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ERGODICITY AND

RECURRENCE

Pakes, A.G. (1969) Some conditions for ergod-

icity and recurrence of Markov chains. Operat.

Res. 17, 1058–1061.

Let (Xn, n = 0,1, . . . ) be an irreducible aperi-

odic Markov chain taking values in the non-

negative integers and let

γi = E(Xn+1 −Xn|Xn = i).

Then, γi ≤ 0 for all i sufficiently large is enough

to guarantee recurrence, while |γi| < ∞ and

lim supi→∞ γi < 0 is sufficient for ergodicity.

This result has been used by many authors in a

variety of contexts, for example, in the control

of random access broadcast channels: slotted

Aloha and CSMA/CD (Carrier sense multiple

access with collision detect) protocol.
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The Aloha Scheme

The following description is based on (Kelly,

1985)∗.

Several stations use the same channel (assume

infinitely many stations). Packets arrive for

transmission as a Poisson stream with rate ν

(< 1). Time is broken down into “slots” (0,1],

(1,2], . . . . Let Yt be the number of packets to

arrive in the slot (t − 1, t] (E(Yt) = ν). Their

transmission will first be attempted in the next

slot (t, t + 1]. Let Zt represent the output of

the channel at time t:

Zt =





0 if 0 transmissions attempted

1 if 1 transmission attempted

∗ if > 1 transmissions attempted

∗Kelly, F.P. (1985) Stochastic models of computer com-
munication systems. J. Royal Stat. Soc., Ser. B 47,
379–395 (with discussion, 415–428).
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If Zt = ∗, a “collision” has occurred, and re-

transmission will be attempted in later slots,

independently in each slot with probability f

until successful. Thus, the transmission delay

(measured in slots) has a geometric distrib-

ution with parameter 1− f .

The backlog (Nt) is a Markov chain with

Nt+1 = Nt + Yt − I[Zt = 1].

Thus,

γn := E(Nt+1 −Nt|Nt = n)

= ν − Pr(Zt = 1|Nt = n)

and

Pr(Zt = 1|Nt = n)

= e−νnf(1− f)n−1 + νe−ν(1− f)n.

We deduce that γn > 0 for all n sufficiently

large. Indeed the chain is transient (Klein-

rock (1983), Fayolle, Gelenbe and Labetoulle

(1977), Rosenkrantz and Towsley (1983)).
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State-dependent Retransmission

Now suppose that the retransmission probabil-

ity is allowed to depend on the backlog: f = fn

when Nt = n. Then, Pr(Zt = 1|Nt = n) is

maximized by

fn =
1− ν

n− ν
,

and, with this choice,

γn := E(Nt+1 −Nt|Nt = n, f = fn)

= ν − e−ν
(

n− 1

n− ν

)n−1
.

Thus, |γn| < ∞ and γn → ν − e−1. Thus, (Nt)

is ergodic, that is, the backlog is eventually

cleared, if ν < e−1 ' 0.368.

But, users of the channel do not know the

backlog, and thus cannot determine the opti-

mal retransmission probability.
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Towards a Better Control Scheme

It would be better to choose the retransmission
probability ft = f(Z1, Z2, . . . , Zt−1) based on
the observed channel output. Several schemes
have been suggested by Mikhailov (1979) and
Hajek and van Loon (1982). For example, sup-
pose each station maintains a counter St, up-
dated as follows: S0 = 1 and

St+1 = max{1, St + aI[Zt = 0]

+ bI[Zt = 1] + cI[Zt = ∗]},
where a, b and c are to be specified. For exam-
ple, (a, b, c) = (−1,0,1) is an obvious choice.
Suppose that ft = 1/St. Then, (Nt, St) is a
Markov chain. We would like St to “track” the
backlog, at least when Nt is large. Consider
the drift in (St):

φn,s := E(St+1 − St|Nt = n, St = s)

= (a− c)
(
1− 1

s

)n
+ (b− c)

n

s

(
1− 1

s

)n
+ c.
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Let n →∞ with κ = n/s held fixed. Then,

φn,s → (a− c)e−κ + (b− c)κe−κ.

The choice (a, b, c) = ((2 − e)α,0, α), where

α > 0, makes the drift in (St) negative if κ < 1

and positive if κ > 1. Thus, if the backlog were

held steady at a large value, then the counter

would approach that value. Also,

γn,s := E(Nt+1 −Nt|Nt = n, St = s)

= ν − n

s

(
1− 1

s

)n−1
→ ν − κe−κ.

Mikhailov (1979) showed that the choice (a, b, c)

= (2 − e,0,1) ensures that (Nt, St) is ergodic

whenever ν < e−1.

Question. For an irreducible aperiodic Markov

chain (Nt, St), can one infer anything about its

ergodicity and recurrence from the marginal

drifts?
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THE BIRTH-DEATH AND

CATASTROPHE PROCESS

Pakes, A.G. (1987) Limit theorems for the pop-

ulation size of a birth and death process allow-

ing catastrophes. J. Math. Biol. 25, 307–325.

An appropriate model for populations that are

subject to crashes (dramatic losses can oc-

cur in animal populations due to disease, food

shortages, significant changes in climate).

Such populations can exhibit quasi-stationary

behaviour : they may survive for long periods

before extinction occurs and can settle down

to an apparently stationary regime. This be-

haviour can be modelled using a limiting con-

ditional (or quasi-stationary) distribution.
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The Model

It is a continuous-time Markov chain (X(t), t ≥
0), where X(t) represents the population size
at time t, with transition rates (qjk, j, k ≥ 0)
given by

qj,j+1 = jρa, j ≥ 0,

qj,j = −jρ, j ≥ 0,

qj,j−i = jρbi, j ≥ 2,1 ≤ i < j,

qj,0 = jρ
∑

i≥j bi, j ≥ 1,

with the other transition rates equal to 0. Here,
ρ > 0, a > 0 and bi > 0 for at least one i in
C = {1,2, . . . }, and, a +

∑
i≥1 bi = 1.

Interpretation. For j 6= k, qjk is the instanta-
neous rate at which the population size changes
from j to k, ρ is the per capita rate of change
and, given a change occurs, a is the probability
that this results in a birth and bi is the proba-
bility that this results in a catastrophe of size i
(corresponding to the death or emigration of i
individuals).
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Some Properties

The state space. Clearly 0 is an absorbing
state (corresponding to population extinction)
and C is an irreducible class.

Extinction probabilities. If αi is the proba-
bility of extinction starting with i individuals,
then αi = 1 for all i ∈ C if and only if D (the
expected increment size), given by

D := a−∑
i≥1 ibi = 1−∑

i≥1 (i + 1)bi,

is less than 0 (the subcritical case) or equal
to 0 (the critical case).

In the supercritical case (D > 0), the extinction
probabilities can be expressed in terms of the
probability generating function

f(s) = a +
∑

i≥1 bis
i+1, |s| < 1.

We find that
∑

i≥1 αis
i = s/(1− s)−Ds/b(s),

where b(s) = f(s)− s.
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Limiting Conditional Distributions

In order to describe the long-term behaviour

of the process, we use two types of limiting

conditional distribution (LCD), called Type I

and Type II, corresponding to the limits:

lim
t→∞Pr(X(t) = j|X(0) = i, X(t) > 0,

X(t + r) = 0 for some r > 0),

lim
t→∞ lim

s→∞Pr(X(t) = j|X(0) = i, X(t + s) > 0,

X(t + s + r) = 0 for some r > 0),

where i, j ∈ C. Thus, we seek the limiting

probability that the population size is j, given

that extinction has not occurred, or (in the sec-

ond case) will not occur in the distant future,

but that eventually it will occur; we have con-

ditioned on eventual extinction to deal with the

supercritical case, where this event has proba-

bility less than 1.

11



The Existence of Limiting
Conditional Distributions∗

Consider the two eigenvector equations
∑

i∈C miqij = −µmj, j ∈ C,
∑

j∈C qijxj = −µxi, i ∈ C,

where µ ≥ 0 and C is the irreducible class.

In order that both types of LCD exist, it is nec-

essary that these equations have strictly posi-

tive solutions for some µ > 0, these being the

positive left and right eigenvectors of QC (the

transition-rate matrix restricted to C) corre-

sponding to a strictly negative eigenvalue −µ.

Let λ be the maximum value of µ for which

positive eigenvectors exist (λ is known to be

finite), and denote the corresponding eigen-

vectors by m = (mj, j ∈ C) and x = (xj, j ∈ C).

∗PKP technology
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The Existence of Limiting
Conditional Distributions

Proposition.∗ Suppose that Q is regular.

(i) If
∑

mkxk converges, and either
∑

mk con-

verges or {xk} is bounded, then the Type II

LCD exists and defines a proper probabil-

ity distribution π(2) = (π(2)
j , j ∈ C) over C,

given by

π
(2)
j =

mjxj∑
mkxk

, j ∈ C.

(All unmarked sums are over k in C.)

(ii) If in addition
∑

mkαk converges, then the

Type I LCD exists and defines a proper

probability distribution π(1) = (π(1)
j , j ∈ C)

over C, given by

π
(1)
j =

mjαj∑
mkαk

, j ∈ C.

∗Pollett, P. (1988) Reversibility, invariance and µ-
invariance. Adv. Appl. Probab. 20, 600–621.
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Try to use PKP Technology

We need the fact that b(s) = 0 has a unique

solution σ on [0,1], and that σ = 1 or 0 < σ < 1

according as D ≥ 0 or D < 0.

Setting x0 = m0 = 0, the eigenvector equa-

tions can be written (for j ∈ C) as

(j − 1)ρamj−1 +
∞∑

k=j+1

kρbk−jmk = (jρ− µ)mj,

jρaxj+1 +
j∑

k=0

jρbj−kxk = (jρ− µ)xj.

What is the maximum value of µ for which

a positive solution exists? If x = (xj, j ∈ C) is

any solution to the second, then its generating

function X(s) =
∑

xjs
j satisfies

X(s) =
s

b(s)
exp(−µB(s)), s < σ,

where, for s < σ, B(s) = ρ−1 ∫ s
0 dy/b(y).
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Using this approach, we cannot really avoid
the question: when is X(s) a power series
with non-negative coefficients? The function
C(s) = (µ/ρ)

∑
(xj/j)sj satisfies

C(s) = 1− exp(−µB(s)).

So, equivalently, we ask: when does C(s) have
non-negative coefficients?

This is answered in the following paper (as-
suming, as we have here, that B(s) is a power
series with non-negative coefficients):

Pakes, A.G. (1997) On the recognition and

structure of probability generating functions.

In (Eds. K.B. Athreya and P. Jagers) Classical

and Modern Branching Processes, IMA Vols.

Math. Appl. 84, Springer, New York, pp. 263–

284.

Lemon. The maximum value of µ for which a
positive right eigenvector exists is λ = −ρb′(σ−).
When µ = λ, the left eigenvector is given by
mj = σj, j ∈ C.
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The Subcritical Case

We have D := −b′(1−) < 0 and σ < 1. Since
mj = σj, j ∈ C, we have also

∑
mk < ∞ and∑

mkxk = X(σ−) < ∞.

The combination of technologies thus yields:

Theorem. In the subcritical case both types
of LCD exist. The Type I LCD is given by

π
(1)
j = (1− σ)σj−1,

and the Type II LCD has pgf

Π(2)(s) = X(σs)/X(σ−),

where

X(s) =
s

b(s)
exp(−λB(s)), s < σ,

and, for s < σ, B(s) = ρ−1 ∫ s
0 dy/b(y).

This result is contained in Theorems 5.1 and 6.2
of Pakes (1987).
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The Supercritical Case

We have D > 0 and σ = 1, and the absorption
probabilities have generating function

∑
i≥1 αis

i = s/(1− s)−Ds/b(s).

Since mj = 1, j ∈ C, we have
∑

mkαk =
∑

αk
and

∑
mkxk = X(1−). When do these series

converge?

Condition (A). The catastrophe-size distrib-
ution has finite second moment, that is,
f ′′(1−) < ∞ (equivalently b′′(1−) < ∞).

Condition (B). The function b can be written

b(s) = D(1− s) + (1− s)2L((1− s)−1),

where L is slowly varying, that is, L(xt) ∼ L(x)
for large t.

Theorem. In the supercritical case, the Type I
LCD exists under (A), and is given by π

(1)
j =

αj/
∑

αk. If in addition (B) holds, then the
Type II LCD exists and has pgf Π(2)(s) =
X(s)/X(1−).
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This first part (Type I LCD) is contained in:

Pakes, A.G. and Pollett, P.K. (1989) The supercritical
birth, death and catastrophe process: limit theorems on
the set of extinction. Stochastic Process. Appl. 32,
161–170.

The second part (Type II LCD) is contained in
Theorem 6.2 of Pakes (1987).

Other papers important to my work:

Pakes, A.G. (1971) A branching process with a state de-
pendent immigration component. Adv. Appl. Probab. 3,
301–314.

Pakes, A.G. (1975) On the tails of waiting-time distri-
butions. J. Appl. Probab. 12, 555–564.

Pakes, A.G. (1992) Divergence rates for explosive birth
processes. Stochastic Process. Appl. 41, 91–99.

Pakes, A.G. (1993) Explosive Markov branching pro-
cesses: entrance laws and limiting behaviour. Adv.
Appl. Probab. 25, 737–756.

Pakes, A.G. (1993) Absorbing Markov and branching
processes with instantaneous resurrection. Stochastic
Process. Appl. 48, 85–106.

Pakes, A.G. (1995) Quasi-stationary laws for Markov
processes: examples of an always proximate absorbing
state. Adv. Appl. Probab. 27, 120–145.
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