A RANDOM GRAPH

The construction. A random (undirected)
graph with n vertices is constructed in the
following way: pairs of vertices are selected
one at a time in such a way that each pair has
the same probability of being selected on any
given occasion, and, each selection is made
independently of previous selections. If the
vertex pair {x,y} is selected, then an edge is
constructed which connects x and y.

Are multiple edges possible? In my model,
yes! For example, if the vertex pair {z,y}
were to be selected k£ times, there would be
k edges connecting = and y: a multiple edge

contributing (g) cycles of length 2.



ASYMPTOTIC BEHAVIOUR

Suppose that m edges have been selected. We
shall be concerned with the behaviour of the
graph in the |limit as n and m become large,
but in such a way that m = O(n).

The problem. Our problem is to deter-
mine the limiting probability that the graph is
acyclic.

Motivation. Havas and Majewski* present an
algorithm for minimal perfect hashing (used for
memory-efficient storage and fast retrieval of
items from static sets) based on this random
graph. Their algorithm is optimal when the
graph is acyclic.

*[HM] Havas, G. and Majewski, B.S. (1992), Optimal
algorithms for minimal perfect hashing, Technical
Report No. 234, Key Centre for Software Technology,
Department of Computer Science, The University of
Queensland.



WHY ACYCLIC?

Consider a set W of m words (or keys). Every
bijection h : W — I, where I = {0,...,m — 1},
is called a minimal perfect hash function. HM
find hash functions of the form

h(w) = (9(f1(w)) 4+ g(f2(w))) modm;

f1, f> map keys to integers (they identify the
pair of vertices of the graph corresponding to
the edge w) and g maps integers to I.

Given f1 and fo, can g be chosen so that A is
a bijection?

If the graph is acyclic then, yes, it is easy to
construct g from h. Traverse the graph: if
vertex w is reached from vertex u then set

g(w) = (h(e) —g(u)) modm,

where e = (u, w).



EFFICIENCY

HM's algorithm generates f; and fo at random
until an acyclic graph is found:

|wl

fr(w) = | > Tp(Dwli] | modm,
i=1

where T7 and 15 are tables of random integers
and wli] denotes the i-th character (an integer)
of key 1.

The efficiency of the algorithm is determined
by the probability p(”) that the graph is acyclic:
the expected number of iterations needed to
find an acyclic graph will be 1/p(™) (typically
between 2 and 3).



EVALUATING p(™)

Theorem. If n and m tend to oo in such a way
that m ~ cn, where c is a positive constant, the
limiting probability p that the graph is acyclic
IS given by

e/T—2¢ if0<e<1/2
p:
0 if¢>1/2

Proof. On request. It uses results from [HM]
and Erdos and Renyi*.

*[ER] Erdos, P. and Renyi, A. (1960). On the evolution
of random graphs. Publ. Math. Inst. Hung. Acad.
Sci. b, 17-61.



SKETCH PROOF

Let X,g”) be the number of cycles of length k
and let p{™ = Pr(x{™ = 0). Following [HM]
write

O
p(n)z legn), n=273,....
k=2
Now let q,g”) = —log p,g"’), so that 0 < q,gn) < 00

and

p{™) = exp (— 3 q,ﬁ”))  n=203....
k=2

ER show that the distribution of X,g”) is
asymptotically Poisson: in particular,

lim p(”) = e M, where )\, = (2¢)*/2k.

n—aoao k



It follows that

1im i = —log (nleoop,gn>) =\
So, formally,
— (n) _ -+ (n) _ v
ot k2=:2 L 22 o kgz 0

and hence

oo
im p(™ =e=* where A= > X, (1)

Nn— 00
k=2

By Fatou’'s Lemma, we always have

— (n) < — (n) _ w—
iminf 2 a0 = 2 iminfet = 2 A,

from which it follows immediately that

lim supp(”) <e A

n—oo
this argument is valid even if the sum in (77)
is divergent. We deduce immediately that if
c>1/2, pi™ = o0.



When ¢ < 1/2, we have 0 < A\ < 1 and

)\—i)\——c—l—lln( 1 >
= 2 \1-2¢/) "

From Markov’'s inequality we have Pr(X,g”)
1) < EX™ and so p{™ = Pr(x"™ = 0)
1 - EX,S”’). By Lemma 2 of [HM], we have,

for each fixed k£ > 2, that EX,E”) T A, as
n — oo. In particular, for each k& > 2, the
sequence {EXIS”)} is bounded above by ..

It follows that {ql(cn)} is bounded above by
d = —1og(1 — A\;). Further, since A\ < 1,

i d;, = — 10g (ﬁ (1—>\k)> < 00.
k=2 k=2

Thus, by Dominated Convergence, we have

Jim S g =3 lim g =2,

n—aoeo

k=2 k=2

AVAAV,

and, hence, p{®) — e,



THE FIVE STAGES OF
EVOLUTION



PRIMORDIAL STEW: m(n) = o(n)

If m(n)/n — 0, then (with limiting probabil-
ity 1) all components are trees.

Trees of order k appear when m reaches order
n(k=2)/(k=1) ~ In particular, T, the number
of trees of order k, has a (limiting) Poisson
distribution with mean X\, = (2p)F~1kk=2/k!,
where

= lim m(n)n(k_l)/(k_Q).

Finally, if m(n)n(k—1)/(k=2) _, o5 the number
of trees of order k is asymptotically normally
distributed with mean and variance equal to

k=2 <2m(n)> . e—ka(n)/n.

Hn =— N

k! n

To be precise, (T, — pn)/~/in = N(0,1). This
result holds in the next two stages of evolution;
we only require pup, — oo.

10



SPOOKY: m(n) ~ cn, where
O<ec<1/2

Cycles of all orders start to appear: C), the
number of cycles of order k, has a (lim-
iting) Poisson distribution with mean )\, =

(20)%/(2K).

Furthermore, with limiting probability 1, all
components are either trees or consist of
exactly one cycle (k vertices and k edges), the
latter having a Poisson distribution with mean

(2ce20)k =3 ki
T

Ak

Y

where k is the order of the cycle.

The largest component is a tree; it has
1

2c— 1 —1og2c

vertices (with probability tending to 1).

5
(Iog n — 5 log log n)
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A MONSTER APPEARS:
m(n) ~ cn, where ¢ > 1/2

When m(n) ~ n (¢ = 1/2), the largest
component has (with probability tending to 1)
n2/3 vertices. When m(n) ~ cn with ¢ >
1/2, a giant component appears: the largest
component in the graph has G(c¢)n vertices,
where G(c) =1 — X(¢)/2¢c and

oo 1—1

X(@)=Y -

1
’l::l Z-

Note that G(1/2) =0 and G(¢) — 1 as ¢ — oo.

(2ce™2%)" .

Almost all the other vertices belong to trees:
the total number of vertices belonging to trees
is almost surely n(1 — G(c¢)) 4+ o(n).

For ¢ > 1/2, the expected number of compo-
nents in the graph is asymptotically

2% (X(c) _ %XQ(C)) |
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CONNECTEDNESS:
m(n) ~cnlogn, where 0 <c<1/2

The graph is becoming connected: if

k—1
m(n)zgklogn—l— . nloglogn + an + o(n),
then (with probability tending to 1) there are
only trees of order < k outside the giant
component, the limiting distribution of the
number of trees of order [ being Poisson with

mean e 2% /(1.11). For example (k= 1), if

m(n) = g logn + an + o(n),

there are (almost surely) only isolated vertices
outside the giant component, the number of
these having a Ilimiting Poisson distribution
with mean e 2%, And, the chance that the
graph is indeed connected tends to exp(—e2%)
(which itself tends to 1 as a grows).
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ASYMPTOTIC REGULARITY:

m(n) ~w(n)nlogn, where w(n) — oo

The whole graph becomes regular: with prob-
ability tending to 1, the graph becomes con-
nected and the orders of all vertices are equal.
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