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Menuetto al rovesci

Joseph Haydn’s Sonata No. 4 for Violin and Piano (piano
part only) Menuetto al rovescio
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Motet Diliges Dominum

William Byrd’s motet Diliges Dominum
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Hammerklavier Sonata

Beethoven’s Piano Sonata No. 29 in B flat, Op. 106
(“Hammerklavier”), Last movement (fugue) Allegro risoluto
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Canon cancrizans

J.S. Bach’s Das Musikalische Opfer (The Musical Offering),
BWV 1079, Canon 1. a 2 cancrizans
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Canon cancrizans
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Setting

(Ω,F , P) is our carrier triple.

(Xt, t ∈ T ) will denote a stochastic process with (ordered)
parameter set T and state space (E, E). (T would usually be
“time”: Z or Z+, or, R or R+.)

The “elementary picture” is: for each t ∈ T ,

Xt : Ω → E and X−1
t : E → F ,

with Xt with F-measurable.

We shall assume that E includes all point sets of E, that is,
for all x ∈ E, {x} ∈ E. At this stage, we make no further
topological assumptions about the measurable space (E, E).
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The time reverse process

Definition. Let (Xt, t ∈ T ) and (X∗
t , t ∈ T ) be two stochastic

processes with the same parameter set T and the same
state space (E, E). We say that X∗ is a time reverse of X if,
for any finite sequence t1 < t2 < · · · < tn in T such that

tn − tn−1 = t2 − t1, tn−2 − tn−1 = t3 − t2, . . . ,

and for any A1, A2, . . . , An ∈ E,

P (Xt1 ∈ A1, . . . , Xtn
∈ An) = P

(

X∗
t1 ∈ An, . . . , X∗

tn
∈ A1

)

.

We say that X is time reversible if

P (Xt1 ∈ A1, . . . , Xtn
∈ An) = P (Xt1 ∈ An, . . . , Xtn

∈ A1) .
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The time reverse process

In particular, for all A,B ∈ E and t, u ∈ T ,

P (Xt ∈ A,Xu ∈ B) = P (X∗
t ∈ B,X∗

u ∈ A) .

On taking B = E, we see that P (Xt ∈ A) = P (X∗
u ∈ A), which

implies π(A) := P (Xt ∈ A) = P (X∗
t ∈ A) (the same for all t).
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The time reverse process

In particular, for all A,B ∈ E and t, u ∈ T ,

P (Xt ∈ A,Xu ∈ B) = P (X∗
t ∈ B,X∗

u ∈ A) .

On taking B = E, we see that P (Xt ∈ A) = P (X∗
u ∈ A), which

implies π(A) := P (Xt ∈ A) = P (X∗
t ∈ A) (the same for all t).

Conclusion. The above definition only makes sense if X∗

and X are stationary with the same stationary law π.
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The time reverse process

In particular, for all A,B ∈ E and t, u ∈ T ,

P (Xt ∈ A,Xu ∈ B) = P (X∗
t ∈ B,X∗

u ∈ A) .

On taking B = E, we see that P (Xt ∈ A) = P (X∗
u ∈ A), which

implies π(A) := P (Xt ∈ A) = P (X∗
t ∈ A) (the same for all t).

Conclusion. The above definition only makes sense if X∗

and X are stationary with the same stationary law π.

Example. Brownian motion has no time reverse.
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The time reverse process

In particular, for all A,B ∈ E and t, u ∈ T ,

P (Xt ∈ A,Xu ∈ B) = P (X∗
t ∈ B,X∗

u ∈ A) .

On taking B = E, we see that P (Xt ∈ A) = P (X∗
u ∈ A), which

implies π(A) := P (Xt ∈ A) = P (X∗
t ∈ A) (the same for all t).

Conclusion. The above definition only makes sense if X∗

and X are stationary with the same stationary law π.

Example. Brownian motion has no time reverse.

Exercise. Think of a diffusion that does have a time reverse.
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Transition function

pt(x, A) = P(Xs+t ∈ A|Xs = x)
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The time reverse of a Markov process

Definition. If (E, E) is a measurable space, then a transition
function p = (pt, t ≥ 0) on (E, E) is a family of mappings
pt : E × E → R+ with the following properties:
(1) for all A ∈ E, pt(·, A) is an E-measurable function,
(2) for all x ∈ E, pt(x, ·) is a subprobability measure on (E, E)

(that is, a measure on (E, E) with pt(x,E) ≤ 1),
(3) the Chapman-Kolmogorov equation holds, that is, for all
x ∈ E and A ∈ E, ps+t(x,A) =

∫

E ps(x, dy)pt(y, A), s, t ≥ 0, and

The transition function p is called honest if, for all x ∈ E and
t ≥ 0, pt(x, ·) is a probability measure (pt(x,E) = 1).
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The time reverse of a Markov process

It is “usual” to have p0(x,A) = IA(x) (x ∈ E, A ∈ E), but we
certainly do not require limt↓0 pt(x,A) = IA(x).
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The time reverse of a Markov process

It is “usual” to have p0(x,A) = IA(x) (x ∈ E, A ∈ E), but we
certainly do not require limt↓0 pt(x,A) = IA(x).

Interpretation. For an honest transition function p there
always exists a (time-homogeneous) Markov process
(Xt, t ≥ 0) with pt(x,A) = P(Xs+t ∈ A|Xs = x) (s, t ≥ 0, A ∈ E).

(If p is dishonest, then we can append a coffin state ∂

making p honest over (E∂ , E∂), where E∂ = E ∪ ∂.)
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The time reverse of a Markov process

It is “usual” to have p0(x,A) = IA(x) (x ∈ E, A ∈ E), but we
certainly do not require limt↓0 pt(x,A) = IA(x).

Interpretation. For an honest transition function p there
always exists a (time-homogeneous) Markov process
(Xt, t ≥ 0) with pt(x,A) = P(Xs+t ∈ A|Xs = x) (s, t ≥ 0, A ∈ E).

(If p is dishonest, then we can append a coffin state ∂

making p honest over (E∂ , E∂), where E∂ = E ∪ ∂.)

If X has stationary law π, that is, P (Xs ∈ A) = π(A), s ≥ 0,
then, by Total Probability,

P (Xs ∈ A,Xt+s ∈ B) =
∫

A π(dx)pt(x,B) (s, t ≥ 0).

MASCOS MASCOS Colloquium, May 2006 - Page 12



The time reverse of a Markov process

Theorem 1. Let (Xt, t ≥ 0) and (X∗
t , t ≥ 0) be two Markov

processes on the same state space (E, E) with transition
functions p and p∗, respectively. Then, X∗ is the time reverse
of X if and only if

(1) X and X∗ are stationary with the same stationary law π.

(2) p∗ is the reverse of p with respect to π.

In particular (corollary! ), X is time reversible if and only if X

is stationary with stationary law π and p is reversible with
respect to π.

MASCOS MASCOS Colloquium, May 2006 - Page 13



The time reverse of a Markov process

Theorem 1. Let (Xt, t ≥ 0) and (X∗
t , t ≥ 0) be two Markov

processes on the same state space (E, E) with transition
functions p and p∗, respectively. Then, X∗ is the time reverse
of X if and only if

(1) X and X∗ are stationary with the same stationary law π.

(2) p∗ is the reverse of p with respect to π.

In particular (corollary! ), X is time reversible if and only if X

is stationary with stationary law π and p is reversible with
respect to π.

So, what do I mean by “p∗ is the reverse of p with respect to
π” and “p is reversible with respect to π”?
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The reverse transition function

Definition. Let p and p∗ transition functions on the same
measurable space (E, E), and let m be a measure on (E, E).
Then, p∗ is the reverse of p with respect to m if

∫

B
m(dx)pt(x,A) =

∫

A
m(dx)p∗t (x,B) (A,B ∈ E , t ≥ 0).

If p is its own reverse with respect to m, that is,
∫

B
m(dx)pt(x,A) =

∫

A
m(dx)pt(x,B) (A,B ∈ E , t ≥ 0),

then p is said to be reversible with respect to m.
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The reverse transition function

Some implications. Putting B = E we get
∫

E m(dx)pt(x,A) =
∫

A m(dx)p∗t (x,E) (A ∈ E , t ≥ 0).

Since p∗ is a transition function, p∗t (x, ·) is a subprobability
measure, we get

∫

E m(dx)pt(x,A) ≤
∫

A m(dx) = m(A) (A ∈ E , t ≥ 0).
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The reverse transition function

Some implications. Putting B = E we get
∫

E m(dx)pt(x,A) =
∫

A m(dx)p∗t (x,E) (A ∈ E , t ≥ 0).

Since p∗ is a transition function, p∗t (x, ·) is a subprobability
measure, we get

∫

E m(dx)pt(x,A) ≤
∫

A m(dx) = m(A) (A ∈ E , t ≥ 0).

We say that m is a subinvariant measure for p.
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The reverse transition function

Some implications. Putting B = E we get
∫

E m(dx)pt(x,A) =
∫

A m(dx)p∗t (x,E) (A ∈ E , t ≥ 0).

Since p∗ is a transition function, p∗t (x, ·) is a subprobability
measure, we get

∫

E m(dx)pt(x,A) ≤
∫

A m(dx) = m(A) (A ∈ E , t ≥ 0).

We say that m is a subinvariant measure for p. Moreover, m

is an invariant measure for p, that is equality holds,
∫

E m(dx)pt(x,A) = m(A) (A ∈ E , t ≥ 0),

if p∗ is honest.

MASCOS MASCOS Colloquium, May 2006 - Page 15



The reverse transition function

Conversely, if m is invariant for p, then
∫

A
m(dx) = m(A) =

∫

E
m(dx)pt(x,A) =

∫

A
m(dx)p∗t (x,E)

for all A ∈ E and t ≥ 0, that is,
∫

A
m(dx)(1 − p∗t (x,E)) ≥ 0 (A ∈ E , t ≥ 0),

So, if m is, additionally, a σ-finite measure, we may apply
Radon-Nikodym to showa that p∗ is m − a.e. honest , that is,
for all t > 0, p∗t (x,E) = 1 for m−almost all x ∈ E.

aI will write out the argument carefully later
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Markov chains

This is trivial for MCs. For example, the discrete-time,
discrete-state case . . ..
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Markov chains

This is trivial for MCs. For example, the discrete-time,
discrete-state case . . ..

Exercise. Let P = (p(i, j), i, j ∈ E) be a transition matrix and
let m = (m(j), j ∈ E) be a collection of positive numbers.
Define P ∗ = (p∗(i, j), i, j,∈ E) by p∗(i, j) = m(j)p(j, i)/m(i)

(i, j ∈ E). Show that P ∗ is a transition matrix whenever m is
invariant for P , that is,

∑

j∈E

m(j)p(j, i) = m(i) (i ∈ E).
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Markov chains

This is trivial for MCs. For example, the discrete-time,
discrete-state case . . ..

Exercise. Let P = (p(i, j), i, j ∈ E) be a transition matrix and
let m = (m(j), j ∈ E) be a collection of positive numbers.
Define P ∗ = (p∗(i, j), i, j,∈ E) by p∗(i, j) = m(j)p(j, i)/m(i)

(i, j ∈ E). Show that P ∗ is a transition matrix whenever m is
invariant for P , that is,

∑

j∈E

m(j)p(j, i) = m(i) (i ∈ E).

Exercise. Agree that the n-step transition matrices bear the
same relationship: m(i)p∗n(i, j) = m(j)pn(j, i) (i, j ∈ E).
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The reverse transition function

Question. Given a transition function p and a subinvariant
measure m on (E, E), can we always find a transition function
p∗ on (E, E) that is the reverse of p with respect to m? That is,

∫

B
m(dx)pt(x,A) =

∫

A
m(dx)p∗t (x,B) (A,B ∈ E , t ≥ 0).
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The reverse transition function

Question. Given a transition function p and a subinvariant
measure m on (E, E), can we always find a transition function
p∗ on (E, E) that is the reverse of p with respect to m? That is,

∫

B
m(dx)pt(x,A) =

∫

A
m(dx)p∗t (x,B) (A,B ∈ E , t ≥ 0).

Exercise. (Hint!) Let m be a σ-finite measure on (E, E).
Show that, for every B ∈ E with m(B) < ∞,
µB(·) :=

∫

B m(dx)pt(x, ·) is a finite measure on (E, E).
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The reverse transition function

Question. Given a transition function p and a subinvariant
measure m on (E, E), can we always find a transition function
p∗ on (E, E) that is the reverse of p with respect to m? That is,

∫

B
m(dx)pt(x,A) =

∫

A
m(dx)p∗t (x,B) (A,B ∈ E , t ≥ 0).

Exercise. (Hint!) Let m be a σ-finite measure on (E, E).
Show that, for every B ∈ E with m(B) < ∞,
µB(·) :=

∫

B m(dx)pt(x, ·) is a finite measure on (E, E).

Exercise. (Bigger hint!) Let m be a σ-finite measure on
(E, E) that is subinvariant for p. Show that, for every B ∈ E,
µB is a absolutely continuous with respect to m.
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The time reverse of a Markov process

Theorem 1. Let (Xt, t ≥ 0) and (X∗
t , t ≥ 0) be two Markov

processes on the same state space (E, E) with transition
functions p and p∗, respectively. Then, X∗ is the time reverse
of X if and only if

(1) X and X∗ are stationary with the same stationary law π.

(2) p∗ is the reverse of p with respect to π.
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The time reverse of a Markov process

Theorem 1. Let (Xt, t ≥ 0) and (X∗
t , t ≥ 0) be two Markov

processes on the same state space (E, E) with transition
functions p and p∗, respectively. Then, X∗ is the time reverse
of X if and only if

(1) X and X∗ are stationary with the same stationary law π.

(2) p∗ is the reverse of p with respect to π.

Proof. Suppose X∗ is the time reverse of X.
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The time reverse of a Markov process

Theorem 1. Let (Xt, t ≥ 0) and (X∗
t , t ≥ 0) be two Markov

processes on the same state space (E, E) with transition
functions p and p∗, respectively. Then, X∗ is the time reverse
of X if and only if

(1) X and X∗ are stationary with the same stationary law π.

(2) p∗ is the reverse of p with respect to π.

Proof. Suppose X∗ is the time reverse of X. We have
already seen that X and X∗ are necessarily stationary with
the same stationary law π, and that

P (Xs ∈ A,Xt+s ∈ B) =

∫

A
π(dx)pt(x,B) (A,B ∈ E , s, t ≥ 0).
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The time reverse of a Markov process

Thus, for all A,B ∈ E, s, t ≥ 0,
∫

A
π(dx)pt(x,B) = P (Xs ∈ A,Xt+s ∈ B)

= P
(

X∗
s ∈ B,X∗

t+s ∈ A
)

=

∫

B
π(dx)p∗t (x,A).
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The time reverse of a Markov process

Thus, for all A,B ∈ E, s, t ≥ 0,
∫

A
π(dx)pt(x,B) = P (Xs ∈ A,Xt+s ∈ B)

= P
(

X∗
s ∈ B,X∗

t+s ∈ A
)

=

∫

B
π(dx)p∗t (x,A).

Conversely, if (1) and (2) hold, then, as we have already
seen, π is an invariant measure for p (and for p∗):

∫

E
π(dx)pt(x,B) = π(B), π(A) =

∫

E
π(dx)p∗t (x,A).
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The time reverse of a Markov process

Therefore, for any t1 < t2 < · · · < tn in T such that
tn − tn−1 = t2 − t1, tn−2 − tn−1 = t3 − t2, . . . , and for any
A1, A2, . . . , An ∈ E,

P (Xt1 ∈ A1, . . . , Xtn
∈ An) =

∫

E π(dx)
∫

A1

pt1(x, dx1)
∫

A2

pt2−t1(x1, dx2) . . .
∫

An
ptn−tn−1

(xn−1, dxn).

Since π is invariant for p, this becomes

∫

A1

π(dx1)
∫

A2

pt2−t1(x1, dx2) . . .
∫

An
ptn−tn−1

(xn−1, dxn)

=
∫

An
π(dxn)

∫

An−1

p∗tn−tn−1
(xn, dxn−1) . . .

∫

A1

p∗t2−t1(x2, dx1),

repeatedly applying
∫

A π(dx)pt(x,B) =
∫

B π(dx)p∗t (x,A).
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The time reverse of a Markov process

Now use tn − tn−1 = t2 − t1, tn−2 − tn−1 = t3 − t2, . . . , together
with the fact that π is invariant for p∗, to complete the proof:

P (Xt1 ∈ A1, . . . , Xtn
∈ An)

=
∫

An
π(dxn)

∫

An−1

p∗tn−tn−1
(xn, dxn−1) . . .

∫

A1

p∗t2−t1(x2, dx1)

=
∫

An
π(dx1)

∫

An−1

p∗tn−tn−1
(x1, dx2) . . .

∫

A1

p∗t2−t1(xn−1, dxn)

=
∫

An
π(dx1)

∫

An−1

p∗t2−t1(x1, dx2) . . .
∫

A1

p∗tn−tn−1
(xn−1, dxn)

= P
(

X∗
t1 ∈ An, . . . , X∗

tn
∈ A1

)

.
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The time reverse of a Markov process

Example. The Ornstein-Uhlenbeck (OU) process.
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The time reverse of a Markov process

Example. The Ornstein-Uhlenbeck (OU) process. It is a
(Gaussian) diffusion process (Zt, t ≥ 0) on (R,B(R)) that
satisfies

dZt = −βZt dt + σdBt (t ≥ 0),

where (Bt, t ≥ 0) is standard Brownian motion on (R,B(R))

and β and σ are positive constants.
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The time reverse of a Markov process

Example. The Ornstein-Uhlenbeck (OU) process. It is a
(Gaussian) diffusion process (Zt, t ≥ 0) on (R,B(R)) that
satisfies

dZt = −βZt dt + σdBt (t ≥ 0),

where (Bt, t ≥ 0) is standard Brownian motion on (R,B(R))

and β and σ are positive constants.

Its transition function p is absolutely continuous with respect
to Lebesgue measurea in that pt(x,A) =

∫

A pt(x, y) dy, where
pt(x, y) (the transition density) is the Gaussian density with
mean xe−βt and variance σ2(1 − e−2βt)/(2β).

aTrue for all diffusions!
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The time reverse of a Markov process

Exercise. Show that π given by π(A) =
∫

A φ(y) dy, where φ is
the Gaussian density with mean 0 and variance σ2/(2β), is
an invariant probability measure for p.
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The time reverse of a Markov process

Exercise. Show that π given by π(A) =
∫

A φ(y) dy, where φ is
the Gaussian density with mean 0 and variance σ2/(2β), is
an invariant probability measure for p.

You will need to verify that
∫

R
π(dx)pt(x,A) = π(A),

or, equivalently, for the transition density,
∫ ∞

−∞

φ(x)pt(x, y) dx = φ(y) (t ≥ 0, y ∈ R).
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The time reverse of a Markov process

During that painful procedure you may discover a better way.
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The time reverse of a Markov process

During that painful procedure you may discover a better way.

It is considerably easier to verify that

φ(x)pt(x, y) = φ(y)pt(y, x) (t ≥ 0, x, y ∈ R).
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The time reverse of a Markov process

During that painful procedure you may discover a better way.

It is considerably easier to verify that

φ(x)pt(x, y) = φ(y)pt(y, x) (t ≥ 0, x, y ∈ R).

We conclude that
∫

A
π(dx)pt(x,B) =

∫

B
π(dy)pt(y, A).
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The time reverse of a Markov process

During that painful procedure you may discover a better way.

It is considerably easier to verify that

φ(x)pt(x, y) = φ(y)pt(y, x) (t ≥ 0, x, y ∈ R).

We conclude that
∫

A
π(dx)pt(x,B) =

∫

B
π(dy)pt(y, A).

Hence, the transition function p is reversible with respect to
π, and (as before, putting A = E (= R)), π is invariant for p.
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The time reverse of a Markov process

During that painful procedure you may discover a better way.

It is considerably easier to verify that

φ(x)pt(x, y) = φ(y)pt(y, x) (t ≥ 0, x, y ∈ R).

We conclude that
∫

A
π(dx)pt(x,B) =

∫

B
π(dy)pt(y, A).

Hence, the transition function p is reversible with respect to
π, and (as before, putting A = E (= R)), π is invariant for p.

Also, by Theorem 1, our process Z (the stationary OU
process) is time reversible.
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The time reverse of a Markov process

Example. Brownian motion (this time on (Rn,B(Rn))).
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The time reverse of a Markov process

Example. Brownian motion (this time on (Rn,B(Rn))). We
have already agreed that there is no time reverse.
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The time reverse of a Markov process

Example. Brownian motion (this time on (Rn,B(Rn))). We
have already agreed that there is no time reverse.

But, its transition density

pt(x, y) = (2πt)−n/2 exp (−|y − x|/2t) (x, y ∈ Rn)

satisfies pt(x, y) = pt(y, x), and so its transition function p is
reversible with respect to Lebesgue measure (and hence
invariant for p).
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The time reverse of a Markov process

Example. Brownian motion (this time on (Rn,B(Rn))). We
have already agreed that there is no time reverse.

But, its transition density

pt(x, y) = (2πt)−n/2 exp (−|y − x|/2t) (x, y ∈ Rn)

satisfies pt(x, y) = pt(y, x), and so its transition function p is
reversible with respect to Lebesgue measure (and hence
invariant for p).

For the complete story on reversible diffusions (not
necessarily time-reversible!), see John Kent’s 1978 paper∗.

∗Kent, J. (1978) Time-reversible diffusions, Adv. Appl. Probab. 10, 819–835.
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The reverse transition function

The reverse transition function as an analytical tool.
Suppose that we are given a transition function p and
measure m on (E, E). If we can determine the reverse
transition function, that is, a transition function p∗ on (E, E)

satisfying
∫

B m(dx)pt(x,A) =
∫

A m(dx)p∗t (x,B), A,B ∈ E, t ≥ 0,
then, as already remarked, m will be subinvariant for p and
invariant for p if p∗ is honest (and only if p∗ is m− a.e. honest).
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The reverse transition function

The reverse transition function as an analytical tool.
Suppose that we are given a transition function p and
measure m on (E, E). If we can determine the reverse
transition function, that is, a transition function p∗ on (E, E)

satisfying
∫

B m(dx)pt(x,A) =
∫

A m(dx)p∗t (x,B), A,B ∈ E, t ≥ 0,
then, as already remarked, m will be subinvariant for p and
invariant for p if p∗ is honest (and only if p∗ is m− a.e. honest).

Of course, in most cases, we would be given more
fundamental information, such as the diffusion coefficients
(diffusions), or the transition rates (chains). We might hope
to be able to establish the existence, and then the honesty of
p∗ without actually exhibiting p∗ explicitly .
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The reverse transition function

Recall the hints:
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The reverse transition function

Recall the hints:
Exercise. (Hint!) Let m be a σ-finite measure on (E, E).
Show that, for every B ∈ E with m(B) < ∞,
µB(·) :=

∫

B m(dx)pt(x, ·) is a finite measure on (E, E).
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The reverse transition function

Recall the hints:
Exercise. (Hint!) Let m be a σ-finite measure on (E, E).
Show that, for every B ∈ E with m(B) < ∞,
µB(·) :=

∫

B m(dx)pt(x, ·) is a finite measure on (E, E).

Solution. Clearly µB(·) ≥ 0, µB(∅) = 0 and µB(·) is countably
additive by Fubini (since m is σ-finite). Also, since
pt(x,E) ≤ 1, we have µB(E) ≤

∫

B m(dx) = m(B) < ∞.
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The reverse transition function

Recall the hints:
Exercise. (Hint!) Let m be a σ-finite measure on (E, E).
Show that, for every B ∈ E with m(B) < ∞,
µB(·) :=

∫

B m(dx)pt(x, ·) is a finite measure on (E, E).

Solution. Clearly µB(·) ≥ 0, µB(∅) = 0 and µB(·) is countably
additive by Fubini (since m is σ-finite). Also, since
pt(x,E) ≤ 1, we have µB(E) ≤

∫

B m(dx) = m(B) < ∞.

Exercise. (Bigger hint!) Let m be a σ-finite measure on
(E, E) that is subinvariant for p. Show that, for every B ∈ E,
µB is a absolutely continuous with respect to m.
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The reverse transition function

Recall the hints:
Exercise. (Hint!) Let m be a σ-finite measure on (E, E).
Show that, for every B ∈ E with m(B) < ∞,
µB(·) :=

∫

B m(dx)pt(x, ·) is a finite measure on (E, E).

Solution. Clearly µB(·) ≥ 0, µB(∅) = 0 and µB(·) is countably
additive by Fubini (since m is σ-finite). Also, since
pt(x,E) ≤ 1, we have µB(E) ≤

∫

B m(dx) = m(B) < ∞.

Exercise. (Bigger hint!) Let m be a σ-finite measure on
(E, E) that is subinvariant for p. Show that, for every B ∈ E,
µB is a absolutely continuous with respect to m.

Solution. We are told that
∫

E m(dx)pt(x,A) ≤ m(A) (A ∈ E).
So, µB(A) ≤ m(A), and hence m(N) = 0 ⇒ µB(N) = 0.

MASCOS MASCOS Colloquium, May 2006 - Page 29



The reverse transition function

We’re in business! Radon-Nikodym provides us with an
E-measurable (m-integrable) non-negative function f define
uniquely m − a.e. by µB(A) =

∫

A f(x)m(dx) (A ∈ E).
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The reverse transition function

We’re in business! Radon-Nikodym provides us with an
E-measurable (m-integrable) non-negative function f define
uniquely m − a.e. by µB(A) =

∫

A f(x)m(dx) (A ∈ E).

Writing this out carefully: if m is a σ-finite measure that is
subinvariant for p, then, for all t ≥ 0, and for every B ∈ E with
m(B) < ∞, there is an E-measurable ft(·, B) that satisfies

∫

B m(dx)pt(x,A) =
∫

A m(dx)ft(x,B) (A ∈ E).
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The reverse transition function

We’re in business! Radon-Nikodym provides us with an
E-measurable (m-integrable) non-negative function f define
uniquely m − a.e. by µB(A) =

∫

A f(x)m(dx) (A ∈ E).

Writing this out carefully: if m is a σ-finite measure that is
subinvariant for p, then, for all t ≥ 0, and for every B ∈ E with
m(B) < ∞, there is an E-measurable ft(·, B) that satisfies

∫

B m(dx)pt(x,A) =
∫

A m(dx)ft(x,B) (A ∈ E).

So, yes, for all such B, ft(·, B) is E-measurable.
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The reverse transition function

We’re in business! Radon-Nikodym provides us with an
E-measurable (m-integrable) non-negative function f define
uniquely m − a.e. by µB(A) =

∫

A f(x)m(dx) (A ∈ E).

Writing this out carefully: if m is a σ-finite measure that is
subinvariant for p, then, for all t ≥ 0, and for every B ∈ E with
m(B) < ∞, there is an E-measurable ft(·, B) that satisfies

∫

B m(dx)pt(x,A) =
∫

A m(dx)ft(x,B) (A ∈ E).

So, yes, for all such B, ft(·, B) is E-measurable.

But, we are along way from proving anything pleasing.
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The reverse transition function

We’re in business! Radon-Nikodym provides us with an
E-measurable (m-integrable) function f define uniquely
m − a.e. by µB(A) =

∫

A f(x)m(dx) (A ∈ E).

Writing this out carefully: if m is a σ-finite measure that is
subinvariant for p, then, for all t ≥ 0, and for every B ∈ E with
m(B) < ∞, there is an E-measurable ft(·, B) that satisfies

∫

B m(dx)pt(x,A) =
∫

A m(dx)ft(x,B) (A ∈ E).

So, yes, for all such B, ft(·, B) is E-measurable.

But, we are along way from proving anything useful.

Why?
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The reverse transition function

First, m being totally finite is too restrictive.
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The reverse transition function

First, m being totally finite is too restrictive.

Second, we need to show

(2) that ft(x, ·) is a subprobability measure on (E, E), and

(3) that f satisfies the Chapman-Kolmogorov equation
fs+t(x,A) =

∫

E fs(x, dy)ft(y, A),

before we can assert the existence of a reverse transition
function.
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The reverse transition function

First, m being totally finite is too restrictive.

Second, we need to show

(2) that ft(x, ·) is a subprobability measure on (E, E), and

(3) that f satisfies the Chapman-Kolmogorov equation
fs+t(x,A) =

∫

E fs(x, dy)ft(y, A),

before we can assert the existence of a reverse transition
function.

And third, we need a refinement of the usual definition of a
transition function (because our reverse transition function
can at best be known m − a.e. uniquely), which was . . .
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The reverse transition function

Definition. If (E, E) is a measurable space, then a transition
function p = (pt, t ≥ 0) on (E, E) is a family of mappings
pt : E × E → R+ with the following properties:
(1) for all A ∈ E, pt(·, A) is an E-measurable function,
(2) for all x ∈ E, pt(x, ·) is a subprobability measure on (E, E)

(that is, a measure on (E, E) with pt(x,E) ≤ 1),
(3) the Chapman-Kolmogorov equation holds, that is, for all
x ∈ E and A ∈ E, ps+t(x,A) =

∫

E ps(x, dy)pt(y, A), s, t ≥ 0

(unmarked sums shall be over E), and

The transition function p is called honest if, for all x ∈ E and
t ≥ 0, pt(x, ·) is a probability measure (pt(x,E) = 1).
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The reverse transition function

Definition. If (E, E) be a measurable space and let m be a
σ-finite measure on (E, E). Then, an m − a.e. transition
function p = (pt, t ≥ 0) on (E, E) is a family of mappings
pt : E × E → R+ with the usual properties (1)–(3), but (2) and
(3) are required to hold for m−almost all x ∈ E.

An m − a.e. transition function p is called honest if, for all
t ≥ 0, pt(x, ·) is a probability measure (pt(x,E) = 1) for
m−almost all x ∈ E.
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The reverse transition function

Definition. If (E, E) be a measurable space and let m be a
σ-finite measure on (E, E). Then, an m − a.e. transition
function p = (pt, t ≥ 0) on (E, E) is a family of mappings
pt : E × E → R+ with the usual properties (1)–(3), but (2) and
(3) are required to hold for m−almost all x ∈ E.

An m − a.e. transition function p is called honest if, for all
t ≥ 0, pt(x, ·) is a probability measure (pt(x,E) = 1) for
m−almost all x ∈ E.

Next we will show that our candidate reverse transition
function f satisfies (2) and (3) assuming that out
subinvariant measure m is a finite measure–thus avoiding
technicalities.
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The reverse transition function

Recall that f is determined m − a.e. uniquely: for all t ≥ 0,
and for every B ∈ E, there is an E-measurable ft(·, B) that
satisfies

∫

B m(dx)pt(x,A) =
∫

A m(dx)ft(x,B) (A ∈ E).

Remember we are assuming that m(B) < ∞ for all B ∈ E.
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The reverse transition function

Recall that f is determined m − a.e. uniquely: for all t ≥ 0,
and for every B ∈ E, there is an E-measurable ft(·, B) that
satisfies

∫

B m(dx)pt(x,A) =
∫

A m(dx)ft(x,B) (A ∈ E).

Remember we are assuming that m(B) < ∞ for all B ∈ E.

First we prove that for m-almost all x, ft(x, ·) is a
subprobability measure on (E, E), that is, a measure on
(E, E) with ft(x,E) ≤ 1.
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The reverse transition function

Claim. ft(x,E) ≤ 1 . . . . . .
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The reverse transition function

Claim. ft(x,E) ≤ 1 . . . . . .

Take B = E in the definition of f :
∫

E m(dx)pt(x,A) =
∫

A m(dx)ft(x,E) (A ∈ E , t ≥ 0).

So, for all A ∈ E,
∫

A m(dx)ft(x,E) =
∫

E m(dx)pt(x,A) ≤ m(A) =
∫

A m(dx),

and hence
∫

A m(dx) (1 − ft(x,E)) =
∫

A m(dx) −
∫

A m(dx)ft(x,E) ≥ 0.
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The reverse transition function

It follows that
∫

(·) m(dx) (1 − ft(x,E)) is a totally finite positive
measure on (E, E).

It is absolutely continuous with respect to m, because if N is
an m-null set in E, then

(0 ≤)
∫

N m(dx) (1 − ft(x,E)) ≤
∫

N m(dx) = m(N) = 0,

and hence it has the m − a.e. uniquely determined
Radon-Nikodym derivative 1 − ft(x,E).

Since the latter is m − a.e. unique, it is therefore m − a.e.

positive, that is, ft(x,E) ≤ 1, for m−almost all x ∈ E.
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The reverse transition function

Claim. ft(x, ·) is a measure for m-almost all x . . . . . .
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The reverse transition function

Claim. ft(x, ·) is a measure for m-almost all x . . . . . .

First,
0 =

∫

∅
m(dx)pt(x,A) =

∫

A m(dx)ft(x, ∅) (A ∈ E).

and hence, by the Radon-Nikodym Theorem, ft(x, ∅) = 0 for
m-almost all x.
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The reverse transition function

Claim. ft(x, ·) is a measure for m-almost all x . . . . . .

First,
0 =

∫

∅
m(dx)pt(x,A) =

∫

A m(dx)ft(x, ∅) (A ∈ E).

and hence, by the Radon-Nikodym Theorem, ft(x, ∅) = 0 for
m-almost all x.

We already have ft(·, B) ≥ 0, m − a.e., so we only need to
check σ-additivity.
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The reverse transition function

Let B1, B2, . . . be a sequence of disjoint sets in E. Using the
definition of f and Fubini, we have, for all A ∈ E,

∫

A m(dx)ft (x,∪jBj) =
∫

(∪jBj)
m(dx)pt(x,A)

=
∑

j

∫

Bj
m(dx)pt(x,A)

=
∑

j

∫

A m(dx)ft(x,Bj)

=
∫

A m(dx)
∑

j ft(x,Bj) (< ∞),

That is,
∫

A m(dx)
(

ft (x,∪jBj) −
∑

j ft(x,Bj)
)

, for all A ∈ E,

and hence ft (·,∪jBj) =
∑

j ft(·, Bj), m − a.e. (again by the
Radon-Nikodym Theorem).
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The reverse transition function

Finally, we tackle the Chapman-Kolmogorov equation . . . . . .
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The reverse transition function

Finally, we tackle the Chapman-Kolmogorov equation . . . . . .

Since
∫

B m(dx)pt(x,A) =
∫

A m(dx)ft(x,B) for all A,B ∈ E, we

have that
∫

A m(dx)fs+t(x,B)=
∫

B m(dx)ps+t(x,A)

=
∫

B m(dx)
∫

E pt(x, dy)ps(y, A)

=
∫

A m(dx)
∫

E fs(x, dy)ft(y,B).

The Radon-Nikodym Theorem then tells us that

fs+t( · , B) =
∫

E fs( · , dy)ft(y,B), m − a.e.
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The reverse transition function

Finally, we tackle the Chapman-Kolmogorov equation . . . . . .

Since
∫

B m(dx)pt(x,A) =
∫

A m(dx)ft(x,B) for all A,B ∈ E, we

have that
∫

A m(dx)fs+t(x,B)=
∫

B m(dx)ps+t(x,A)

=
∫

B m(dx)
∫

E pt(x, dy)ps(y, A)

=
∫

A m(dx)
∫

E fs(x, dy)ft(y,B).

The Radon-Nikodym Theorem then tells us that

fs+t( · , B) =
∫

E fs( · , dy)ft(y,B), m − a.e.

We have proved the following simple result.
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The reverse transition function

Proposition 1. Let p be a transition function on a
measurable space (E, E) and suppose that m is a totally
finite measure on (E, E) that is subinvariant for p. Then there
exists an m − a.e. transition function p∗ which is the m − a.e.

unique reverse of p with respect to m.
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The reverse transition function

Proposition 1. Let p be a transition function on a
measurable space (E, E) and suppose that m is a totally
finite measure on (E, E) that is subinvariant for p. Then there
exists an m − a.e. transition function p∗ which is the m − a.e.

unique reverse of p with respect to m.

We would like to relax “m totally finite” to the weaker
condition “m σ-finite”.
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The reverse transition function

Proposition 1. Let p be a transition function on a
measurable space (E, E) and suppose that m is a totally
finite measure on (E, E) that is subinvariant for p. Then there
exists an m − a.e. transition function p∗ which is the m − a.e.

unique reverse of p with respect to m.

We would like to relax “m totally finite” to the weaker
condition “m σ-finite”.

I am happy to report the following pleasing result.
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The reverse transition function

Theorem 2. Let (E,O, E) be an inner-regular, measurable
topological space with a countable basis. Let p be a
transition function on (E, E) and suppose that m is a σ-finite
measure on (E, E) that is subinvariant for p. Then, there
exists an m − a.e. transition function p∗ which is the m − a.e.

unique reverse of p with respect to m.
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The reverse transition function

Theorem 2. Let (E,O, E) be an inner-regular, measurable
topological space with a countable basis. Let p be a
transition function on (E, E) and suppose that m is a σ-finite
measure on (E, E) that is subinvariant for p. Then, there
exists an m − a.e. transition function p∗ which is the m − a.e.

unique reverse of p with respect to m.

What is (E,O, E) and why?
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An application

But first, an application . . .
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An application

But first, an application . . .

Corollary. Let (E,O, E) be an inner-regular, measurable
topological space with a countable basis. Let p be a
transition function on (E, E) and suppose that m is a σ-finite
measure on (E, E) that is subinvariant for p. Let p∗ be the
m − a.e. unique reverse transition function with respect to m.
Then, m is invariant for p if and only if p∗ is m − a.e. honest.
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The reverse transition function

Why O?
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The reverse transition function

Why O? We need to take limits.
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The reverse transition function

Why O? We need to take limits.

Let m be a σ-finite measure that is subinvariant for p and let
E0 be the subset of E that consists of all sets B with
m(B) < ∞. Then, for every B ∈ E0, Radon-Nikodym gave us
an E-measurable ft(·, B) such that

∫

B m(dx)pt(x,A) =
∫

A m(dx)ft(x,B) (A ∈ E).

We showed that f satisfied the properties of an m − a.e.

transition function.
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The reverse transition function

Why O? We need to take limits.

Let m be a σ-finite measure that is subinvariant for p and let
E0 be the subset of E that consists of all sets B with
m(B) < ∞. Then, for every B ∈ E0, Radon-Nikodym gave us
an E-measurable ft(·, B) such that

∫

B m(dx)pt(x,A) =
∫

A m(dx)ft(x,B) (A ∈ E).

We showed that f satisfied the properties of an m − a.e.

transition function.

We extend this from (E, E0,m) to (E, E ,m) by approximating
(E, E ,m) by finite measure spaces (E, En, µ), n = 1, 2, . . . .
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The reverse transition function

Let {En}
∞
n=1 be a countable partition of E with m(En) < ∞.
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The reverse transition function

Let {En}
∞
n=1 be a countable partition of E with m(En) < ∞.

The idea. Statements (like the one immediately above)
concerning a given σ-finite measure which hold over E0 are
extended to E, for they are show to hold over each of the
σ-algebras {En}

∞
n=1 defined by En = {A ∩ En : A ∈ E}.
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The reverse transition function

Let {En}
∞
n=1 be a countable partition of E with m(En) < ∞.

The idea. Statements (like the one immediately above)
concerning a given σ-finite measure which hold over E0 are
extended to E, for they are show to hold over each of the
σ-algebras {En}

∞
n=1 defined by En = {A ∩ En : A ∈ E}.

For example, our elementary argument (above) gives us an
f (n) for each n with the right properties. We then set

p∗t (x,A) =
∑∞

n=1 f
(n)
t (x,A ∩ En) (x ∈ E, A ∈ E , t ≥ 0)

and hope!!
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The reverse transition function

Let {En}
∞
n=1 be a countable partition of E with m(En) < ∞.

The idea. Statements (like the one immediately above)
concerning a given σ-finite measure which hold over E0 are
extended to E, for they are show to hold over each of the
σ-algebras {En}

∞
n=1 defined by En = {A ∩ En : A ∈ E}.

For example, our elementary argument (above) gives us an
f (n) for each n with the right properties. We then set

p∗t (x,A) =
∑∞

n=1 f
(n)
t (x,A ∩ En) (x ∈ E, A ∈ E , t ≥ 0)

and hope!! The details are quite tough, and rely on us being
able exploit the inner regularity of measures relative to
compact sets that our topological structure permits.
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The reverse transition function

So, what is (E,O, E)?
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The reverse transition function

So, what is (E,O, E)?

Equip our set of states E with a topology O, but assume that
this family of open sets has a countable basis, that is, a
countable set B ⊂ O with the property that all members of O
can be written as a union of sets in B.
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The reverse transition function

So, what is (E,O, E)?

Equip our set of states E with a topology O, but assume that
this family of open sets has a countable basis, that is, a
countable set B ⊂ O with the property that all members of O
can be written as a union of sets in B.

The triple (E,O, E) is called a measurable topological space
with a countable basis whenever E = σ(O).
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The reverse transition function

So, what is (E,O, E)?

Equip our set of states E with a topology O, but assume that
this family of open sets has a countable basis, that is, a
countable set B ⊂ O with the property that all members of O
can be written as a union of sets in B.

The triple (E,O, E) is called a measurable topological space
with a countable basis whenever E = σ(O).

If ν is a finite measure on (E, E), then ν is said to be inner
regular if, for all A ∈ E, ν(A) = sup {ν(K) : compact K ⊂ A}.
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The reverse transition function

So, what is (E,O, E)?

Equip our set of states E with a topology O, but assume that
this family of open sets has a countable basis, that is, a
countable set B ⊂ O with the property that all members of O
can be written as a union of sets in B.

The triple (E,O, E) is called a measurable topological space
with a countable basis whenever E = σ(O).

If ν is a finite measure on (E, E), then ν is said to be inner
regular if, for all A ∈ E, ν(A) = sup {ν(K) : compact K ⊂ A}.

If every finite measure on (E, E) is inner regular, we say that
the space is inner regular.
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A simple stress release model

Stress accumulates in small amounts of expected size ǫ,
and at rate λ, and all the stress accumulated so far is
released completely (a seismic event–say a mine collapse)
at points of a Poisson process with rate σ.

Let E = R+ and E = B(R+). Define “rates”

q(x,A) = σIA(0) +

∫

A
g(x, y) dy (A ∈ E , x ∈ E),

where

g(x, y) =
λ

ǫ2
exp (−(y − x)/ǫ) I(x,∞)(y).
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A simple stress release model

This is a version of a stochastic slip-predictable model for
earthquake occurrences∗. The state of the process
represents the accumulated stress on a fault. The process
waits a time which is exponentially distributed with mean
1/q(x) = 1/(σ + λ/ǫ) and then either jumps to 0, which is
identified as a seismic event (stress release), with probability
α = σ/(σ + λ/ǫ) or otherwise jumps up a distance which is
exponentially distributed with mean ǫ. For small ǫ, the later is
a pure-jump analogue of a continuous constant stress
increase.

∗Kiremidjian, A.S. and Anagnos, T. (1984) Stochastic slip-predictable model for earth-

quake occurrences, Bull. Seism. Soc. Amer. 74, 739–755.
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A simple stress release model

Define m = (m(x), x ∈ E) by m({0}) = α and, for x > 0,
m(dx) = ǫ−1α(1 − α) exp(−αx/ǫ)dx, so that m((0,∞)) = 1 − α,
m(E) = m([0,∞)) = 1, and,

m((0, x)) = (1 − α)(1 − e−αx/ǫ) (x > 0)

m([0, x)) = 1 − (1 − α)e−αx/ǫ (x ≥ 0).
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m(E) = m([0,∞)) = 1, and,
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m([0, x)) = 1 − (1 − α)e−αx/ǫ (x ≥ 0).

Is m an invariant measure?
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A simple stress release model

Define m = (m(x), x ∈ E) by m({0}) = α and, for x > 0,
m(dx) = ǫ−1α(1 − α) exp(−αx/ǫ)dx, so that m((0,∞)) = 1 − α,
m(E) = m([0,∞)) = 1, and,

m((0, x)) = (1 − α)(1 − e−αx/ǫ) (x > 0)

m([0, x)) = 1 − (1 − α)e−αx/ǫ (x ≥ 0).

Is m an invariant measure?

This shall remain one of life’s mysteries, at least until I have
the opportunity to speak again on this topic.
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