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Markovian chain

Let (X(t), t ≥ 0) is be a continuous time Markov chain with
transition rates

Q = (qij , i, j ∈ S),

so that qij represents the rate of transition from state i to
state j, for j 6= i, and qii = −qi, where

qi :=
∑

j 6=i

qij (<∞)

represents the total rate out of state i.

MASCOS MASCOS informal seminar, December 2004 - Page 2



Equilibrium distribution

This is a probability distribution π = (πi, i ∈ S) satisfying the
balance equations

∑

i6=j

πiqij = πj

∑

i6=j

qji, j ∈ S,

∑

i6=j

πiqij = πj

∑

i6=j

qji ( = πjqj = −πjqjj ), j ∈ S,

that is,
∑

i∈S πiqij = 0, j ∈ S. If, for example, S is irreducible
and finite, then the equilibrium distribution exists uniquely and,
for all j ∈ S,

Pr(X(t) = j)→ πj as t→∞.

We need to be able to solve πQ = 0
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Example

A frog hops about on n stones, which are labelled in order of
increasing temperature (he leaves the hotter ones more
quickly). When he hops, he moves to any of other the n− 1
stones with equal probability. Suppose he leaves stone i at
rate i(n− 1).

So, S = {1, 2, . . . , n} and

Q =



















−(n− 1) 1 1 · · · 1 1

2 −2(n− 1) 2 · · · 2 2

3 3 −3(n− 1) · · · 3 3
...

...
... . . . ...

...
n n n · · · n −n(n− 1)


















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Example

The balance equations are
∑

i6=j

πiqij = πjqj , j = 1, 2, . . . , n,

that is,
∑

i6=j

πi i = πj j(n− 1), j = 1, 2, . . . , n.

Therefore, iπi = constant.And so,

πi =
1/i

∑n
j=1 1/j

, i = 1, 2, . . . , n.
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Example

Let’s do this numerically:

n=5;

for i=1:n

for j=1:n

if (j ˜= i) Q(i,j)=i; else Q(i,j)=-i*(n-1); end

end

end

disp(Q)

-4 1 1 1 1

2 -8 2 2 2

3 3 -12 3 3

4 4 4 -16 4

5 5 5 5 -20
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Example

A=Q’; % Matlab calculates right eigenvectors

[V,D]=eig(A);

disp(D)

0 0 0 0 0

0 -6.7778 0 0 0

0 0 -12.2804 0 0

0 0 0 -23.2222 0

0 0 0 0 -17.7196

disp(V)

-0.8266 -0.8516 -0.2260 0.0831 -0.1294

-0.4133 0.4699 -0.7216 0.1145 -0.2132

-0.2755 0.1841 0.6051 0.1841 -0.6051

-0.2066 0.1145 0.2132 0.4699 0.7216

-0.1653 0.0831 0.1294 -0.8516 0.2260
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Example

Extract the eigenvector corresponding to the eigenvalue with
maximum real part (which is ν = 0):

[nu,I]=max(real(diag(D)));

m=V(:,I);

pi=m/sum(m);

disp(pi’)

0.4380 0.2190 0.1460 0.1095 0.0876

Compare this with the one evaluated analytically:

a=1./(1:n);

disp(a/sum(a))

0.4380 0.2190 0.1460 0.1095 0.0876

MASCOS MASCOS informal seminar, December 2004 - Page 8



Quasi-equilibrium distribution

This is a probability distribution π = (πi, i ∈ C) satisfying

∑

i∈C

πiqij = −

(

∑

i∈C

πiqi0

)

πj , j ∈ C,

where C is an irreducible transient class and S = {0} ∪ C,
where 0 is an absorbing state which is accessible from C.

If, for example, C is finite, the quasi-equilibrium distribution
exists uniquely and, for all j ∈ C,

Pr(X(t) = j|X(t) 6= 0)→ πj as t→∞.
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Quasi-equilibrium distribution

We need to be able to solve πQ
C

= νπ

Here Q
C

is the restriction of Q to the transient states C (first
row and column of Q removed).

Notice that
∑

i∈C

πiqij = νπj , j ∈ C,

implies ν = ν
∑

j∈C

πj =
∑

i∈C

πi

∑

j∈C

qij = −
∑

i∈C

πiqi0.Compare with

∑

i∈C

πiqij = −

(

∑

i∈C

πiqi0

)

πj , j ∈ C.

MASCOS MASCOS informal seminar, December 2004 - Page 10



Quasi-equilibrium distribution

We need to be able to solve πQ
C

= νπ

Here Q
C

is the restriction of Q to the transient states C (first
row and column of Q removed). Notice that

∑

i∈C

πiqij = νπj , j ∈ C,

implies ν = ν
∑

j∈C

πj =
∑

i∈C

πi

∑

j∈C

qij = −
∑

i∈C

πiqi0.

Compare with

∑

i∈C

πiqij = −

(

∑

i∈C

πiqi0

)

πj , j ∈ C.

MASCOS MASCOS informal seminar, December 2004 - Page 10



Quasi-equilibrium distribution

We need to be able to solve πQ
C

= νπ

Here Q
C

is the restriction of Q to the transient states C (first
row and column of Q removed). Notice that

∑

i∈C

πiqij = νπj , j ∈ C,

implies ν = ν
∑

j∈C

πj =
∑

i∈C

πi

∑

j∈C

qij = −
∑

i∈C

πiqi0. Compare with

∑

i∈C

πiqij = −

(

∑

i∈C

πiqi0

)

πj , j ∈ C.

MASCOS MASCOS informal seminar, December 2004 - Page 10



The SIS model

Let X(t) be the number of occupied patches at time t in a
metapopulation consisting of n patches.

Then, S = {0, 1, . . . , n}, and qi,i+1 = ci(1− i/n) and qi,i−1 = ei,
where c is the colonization rate and e is the local extinction
rate.

Q
C

=



















−e− c(1− 1/n) c(1− 1/n) · · · 0 0

2e −2e− c(1− 2/n) · · · 0 0

0 3e · · · 0 0
...

... . . . ...
...

0 0 · · · en −en



















C = {1, 2, . . . , n}.
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The SIS model

Evaluate the quasi-stationary distribution:

n=5; c=2; e=1; Q=zeros(n,n);

Q(1,2)=c*(1-1/n); Q(1,1)=-(c*(1-1/n)+e);

for i=2:(n-1)

Q(i,i+1)=c*i*(1-i/n); Q(i,i-1)=e*i;

Q(i,i)=-i*(c*(1-i/n)+e);

end

Q(n,n-1)=e*n; Q(n,n)=-e*n;

disp(Q)

-2.6000 1.6000 0 0 0

2.0000 -4.4000 2.4000 0 0

0 3.0000 -5.4000 2.4000 0

0 0 4.0000 -5.6000 1.6000

0 0 0 5.0000 -5.0000
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The SIS model

A=Q’; % Matlab calculates right eigenvectors

[V,D]=eig(A);

disp(D)

-10.0783 0 0 0 0

0 -6.8050 0 0 0

0 0 -0.2350 0 0

0 0 0 -4.0381 0

0 0 0 0 -1.8436

disp(V)

0.1054 0.3523 -0.4876 0.6927 -0.8441

-0.3942 -0.7406 -0.5766 -0.4981 -0.3192

0.6899 0.4059 -0.5404 -0.4295 0.1781

-0.5703 0.3018 -0.3519 0.1526 0.3499

0.1797 -0.2675 -0.1182 0.2538 0.1774
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The SIS model

[nu,I]=max(real(diag(D)));

m=V(:,I);

pi=m/sum(m);

disp(pi’);

0.2350 0.2779 0.2605 0.1696 0.0570
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The SIS model

Evaluate the quasi-stationary distribution for n = 100:

n=100; c=2; e=1; Q=zeros(n,n);

Q(1,2)=c*(1-1/n); Q(1,1)=-(c*(1-1/n)+e);

for i=2:(n-1)

Q(i,i+1)=c*i*(1-i/n);

Q(i,i-1)=e*i;

Q(i,i)=-i*(c*(1-i/n)+e);

end

Q(n,n-1)=e*n; Q(n,n)=-e*n;

[V,D]=eig(Q’);

[nu,I]=max(real(diag(D)));

m=V(:,I); pi=m/sum(m);

plot(pi);

title(’QSD for the SIS model’);

xlabel(’Occupied patches’);

ylabel(’Probability’);
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The SIS model
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An epidemic model

Let X(t) = (S(t), I(t)), where S(t) is the number of
susceptibles at time t and I(t) is the number of infectives at
time t.

The state space is S = {(x, y) : x, y = 0, 1, . . . } and the
transition rates are given by

q(x y),(x+1 y) = α, q(x y),(x y−1) = γy,

q(x y),(x−1 y+1) = βxy,

where α, γ, β > 0 are the immigration, removal and infection
rates.
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An epidemic model

Absorbing set

Transient
Class

infectives ( y ) 

susceptibles (  x ) 

infection

removal

immigration

Transitions
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An epidemic model

Clearly,
C = {(x, y) : x = 0, 1, . . . ; y = 1, 2, . . . }

is an irreducible transient class, and the abscissa is
absorbing.

Ridler-Rowe (1967) proved that Q is regular (non-explosive)
and absorption occurs with probability 1.

However, absorption is not observed over any reasonable
time scale.
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An epidemic model
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Evaluate a QSD

We must solve

π(0 y+1)γ(y + 1) + π(0 y−1)β(y − 1)

= π(0 y)(α + γy − λ), y = 1, 2, . . .

π(x−1 y)α + π(x y+1)γ(y + 1) + π(x+1 y−1)β(x + 1)(y − 1)

= π(x y)(α + (βx + γ)y − λ),

x = 1, 2, . . . ; y = 1, 2, . . .

for (π(x y), x = 1, 2, . . . ; y = 1, 2, . . . ), where λ > 0.

(In our dreams)
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An epidemic model
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How to evaluate the QSD

First truncate C to

CN = {(x, y) : x = 0, . . . , N − 1; y = 1, . . . , N}

and restrict Q to CN .

Then, use the transformation i = y + Nx to convert the
restricted transition matrix into an n× n matrix,
R = (qij , i, j = 1, 2, . . . , n), where n = N 2.

Construct a sequence {π(n)} of normalized eigenvectors and
hope that this converges to the quasi-stationary distribution of
the full epidemic model. (In practice, we choose N as large as
possible.)
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How to evaluate the QSD

Open questions

• Does a quasi-stationary distribution π exist for the
epidemic model?

• Does a limiting-conditional distribution exist?
• Is C λ-positive recurrent?
• Does {π(n)} → π?
• Pointwise? Or, only in the likelihood ratio sense?
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How to evaluate the QSD

Implement the transformation i = y + Nx:

function i=index(st)

% (x,y) -> i

x=st(1); y=st(2); N=st(3);

i=y+x*N;

Implement the inverse transformation:

function state=state(index)

% i -> (x,y)

i=index(1); N=index(2);

x=fix((i-1)/N); y=i-N*x;

state=[x,y];
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How to evaluate the QSD

Set up the truncated transition rate matrix and evaluate the
dominant eigenvalue:

N=100; n=Nˆ2;

a=1.0; b=4.0; c=2.0; alpha=a*N; beta=b/N; gamma=c;

R=zeros(n,n);

for x=0:(N-1)

for y=1:N

i=index([x,y,N]);

if x<(N-1) R(i,index([x+1,y,N]))=alpha; end

if ((x>0) & (y<N)) R(i,index([x-1,y+1,N]))=beta*x*y; end

if y>1 R(i,index([x,y-1,N]))=gamma*y; end

R(i,i)=-(alpha+(beta*x+gamma)*y);

end

end

[V,D]=eig(R’);

[nu,in]=max(real(diag(D))); m=V(:,in);
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Preliminary numerical results

For N = 92 we get

??? Error using ==> zeros

Out of memory. Type HELP MEMORY for your options.

Error in ==> C:\docs\talks\UQ2004c\quasi.m

On line 3 ==> R=zeros(n,n);

For N = 70 we get

??? Error using ==> eig

Out of memory. Type HELP MEMORY for your options.

Error in ==> C:\docs\talks\UQ2004c\quasi.m

On line 13 ==> [V,D]=eig(R’);
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How to evaluate the QSD

Normalize the dominant eigenvalue and transform its support
back to two dimensions:

pi0=m/sum(m);

for x=0:(N-1)

for y=1:N

i=index([x,y,N]);

pi1(x+1,y)=pi0(i);

end

end

surf(0:(N-1),1:N,pi1)

title(’QSD for the epidemic model’);

xlabel(’Susceptibles’);

ylabel(’Infectives’);

zlabel(’Probability’);

For N = 40 it took about 20 minutes to produce the graph.
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The SIS model
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How to evaluate the QSD

Recall that we restricted Q to

CN = {(x, y) : x = 0, . . . , N − 1; y = 1, . . . , N}

and then used the transformation i = y + Nx to convert this to
an n× n matrix, R = (qij , i, j = 1, 2, . . . , n), where n = N 2.

Numerical evaluation of the eigenvectors of R is obviously a
non-trivial problem when N is large.

For example, if N = 100, that is n = 104, so that Q has 108

entries, we would need 400 Mbytes of storage to even store
Q, let alone evaluate its eigenvectors.
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How to evaluate the QSD

R is a sparse matrix: the number of of non-zero entries of R is
(2N − 1)2 and so the proportion is O(1/N 2) = O(1/n).
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The Arnoldi Method

We need to solve Ax = νx (at least for dominant
eigenvectors), where A is n× n and n is large.

Using an initial estimate of x, the basic Arnoldi method
produces an m×m (upper-Hessenberg) matrix Hm and an
n×m matrix Vm with

V T
mAVm = Hm.

It has the property that if zm is an eigenvector of Hm, then, for
m large, Vmzm is close to an eigenvector of A.

We solve for zm using standard (dense-matrix) methods. For
example, n might be 100, 000 and m might be 20.
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The Basic Arnoldi Method

The basic Arnoldi method starts with an arbitrary “seed”
vector v1 ∈ R

n from which a sequence, v1, v2, . . . , of
orthonormal vectors is constructed as follows.

First, the vector w1 = Av1 is computed. Then, the components
of w1 in the direction of v1 are subtracted to give the “residual”
r1 = w1 − (vT

1 w1)v1. This vector is normalized, using the
Euclidean norm to form v2: v2 = r1/‖r1‖2. Next, w2 = Av2 is
computed and then the components of w2 in the directions of
v1 and v2 are subtracted to give the second residual r2. This is
normalized to give v3, and so on.
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The Basic Arnoldi Method

The procedure described gives

for j = 1, 2, . . . {

wj ← Avj

hij ← vT
i wj (for i = 1, 2, . . . , j)

rj ← wj −

j
∑

i=1

hij vi

vj+1 ← rj/‖rj‖2

hj+1,j ← ‖rj‖2

}
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The Basic Arnoldi Method

If the procedure is halted at say j = m, then we shall have that

Avk =

{

∑k+1
i=1 hikvi for k < m

∑m
i=1 hikvi + rm for k = m.

Thus, if we let Vm = [v1, v2, . . . , vm] (columns), then

AVm = VmHm + rmeT
m,

where em is the unit vector with a 1 as its mth entry, and so,
since the columns of Vm are orthonormal and rm is orthogonal
to each of them, we deduce that V T

mAVm = Hm.
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{

∑k+1
i=1 hikvi for k < m

∑m
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Here Hm = (hij) is an m×m upper-Hessenberg matrix given
by

hij =










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The Basic Arnoldi Method

Claim. If zm is an eigenvector of Hm, then, for m sufficiently
large, Vmzm should be close to an eigenvector of A.

Suppose that zm satisfies Hmzm = ν̂mzm, for some ν̂m, and let
xm = Vmzm. Then, on multiplying AVm = VmHm + rmeT

m (just
obtained) by zm, we get

Axm = Vm(Hmzm) + rm(zm)m = Vm(ν̂mzm) + rm(zm)m

= ν̂mxm + rm(zm)m.

Thus, (A− Em)xm = ν̂mxm, where Em is given by

Em = rm(zm)mxT
m/‖xm‖

2
2.
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The Basic Arnoldi Method

(A− Em)xm = ν̂mxm, where Em is given by

Em = rm(zm)mxT
m/‖xm‖

2
2.

It follows, from standard sensitivity analysis (see, for example,
Section 7.2 of Golub and Van Loan∗), that the error in the
eigenvalue can be estimated by ‖rm‖2 |(zm)m|/‖xm‖2.

∗Golub, G.H. and Van Loan, C. (1996) Matrix Computations,
3rd Edition, John Hopkins Press.

Hence, if the residual vector rm is small or |(zm)m| is small,
then the approximation will be good.
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Which eigenvectors does it give?

For simplicity, suppose A is symmetric, so that all its
eigenvalues are real. The Arnoldi method reduces to the
Lanczos method, and H is a symmetric (of necessity
tridiagonal) matrix.

However, let Vm = [v1, v2, . . . , vm], where
v1, v2, . . . is any sequence of orthonormal vectors in R

n, and
let Hm = V T

mAVm.Let ν1(A) and νn(A) be the maximum and
minimum eigenvalues of A.

Claim. νn(A) ≤ νm(Hm) ≤ ν1(Hm) ≤ ν1(A).

The proof uses the fact that the Rayleigh quotient
r(x) = xT Ax/xT x, x 6= 0, is maximized (resp. minimized) by
the maximum and (resp. minimum) eigenvalue of A.
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Which eigenvectors does it give?

Next, it can be shown that νm+1(Hm+1) < νm(Hm) and
ν1(Hm) < ν1(Hm+1) (that is, we move closer to the maximum
and minimum eigenvalues of A) if

span{v1, v2, v3, . . . , vk} = span{v1, Av1, A
2v1, . . . , A

kv1}

for both k = m and k = m + 1. The Arnoldi method (Lanczos
method) achieves this.

Note that

K(A, v, m) = span{v, Av, A2v, . . . , Amv}, m = 1, 2, . . . , n,

are called the Krylov subspaces of A generated by v.The
Arnoldi method provides a means of computing a set of
orthonormal bases for these subspaces.
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Some properties

The most important property of the Arnoldi method is:

• The Arnoldi method does not work.

Why? The algorithm is vulnerable to round off error: in
particular, loss of orthogonality of the columns of Vm.

This was addressed in

Pollett, P.K. and Stewart, D.E. (1994) An efficient procedure
for computing quasistationary distributions of Markov chains
with sparse transition structure. Advances in Applied
Probability 26, 68–79.
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The Iterative Arnoldi Method

Take m small (we found that m = 20 worked best). Then,
using an initial estimate v1 of the eigenvector x, apply the
Basic Arnoldi Method (to obtain Hm and Vm) and set ν̂ to be
the dominant eigenvalue of Hm if this is real, or set ν̂ equal to
zero otherwise.

Now solve
(Hm − ν̂I)u1 = z

with z chosen at random and repeat the procedure with a new
initial estimate, given by

v1 = Vmu1/‖Vmu1‖2.

Continue until the residual ‖Av1 − ν̂v1‖2 is sufficiently small.
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The Iterative Arnoldi Method

An explanation of why this works is that the computed û1 is an
exact solution of a perturbed system

(Hm + E − λ̂I)û1 = z,

where ‖E‖2 ≈ cmu‖Hm − λ̂I‖2, {cm} is a sequence of
constants that grows slowly and u is the “machine epsilon” or
“unit roundoff” for the arithmetic used; see Section 3.3 of
Golub and Van Loan.
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In Matlab use eigs instead of eig

Replace the command

R=zeros(n,n);

by

R=sparse([]);

Replace the commands

[V,D]=eig(R’); [nu,I]=max(real(diag(D))); m=V(:,I);

by

[m,nu,FL]=eigs(R’,1,’lr’);

if FL==1 disp(’ Warning - did not converge’); end

There are many other options, including the ability to control
the value of m.
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The Arnoldi Method

For N = 320 my code successfully evaluated the
quasi-stationary distribution in about 40 minutes (the iterative
Arnoldi method converged).

Remember that the system had 102, 400 states!
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The Arnoldi Method
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Convergence
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