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We will we assume that the population is observed after
successive extinction phases (CE Model).
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phases, as independent trials.

Colonization: unoccupied patches become occupied
independently with probability c¢(n=!' >, XZ.("Z)), where
c:[0,1] — [0, 1] Is continuous, increasing and concave.

Extinction: occupied patch i remains occupied
iIndependently with probability s; (fixed or random).
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n = 30, s; ~Beta(25.2, 19.8) (Es; = 0.56) and ¢(x) = 0.7z
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In the homogeneous case, where sZ = s (hon-random) Is

the same for each i, the number N ) of occupied patches
at time ¢ is Markovian.

It has the following Chain Binomial structure:

t(+)1 — Bln( N 4 Bln(n - Nt(n),c(%]\ft(n))),s)




Lettmg the initial number N ) of occupied patches grow
with n .

Theorem [BP] If N /n 2 2o (a constant), then
NYm Loz, forallt>1,
with (z;) determined by x;,1 = f(2¢), Where

flz) = s(z + (1 = z)e(x)).

[BP] Buckley, EM. and Pollett, P.K. (2010) Limit theorems for discrete-time
metapopulation models. Probability Surveys 7, 53-83.




zer1 = f(zy), where f(z) = s(z + (1 - z)e(x)).
Stationarity: ¢(0) > 0. There is a unique fixed point
v* € [0,1]. It satisfies z* € (0,1) and Is stable.

Evanescence: ¢(0) =0and 1+ ¢'(0) < 1/s. Now 0 Is the
unique fixed point in [0, 1]. It is stable.

Quasi stationarity: ¢(0) =0 and 1+ ¢’(0) > 1/s. There are
two fixed points in [0, 1]: 0 (unstable) and «* € (0, 1) (stable).

[Notice that ¢(0) = 0 implies that ¢’(0) > 0.]
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CE Model simulation (n =100, s =0.56, ¢(z) = cx with ¢ =0.7)

1008 T T

90

80

70

60

50

40

Number of occupied patches

30

20

30

-_-_-_-_-_-_-_-_-_-_-L-_-_L-_LL-J_LL-_-_L-_ILL-_-_-_-_-_-LL-_-_,

35

40

45

50



Number of occupied patches

CE Model simulation (n =100, s =0.8, ¢(z) = cx with ¢ =0.7)

100

80

70

50

30

~

..fo
o P

100




Returning to the general case, where patch survival
orobabilities are random and patch dependent, and we
Keep track of which patches are occupied ...

Xz(t)H:Bln( ()+B|n( X\ el > X )) )
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Xz(t)H:Bln( ()+B|n( X\ el > X )) )

Assume now that ¢(0) = 0 and ¢’(0) > 0.
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The aim is to determine conditions under which a
metapopulation that is close to extinction may recover with
positive probability.




Fix the initial configuration x\" and let n — .

The aim is to determine conditions under which a
metapopulation that is close to extinction may recover with
positive probability.

First notice that if ¢ has a continuous second derivative
near 0, then, for fixed m, Bin(n — m, ¢(m/n)) 4 Poi(Am) as
n — oo, Where A = ¢’(0). So, If every patch had the same
survival probability, then we might expect the number of

occupied patches Nt(’”’) to converge to a Galton-Watson
process (see [BP] for details).
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Treat the collection of patch survival probabilities of
occupied patches at time ¢ as a point process on [0, 1).

Define (St(”), t>0) by St(”) = {s; : X.(Z’) = 1}.

L,

Extinction of the metapopulation by time ¢ corresponds to
the event that St(”) is the empty set.

The aim Is to show that there Is a point process S; such that
St(”) = S; as n — oo and to evaluate lim;_,, Pr (S; = 9).




Define the probability generating functional (p.g.fl) of St('”’) by

Gstm) (&) = E(Hsesp §(5)),

where ¢ : [0,1) — [0, 1] Is some Borel function [DVJ,
Definition 9.4.1V]. It determines the point process uniquely
IDVJ, Theorem 9.4.V]. This, together with [DVJ, Theorem

11.1.VIlI], establishes that St(”) = S;. Furthermore,

Pr (5S¢ = &) = limy, o Gy, (1p(2)).

[DVJ] Daley, D. J. and Vere-Jones, D. (2008) An Introduction to the Theory of Point Pro-
cesses. Volume II: General Theory and Structure, 2nd Edn., Springer, New York.




Theorem Suppose there is a probability measure o on
0,1) such that, for all £ > 1,

1 < :
— g sF 5 5y = tFo(dzx),
n 4 0

1=1

as n — oo. Then, St(”) converges weakly to a point process
St whose p.g.fl satisfies the recursion G, () = G, (he)

(t > 0), where h¢ Is given by

1
he(z) = (1 — 2 + x€(7)) exp (—C’(O) /0 y(1—£&(y)) U(dy)> -




Theorem S; eventually becomes empty with probability 1
(S; = @ for some ¢ > 0) if

1
c'(o)/o Y o(dr) < 1.

1l —=x

Otherwise, it eventually becomes empty with probability
G, (9), where
(1 —x)

1 —x
with ¢ (< 1) being the unique solution to

1
Y = exp (—C’(O)/O 8 : Zi);) 0(dx)> .

g(x) =
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