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alley al’i , (English) noun: a passage; a narrow lane.

allée a-lā, (French) noun: an avenue, walk or garden path.

Allee, Warder Clyde (1885-1955): US zoologist / ecologist.

Allee Effect: The population growth rate is
negative for small population density (0 < x < A)

positive for moderate population density (A < x < K)

negative for densities above carrying capacity (x > K)

. . . as exemplified by the simple model

dx

dt
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A
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Colonization and extinction happen in distinct, successive
phases.

t− 1 t t+ 1 t+ 2

We will we assume that the population is observed after
successive extinction phases (CE Model).
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Colonization and extinction happen in distinct, successive
phases, as independent trials.

Colonization: unoccupied patches become occupied
independently with probability f(n−1

∑n

i=1X
(n)
i,t ), where

f : [0, 1] → [0, 1] is continuous and increasing with f(0) = 0

and f ′(0) > 0.

Extinction: occupied patch i remains occupied
independently with probability si (fixed or random).
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We have a Chain Bernoulli structure:

X
(n)
i,t+1

d
= Bin

(

X
(n)
i,t + Bin

(

1−X
(n)
i,t , f

(

X̄
(n)
t

)

)

, si

)

,

where X̄
(n)
t = 1

n

∑n

j=1X
(n)
j,t .

Clearly, then, X(n)
i,t+1 has the same distribution as the sum of

two Bernoulli random variables:

X
(n)
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d
= Bin

(

X
(n)
i,t , si

)
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(

1−X
(n)
i,t , si f

(
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(n)
t

)

)

.

(This is Equation (2) of our paper.)
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If (i) the survival probabilities (si) are iid with distribution σ

(which we call the survival distribution) and (ii) given the
(si), the initial occupancies are independent with
Pr(X

(n)
i,0 = 1|si) = p(si) for some function p, then (Theorem 1

of our paper)
1
n

∑n

i=1X
(n)
i,t

p
→ lt as n → ∞,

where lt is non-random. The proportion occupied becomes
less random as the number of patches increases.

We then study long-term (t → ∞) behaviour by examining
the stability of the system (lt(k)). In particular, lt → ?
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The non-concave f we used
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