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The axioms of a quasi-Lie algebra are stated, followed by the definition of a non-
degenerate quasi-Lie algebra which is given in the framework of Hopf algebra the-
ory. Some quantum Lie algebras are shown to be examples of non-degenerate
quasi-Lie algebras and a method of testing for this non-degeneracy is outlined. It
is shown that non-degeneracy implies uniqueness of the symmetriser. For quantum
Lie algebras this is surprising since classically several symmetrisers are known to

exist.

1 Axioms for Quasi-Lie Algebras

An object L in a quasi tensor category equipped with functorial morphisms
p:Le®L—L (quasi-Lie product) and v : L® L = L ® L (symmetriser) is
called a quasi-Lie algebra if the following hold:

po = —qu )
kery C ker (2)
ppel)=plepyel) (3)

ex number and 0 : L ® I, — L ® L satisfies the braid

where ¢ is some compl
rty and condition(3)

relation. Condition(1)isa generalised antisymmetry prope

is a generalised J acobi identity.
In what follows, we shall take the quasi tensor category t0 be the category

of H-modules, where H is a quasi-triangular Hopf algebra.

2 Quasi-Lie Algebras from Quasi-Triangular Hopf Algebras
This section shows how the theory is developed in the framework of Hopf
algebras, which lead to the examples of quantum Lie algebras .

Let (H,R) be a quasi-triangular Hopf algebra with universal R-matrix R.
Let L be an irreducible H _module such that L®L is completely reducible and
there exists a non-zero H-module homomorphism 4 : L ® L — L satisfying
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po = —qk where ¢ = PR is the braid generator arising from the universal
R-matrix and P, as usual, denotes the permutation operator on L ® L.

Now let {af} be a basis for L* dual to the basis {a;} for L so that
&= Z ar ® ay,
k

gives rise to the identity representation of H:
A(z)€ = &(@)§,

Yz € H, where we take A to be the co-product of H and € to be the co-
unit. Under the previously mentioned assumptions on L, we have the following

result.

LEMMA 1 pa®L)=0=a=0, Va € L.

proof Consider fi: L — L ® L* defined by f(a) = (1 ® 1)(a®§). Then iisa
module morphism with ker i = {a€Llp@a® L) = (0)}. Since L is irreducible
and ker[i is a non-zero’ H-submodule of L, we must have that kerz = (0),

hence the result. B
Note: (1) This results indicates that any -y satisfying condition(3) will imme-

diately satisfy condition(2)-

2.1 Splitting Morphisms and Projected Symmetrisers

THEOREM 1 L is a quasi-Lie algebra with (non-trivial) product p if and
only if there ezists a (non-trivial) splitting morphism § € hom(L, L ® L) satis-
fying '

: p(l®p)(d®1) = p. 4)

In such a case, L is a quasi-Lie algebra with symmetriser Yo = S such that

ker yp = ker pi.
proof If we multiply equation(4) on the right by 4 ® 1 we obtain the Jacobi
identity with symmetriser Yo- Considering ker p € kero and the result of
LEMMA(1), we have a quasi-Lie algebra structure with ker u = ker~yo. Con-
versely, there exists 2 splitting morphism §:L - L ® L such that uS = I
(where I, is the identity on L) since ker p must split in L& L. Hence, supposing
a quasi-Lie algebra structure, we multiply the Jacobi identity

ppel) =p(low(rel)

on the right by 5®1 to obtain equation(4) with §=vb¢€ hom(L, L®L). Hence
in this case L is a quasi-Lie algebra with symmetriser Yo- However, v # 7o in
general. O
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Tt is worth noting that by Schur’s lemma, ué = alr, where e is a complex
constant. Thus o satisfies ¢ = a7y and ker-yy = ker u. We call such a v a
projected symmetriser.

2.2 Non-Degeneracy
Introduce the following subspace of L & L:
V={ae Lo Lip(leopw@eL)=(0)}
Let f: L ®L— L®L* be defined by
fla; ®a;) Zul@u)(az@)a]@ak)@ak
= [u(l ®u) ®1)(a; ®a; ®§). ()

Then f is easily seen to give rise to a module morphism with ker f = V.
To define non-degeneracy, we say that u is non-degenerate if

V = (0).

A quasi-Lie algebra is called non-degenerate if it is equipped with a non-
degenerate quasi-Lie product.

We now show that if L is non-degenerate then it necessarily has a umque
structure. Consider the Jacobi identity for L with symmetriser +:

plep)(y®l)=ppel)

which can be written in the form | :
Ff(v(ai ®a;)) = gla;®a;) € L®L"

with f as given by (5) and ¢ : L ® L — L ® L™ the morphism defined by

gla: ® aj)-

ST up®1) (e ®a; ® ax) ® ag
k

b(p 1) @ 1)(a: B a; ®E). ®

Il

Then, by non-degeneracy, f determines an isomorphism and so admits an
inverse morphism ™' : L ® L* — L ® L satisfying f~ “1f = Iygr. Thus 7 is
uniquely determined by

F~g(a: ® ay) (7)
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v(e: ® aj) =




ond is a morphism, since f -1 and g are both morphisms.
We have already seen (note (1)) that kervy C ker p. Moreover,

5ekerp= (0)=p(1® (@ L)
= (@) eV =(0),

so ker p C kery and hence ker p = kery. We have therefore provéd the follow-
ing theorem.

THEOREM 2 If L is non-degenerate then i gives rise to G unique gquasi-Lie
algebra structure with unique symmetriser 7. Moreover ker u = ker .

O
Since we have shown that the symmetriser is unique in this case, by THE-
OREM 1 we must have that the symmetriser is in fact the projected symmet-

riser.

9.9 Testing for Non-Degeneracy

In terms of structure constants Cj- o (D)8 expressible

Flas®ag) = 3 pla: © ula; @ 0x)) @ 5
k

= A:J’” ar ® aj,
where A denotes the (dim I)? x (dim L)* matrix

rhk _ 7 il
Aij - E ;Cilcjk:
l

with the rows of A determined by the indices rk and the columns determined
by the indices iJ. Tf A is non-singular then this is equivalent to the existence of
the morphism f -1 Hence L is non-degenerate if and only if A is non-singular.
This gives a useful method of checking non-degeneracy from the structure
constants. Also, we can express (6) in terms of structure constants by

olai @ag) = 3 wlula: ® 05) ® ax) S I
| - .

_rioor . ®
= C};Cixar @ 0

_ Rtk *
= ,B,l"7 (228 ®Cbk
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where B denotes the singular (dim L)? x (dim L)? matrix
Bif =3 Ci;Cl
1

with the rows of B determined by the indices 7k and the columns determined
by the indices ij. By writing the matrix elements of v as 'y,f;-jl, ~ becomes the
(dim L)? x (dim L)? matrix with columns given by the indices ij and the rows
given by i'j'.

So, provided A~} exists, we have v uniquely determined by the matrix

equation (cf. equation (7))
v=A"!B.

3 Conclusions

This procedure has been tested for the following quantum Lie algebras from
the classical series: Ayg, Asg, Bigs Bag, Cigs Cagy Dag- We find that for all of
these quantum Lie algebras, the matrix A has a non-zero determinant except
for Day. This is still consistent with our theory since Ds, is not irreducible.
Therefore, for all the cases given above, with the exception of Dyg, the quantum
Lie algebra is non-degenerate and hence we can obtain a unique symmetriser
which is precisely the projected one. This seems surprising since in the classical
case there are in general several symmetrisers. It is worth noting that the
procedure relies on the action of p having been calculated, which has already
been doné? for Ay, Big, Cig and Dyg.
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