

such that
Ms(i) < Mg(i+1) and 1< Mg(i) < ksy1 — ks + 1.

A standard counting argument shows that there are exactly cg, , , x, admissible M, where c;, i is the row

(n, k) entry in the Catalan triangle, or, equivalently, the number of standard Young tableaux of shape

(nif))r'example, if ky = 2 and ko = 3 then the conditions on M := M, : {1,2} — {1,2,3} are
1<M(1) <2, 1<M(2)<3, and M(1) < M(2).

This permits exactly 5 distinct maps, mapping (1, 2) to one of

(1,1),(1,2),(1,3),(2,2),(2,3).

Given M, we fix an ordering among the tES) and t§s+1) by

it < <l for 1< <k, 2.2)
where tésH) := 00. Given admissible maps My, ..., M, _, define Dﬁlani1 as the set of points

(treeont) = (0,0 e ) e (o, 1)k

such that (2.2) holds forall 1 < s < n —1 and (2.1) holds for 1 < s < n. Then the domain of integration,
written as a chain, is given by

_ k1,..skn ki,..skn
= Z LV Y GO0 21 VA VA (23)

where

ks . ] )
ok B s sm(w(z + ko1 — ks — Ms(i) + 1)7)
Fy, L= H H Sin(ﬂ'(i +ksy1 — k’s)’Y) '
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3 Remarks about the proof of Theorem 1.2

The proof of the A,, Selberg integral relies on a new ¢, t-binomial theorem for Macdonald polynomials
[16,17]. This q,t-binomial theorem can be reinterpreted as a g-integral, and taking the ¢ — 1 limit
results in Theorem 1.2. This is analogous to the proof of the much simpler beta integral using the classical
¢-binomial theorem. In the latter case one makes the substitutions (a, z) — (¢%,¢®) in the g-binomial

theorem
[a } — (@) 5, (429
1P0| 3¢, 2| = E z" =
- = (G )k (25 @)oo

(where (a; ¢)oo = [[g>1(1 — aq’) and (a; ) = (a:¢)oo/(aq; ¢)c0) to obtain

Lq(@)4(B)
Ly(a+B) 7

where I'y is the g-gamma function [5] and ¢, 8 € C such that Re(«) > 0, -3 ¢ {0,1,2,... }. Assuming
that ¢ is real and Re(3) > 0 one can take the ¢ — 1~ to obtain (1.3).

The Macdonald polynomials Py (x; g, t) [8] satisfy a well-known generalisation of the g-binomial the-
orem [7,9]

1
/ t*7 N tq; q)p—1 dgt =
0

a (a;q,t)x (azi;q)
(0] ;q,t;x} = N2 py T;q,t) = — 3.1
o |:_ Z)\: C&(qvt) ( ) 11;[ (‘rMQ)oo

where n(A) = Yo (i — )N, (a;5¢,6)x = [[;5,(at' 7% q)x, and ¢} (g, ¢) is a generalisation of (g; q)x,
standard in Macdonald polynomial theory. Writir_lg (3.1) as a g-integral and taking the ¢ — 1~ limit yields
the Selberg integral (1.1).

To obtain the more general A,, Selberg integral the g, t-binomial theorem (3.1) needs further general-
isation. Because this sum is significantly more difficult to describe than (3.1) we will not state it here in
full generality. We remark however that the summand depends on n partitions, each attached to a different
Macdonald polynomial. When all Macdonald polynomials are principally specialised one obtains

n ks—ks—1 idstk. etk =1
®o|“sq.t;2, 2™ =TT I (a2 -zt Tothomt bl gy
120 @B (25 - - zptitotha 1t Fhn1—n—1, o)

s=1 =1 s " e

.. Zrti+‘g_T+k'9’1+m+k’r_kr+1_2; q)oo

< 11 10t
(25 - - - ptiTs ko1t the—1=1; ) ’

1<s<r<n—1 i=1 o0

where 1 @ is a suitable A,, generalisation of the series in (3.1), ky = 0 and () = zs(1,t, ... ,tks=1) for
1 < s < n. Itis this g, t-binomial theorem that gives rise to Theorem 1.2.

4 Two simple examples

To conclude we present the worked-out examples of the A,, Selberg integral for

Lo (kyyeoo k1, kn) = (1,..., 1, k)
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2. y=0.

Note that in (1) we no longer use k to denote the number of integration variables (i.e., the sum of the k;).
Also note that (1) for £ = 1 corresponds to (1.6).

4.1 Thecase (ki,...,kn_1,kn) =(1,...,1,k)

In this case there is only one map M for 1 < s < n — 2, corresponding to the identity map M, (1) = 1.
For s = n — 1, however, there are k different maps, given by M,,_1(1) = afor1 < a < k.

If we relabel the integration variables tgs) —ugforl <s<mn-—1and tg") — t; for 1 < i < k, then
the above implies the inequalities

OZ: 0<un71§"'§u1§17

with 1 < ¢ < k and to = 1. As aresult we obtain the following (k + n — 1)-dimensional integral:

k.
sin(m(k — €4 1)y
1_ 51—1 ta 1 [377—1 ti —t; 2y
Z sin(mk~y) /O H ui) H H ( )
=1 £ =1 1<i<j<k
n—2 (-1 k
X H(ul — UH_l),,y H(tl — un_1)7W H(Un_l — ti)7’y dudt
i=1 i=1 i=¢
k . .
_ Ilo+ (i — 1)y)T (i)
—T(1— k)21~ )
E L'(v)
« s [(Bn+ (i — 1)y ﬁ B+ + B + (1 —1i)y)
R Y CR (z+k—2 St Dai+prt-+ B —iv)
where a; = -+ = ap_o = l,ap_1 = 1—(k— 1)y, a, = a+ kv, du = duy ---du,—; and dt =
dtq - - - dig.

Let us denote the left-hand side of the above by I),_1 x(c; B, ..., Bn;y). Nextlet n > 3 and replace
the integration variable u; by v via

Up — U2

- 1-— U ’
Noting that 1 — u; = (1 — v)(1 — u2) and u; — ug = v(1 — ug) the integral over v may be identified as
Euler’s beta integral (1.3) with a = 1 — . Therefore

I'(1—)I'(B)

Infl,k(a;ﬁla cee 7ﬁn;’y) = n72,k(a;51 +52 _’77637 cee 7ﬁna7) F(ﬁl _ 'Y"’ 1) .
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Iterating this recursion it follows that I,,_; j can be reduced to I j, given by

k sin(m(k — €+ 1))
(L—w) et — )Pt (ti —t;)>
Zl sin(rky) /' H 1<E<k
k
th—u Hu—ti)77dudt
=L
_PBYFA—ky) Tla+pB2+(2k—-2)y) TG+ ﬂz -7)
P+ B —ky) D+ B+ B2+ (k=2)y) T(B2 + (k= 1)7)
Rt = DD, + (i = D))
=t Dla+pfe+(i+k—2)y)0()
where

Op: 0<tp<--<ty<u<ty;<---<t; <1

4.2 Thecase~y =0
When v = 0 Theorem 1.2 collapses to the integral

/ HH (1— )~ H(tﬁ"))o“1 dt® ... qr™

s=1i=1 =1
_ (ﬂ‘; -+ Bn) Fo—kom
‘1} ( T(a+ B + -+ﬁn)) ’

where A is given by the v — 0 limit of (2.3). Because the tl(fg) in the integrand are completely decoupled
the problem of evaluating this integral is purely combinatorial. Introducing the partitions A(*) for 1 < s <
n—1as \®) = (M,(ks), ..., M(1)) so that \(*) has exactly k, parts and )\ES) <ksy1—i+1they=0
integral may also be stated more explicitly as

n—1 kg .
> I
AL A1 s=1i=1 kayr —it+1
1§>\55)§ks+1—i+1

n ks K
x /H (1= ) L) )
s=11i=1 i=1

(ﬂ‘;"' +5n) Fo ko
_H ( L(a+ Bs + -+ﬁn)) ’

where the integration domain is given by

s+1 s s s+1
maX{tf\gf),)Hl’tEJr)l} <t 5 *) < mln{tg )1’t§\,(j) )1+1 1} (4.1a)
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for1<s<n-—1landl<i<k, (witht{ =1and ¢

k.41 = 0),and

&) <t <o) (4.1b)

forl <i<k,.
Thanks to the factor []"Z} TT%, (kss1 — i — \; + 2) we may relax the condition A <k —it1
to Aﬁ” < kg41 so that the sum becomes

A Ar=1)
1A=k,
AP <o

This result may be proved by elementary means using the following representation of the elementary
symmetric function:

n T

RCEDIN | e | (EERELIENER I

A =1
L(N)=r
>\1 Sn
with g = 0, z = (21, ..., 2,), m; the multiplicity of the part j in A.
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