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Transition functions

State-space. S ={0,1,...}

Transition functions. A set of real-valued functions
P(-) = (pij(+), 1,5 € S) defined on (0, 00) is called a fransition
function (or simply process) if

® pij(t) =0, >, pij(t) <1, and
® pii(s+t)=> 1 pik(s)pi(t). [Chapman-Kolmogorov]
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Transition functions

State-space. S ={0,1,...}

Transition functions. A set of real-valued functions
P(-) = (pij(+), 1,5 € S) defined on (0, 00) is called a fransition
function (or simply process) if

® pij(t) =0, >, pij(t) <1, and

® pii(s+t)=> 1 pik(s)pi(t). [Chapman-Kolmogorov]
It is called siandard if
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Transition functions

State-space. S ={0,1,...}

Transition functions. A set of real-valued functions
P(-) = (pij(+), 1,5 € S) defined on (0, 00) is called a fransition
function (or simply process) if

® pij(t) =0, >, pij(t) <1, and

® pii(s+t)=> 1 pik(s)pi(t). [Chapman-Kolmogorov]
It is called standard if

® limy o p;;(t) = dij

and honest if

® > .pij(t) =1, for some (and then for all) ¢ > 0.
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The ¢-matrix

For a standard process P, the right-hand derivative
pi;(0+) = q;; exists
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The ¢-matrix

For a standard process P, the right-hand derivative
p;;(0+) = ¢;; exists and defines a ¢-matrix Q = (q;j,i,j € ).
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The ¢g-matrix

For a standard process P, the right-hand derivative
pz-’j(()—|—) = ¢;; exists and defines a ¢-matrix Q = (¢j,i,j € S).
lts entries satisfy

® 0<¢q; <00, jF£i
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The ¢g-matrix

For a standard process P, the right-hand derivative
pz-’j(()—|—) = ¢;; exists and defines a ¢-matrix Q = (¢j,i,j € S).
lts entries satisfy

® 0<g <oo, j # i, and

< Zj;éq; dij < —q < 00,
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The ¢g-matrix

For a standard process P, the right-hand derivative
p,&-’j(()+) = ¢;; exists and defines a ¢-matrix Q = (¢j,i,j € S).
lts entries satisfy

® 0<g <oo, j # i, and

® D> 44§ < —Gii < 0.

We set Qi = —Qii, 1 € S.
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The ¢g-matrix

For a standard process P, the right-hand derivative
p,&-’j(()+) = ¢;; exists and defines a ¢-matrix Q = (¢j,i,j € S).
lts entries satisfy

’quz-j<oo,j7éz',and
< Zj;éq; dij < —q < 00,
We set Qi = —Qii, 1 € S.

Suppose that @ is given.
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The ¢g-matrix

For a standard process P, the right-hand derivative
p{;(0+) = ¢;; exists and defines a ¢-mairix Q = (¢ij,1,j € S).
lts entries satisfy
® 0 <gqgy < oo, j # i, and
® > i < —qii < oo
We set Qi = —Qii, 1 € S.

Suppose that @) is given. Assume that @ is sfable, that is
g < ooforalliins.
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The ¢g-matrix

For a standard process P, the right-hand derivative
p{;(0+) = ¢;; exists and defines a ¢-mairix Q = (¢ij,1,j € S).
lts entries satisfy
® 0 <gqgy < oo, j # i, and
® > i < —qii < oo
We set Qi = —Qii, 1 € S.

Suppose that @) is given. Assume that @ is sfable, that is
gi <ooforalliinS. A standard process P will then be
called a ()-process if its g-matrix is Q.
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The Kolmogorov DEs

For simplicity, we assume @ is conservative

MASCQOS Oberwolfach 2003 - 4



The Kolmogorov DEs

For simplicity, we assume @ Is conservative, that is

D izi Qi = i 1€ 5.

MASCQOS Oberwolfach 2003 - 4



The Kolmogorov DEs

For simplicity, we assume () Is conservative, that is
D izi Qi = i 1€ 5.

Under this condition, every ()-process P satisfies the
backward equations,

BEi;  p;(t) = >k qirpri(t), t>0,
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The Kolmogorov DEs

For simplicity, we assume () Is conservative, that is
D izi Qi = i 1€ 5.

Under this condition, every ()-process P satisfies the
backward equations,

BE;; pi;i(t) = > ) qikprj(t), >0,
but might not satisfy the forward equations,

FE;; pi;(t) = > ) pik(O)arj, t>0.
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Stationary distributions

A collection of positive numbers = = (7,5 € S) is a
stationary distribution if 3. m; =1 and

> i mipij(t) = 75, JES. (1)
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Stationary distributions

A collection of positive numbers = = (7,5 € S) is a
stationary distribution if 3. m; =1 and

> i mipij(t) = 75, JES. (1)

Recipe for finding a stationary distribution!
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Stationary distributions

A collection of positive numbers = = (7,5 € S) is a
stationary distribution if 3, m; =1 and

> i mipij(t) = 75, JES. (1)

Recipe. Find a collection of strictly positive numbers
m = (m;,j € S) such that

Zz’ miqij = 0.
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Stationary distributions

A collection of positive numbers = = (7,5 € S) is a
stationary distribution if 3, m; =1 and

> i mipij(t) = 75, JES. (1)

Recipe. Find a collection of strictly positive numbers
m = (m;,j € S) such that

Zz’ miqij = 0.

Such an m is called an invariant measure for ().
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Stationary distributions

A collection of positive numbers = = (7,5 € S) is a
stationary distribution if 3, m; =1 and

> i mipij(t) = 75, JES. (1)

Recipe. Find a collection of strictly positive numbers
m = (m;,j € S) such that

Zz’ miqij = 0.

Such an m is called an invariant measure for Q). If
Y.imi <oo,wesetw; =m;/> . m
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Stationary distributions

A collection of positive numbers = = (7,5 € S) is a
stationary distribution if 3, m; =1 and

> i mipij(t) = 75, JES. (1)

Recipe. Find a collection of strictly positive numbers
m = (m;,j € S) such that

Zz’ miqij = 0.

Such an m is called an invariant measure for Q). If
> .m; < oo, we setr; =m;/> . m; and hope w satisfies (1).
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Birth-death processes

Transition rates.
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Gii+1 =N (T - birth rates)
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Birth-death processes

Transition rates.
Gii+1 =N (T - birth rates)
gii—1 = pi (| - death rates) (uo = 0)

Solve Zfzzo miqi; = 0,7 =2 0
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Birth-death processes

Transition rates.
Gii+1 =N (T - birth rates)
gii—1 = pi (| - death rates) (uo = 0)

Solve Zizo m;Qi; = 0, 7 > 0, that is, —moAg + mipur = 0, and,

mj 1 Aj—1 — mj(A\j + pj) Fmypipi1 =0, j>1
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Birth-death processes

Transition rates.
Gii+1 =N (T - birth rates)
gii—1 = pi (| - death rates) (uo = 0)

Solve Zizo m;Qi; = 0, 7 > 0, that is, —moAg + mipur = 0, and,

mj 1 Aj—1 — mj(A\j + pj) Fmypipi1 =0, j>1

Solution. mg =1 and

_T1) i :
mj=1li-1 5, =21
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Miller's example

Transition rates.
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Miller's example

Transition rates. Fix r > 0 and set

)\z' — T%, 1> O,

9 -

i =ra"t i >1.
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Miller's example

Transition rates. Fix r > 0 and set

)\z' — T%, 1> O,

Solution.
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Miller's example

Transition rates. Fix r > 0 and set

)\z' — T%, 1> O,

i =ra"t i >1.

Solution. mg =1 and

T i :
mj = 1li=1 ~5 7 > 1.
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Miller's example

Transition rates. Fix r > 0 and set

)\z' — T%, 1> O,

i =ra"t i >1.

Solution. mg =1 and

T i :
mj = 1li=1 ~5 7 > 1.

So, m; = p’, where p = 1/r
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Miller's example

Transition rates. Fix r > 0 and set

)\z' — 7“%, 1> O,

i =ra"t i >1.

Solution. mg =1 and

T i :
mj = 1li=1 ~5 7 > 1.

So, m; = p’, where p = 1/r, and hence if r > 1,

mji=(1-p)p), j=0.
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Simulation

Birth—death process simulation (minimal): 2.=2%, p.=2%"", x(0)=1
20 T T T T T T

16 =

14 =

= 10} .

o 0.05 0.1 0.15 0.2 0.25 0.3 0.35
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What is going wrong?

Transition rates.
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What is going wrong?

Transition rates.
Nj=12, =0,

[y = ré=t > 1.

The relative proportion of births to deaths is r
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What is going wrong?

Transition rates.
)\j — sz, j > O,

[ = ré=t > 1.

The relative proportion of births to deaths is » and so, if
r > 1, the “process” is clearly fransient.
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What is going wrong?

Transition rates.
)\j — sz, j > O,

[ = A I

The relative proportion of births to deaths is » and so, if
r > 1, the “process” is clearly fransient.

In fact, the “process” is explosive. (Q Is not regular.)
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What is going wrong?

Transition rates.
)\j — sz, ] > O,
pp =171 =1

The relative proportion of births to deaths is » and so, if
r > 1, the “process” is clearly fransient.

In fact, the “process” is explosive. (Q is not regular.) R.G.

Miller* showed that ) needs to be regular for the recipe to
work.

*Miller, R.G. Jr. (1963) Stationary equations in continuous time Markov chains. Trans. Amer.
Math. Soc. 109, 35—44.
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Motivating question

It ) Is regular, then there exists uniquely a Q-process,
namely the minimal process: the minimal solution
F(-) = (fij(+), i,5 € §) 1o BEy;.
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Motivating question

It ) Is regular, then there exists uniquely a Q-process,
namely the minimal process: the minimal solution

E(-) = (fi;(-), 4,5 € S) to BEy;.

If () Is not regular, then there are infinitely many
(Q-processes, infinitely many of which are honest.
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Motivating question

It ) Is regular, then there exists uniquely a Q-process,
namely the minimal process: the minimal solution
F(-) = (fij(+), i,5 € §) 1o BEy;.

If () Is not regular, then there are infinitely many
(Q-processes, infinitely many of which are honest.

Question.
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Motivating question

It ) Is regular, then there exists uniquely a Q-process,
namely the minimal process: the minimal solution
F(-) = (fij(+), i,5 € §) 1o BEy;.

If () Is not regular, then there are infinitely many
(Q-processes, infinitely many of which are honest.

Cuestion. Suppose that there exists a collection of strictly
positive numbers = = (7, j € S) such that
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Motivating question

It ) Is regular, then there exists uniquely a Q-process,
namely the minimal process: the minimal solution
F(-) = (fij(+), i,5 € §) 1o BEy;.

If () Is not regular, then there are infinitely many
()-processes, infinitely many of which are honest.

Cuestion. Suppose that there exists a collection of strictly
positive numbers = = (7, j € S) such that

Does = admit an interpretation as a stationary distribution
for any of these processes?
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Simulation

Birth—death simulation (exit): A=2%, u.=2%"", x(0)=1
20 T T T T T T T T T

18 =

14+ s

12+ s

= 10} .
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Simulation

Birth—death simulation (entrance): ?»i=22i, ui=22i_1, x(0)=1
20 T T T T T

18 =

14+ -

12+ s

= 10| s
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An invariance result

Let m = (m;,7 € S) be a collection of strictly positive
numbers.
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An invariance result

Let m = (my,7 € S) be a collection of strictly positive
numbers. We call m a subinvariant measure for () it

>imigi; <0
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An invariance result

Let m = (m;,7 € S) be a collection of strictly positive
numbers. We call m a subinvariant measure for () it
> .. migi; < 0,and an invariant measure for () it > . m;q;; = 0.
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An invariance result

Let m = (m;,7 € S) be a collection of strictly positive
numbers. We call m a subinvariant measure for () it

> .. migi; < 0,and an invariant measure for () it > . m;q;; = 0.
It is called an invariant measure for P it ) . m;p;;(t) = m;.
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An invariance result

Let m = (m;,7 € S) be a collection of strictly positive
numbers. We call m a subinvariant measure for () it

> .. migi; < 0,and an invariant measure for () it > . m;q;; = 0.
It is called an invariant measure for P if Y. m;p;;(t) = m;.

Theorem. Let P be an arbitrary ()-process.
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An invariance result

Let m = (m;,7 € S) be a collection of strictly positive
numbers. We call m a subinvariant measure for () it

> .. migi; < 0,and an invariant measure for () it > . m;q;; = 0.
It is called an invariant measure for P if Y. m;p;;(t) = m;.

Theorem. Let P be an arbitrary Q-process. If m is invariant
for P, then m is subinvariant for Q:

> mpi(t)=m; = > mgy; <0
i i
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An Invariance result

Let m = (m;,7 € S) be a collection of strictly positive
numbers. We call m a subinvariant measure for () it

> .. migi; < 0,and an invariant measure for () it > . m;q;; = 0.
It is called an invariant measure for P if Y. m;p;;(t) = m;.

Theorem. Let P be an arbitrary Q-process. If m is invariant
for P, then m is subinvariant for ¢, and invariant for () /f and
only if P satisfies the forward equations FE;; over S:

(Z mM;Pij (t) =m; = Z m;Qi; = O) < FE
) )
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only if P satisfies the forward equations FE;; over S.
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An Invariance result

Let m = (m;,7 € S) be a collection of strictly positive
numbers. We call m a subinvariant measure for () it

> .. migi; < 0,and an invariant measure for () it > . m;q;; = 0.
It is called an invariant measure for P if Y. m;p;;(t) = m;.

Theorem. Let P be an arbitrary Q-process. If m is invariant
for P, then m is subinvariant for ¢, and invariant for () /f and
only if P satisfies the forward equations FE;; over S.

Corollary. If m is invariant for the minimal process F,
then m is invariant for Q).
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A construction problem

Suppose that ) is a stable and conservative ¢g-matrix, and
that m is subinvariant for Q).
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A construction problem

Suppose that ) is a stable and conservative ¢g-matrix, and
that m is subinvariant for Q).

Problem 1. Does there exist a ()-process for which m Is
invariant?
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A construction problem

Suppose that ) is a stable and conservative ¢g-matrix, and
that m is subinvariant for Q).

Problem 1. Does there exist a ()-process for which m Is
invariant?

Problem 2. Does there exist an honest ()-process for
which m is invariant?
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A construction problem

Suppose that ) is a stable and conservative ¢g-matrix, and
that m is subinvariant for Q).

Problem 1. Does there exist a ()-process for which m Is
invariant?

Problem 2. Does there exist an honest ()-process for
which m is invariant?

Problem 3. When such a Q-process exists, is it unique?
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A construction problem

Suppose that ) is a stable and conservative ¢g-matrix, and
that m is subinvariant for Q).

Problem 1. Does there exist a ()-process for which m Is
invariant?

Problem 2. Does there exist an honest ()-process for
which m is invariant?

Problem 3. When such a Q-process exists, is it unique?

Problem 4. In the case of non-unigueness, can one identify
all Q-processes (or perhaps all honest )-processes) for
which m is invariant?
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The resolvent

Let P be a transition function.
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The resolvent

Let P be a transition function. If we write
Qﬂz]()\) = fooo G_Atpz'j (t)dt, A > 0,

for the Laplace transform of p;;(-), then
U(-) = (¢¥i(-), 1,5 € 5) enjoys the following properties:
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The resolvent

Let P be a transition function. If we write
Qﬂz]()\) = fooo G_Atpz'j (t)dt, A > 0,

for the Laplace transform of p;;(-), then
U(-) = (¢¥i(-), 1,5 € 5) enjoys the following properties:
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The resolvent

Let P be a transition function. If we write
Qﬂz]()\) = fooo G_Atpz'j (t)dt, A > 0,

for the Laplace transform of p;;(-), then
U(-) = (¢¥i(-), 1,5 € 5) enjoys the following properties:

® hij(A) 20, 205 Aij(A) <1
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The resolvent

Let P be a transition function. If we write
Qﬂw()\) = OOO G_Atpz'j (t)dt, A >0,

for the Laplace transform of p;;(-), then
U(-) = (¢¥i(-), 1,5 € 5) enjoys the following properties:
® Pi(A) >0, 3 Myi;(A) < 1, and

® ij(A) — Vi () + (A — 1) g Yir (AN () = 0.
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The resolvent

Let P be a transition function. If we write
Qﬂw()\) = fooo G_Atpz'j (t)dt, A > 0,

for the Laplace transform of p;;(-), then
U(-) = (¢¥i(-), 1,5 € 5) enjoys the following properties:

® Yij(A) =0, 325 AYii(A) <1, and
® ij(A) — Vi () + (A — 1) g Yir (AN () = 0.

v is called the resolvent of P.
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The resolvent

Let P be a transition function. If we write
Qﬂw()\) = fooo G_Atpz'j (t)dt, A > 0,

for the Laplace transform of p;;(-), then
U(-) = (¢¥i(-), 1,5 € 5) enjoys the following properties:

® Yij(A) =0, 325 AYii(A) <1, and
® ij(A) — Vi () + (A — 1) g Yir (AN () = 0.

VU is called the resolvent of P. Indeed, if ¥ is a given
resolvent, in that it satisfies these properties, then there
exists a standard (!) process P with ¥ as its resolvent®.

*Reuter, G.E.H. (1967) Note on resolvents of denumerable submarkovian processes. Z
Wahrscheinlichkeitstheorie 9, 16—19.
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Identifying ()-processes

Now, if one is given a stable and conservative ¢g-matrix @,
and a resolvent ¥ satisfying the backward equations,

M (A) = 035 + D Giri(N), A >0,

then ¥ determines a standard ()-process:
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Identifying ()-processes

Now, if one is given a stable and conservative ¢g-matrix @,
and a resolvent ¥ satisfying the backward equations,

AMig(A) = bij + D Gik¥rj(A), A >0,
then ¥ determines a standard ()-process: as A — oo,
® \)i;(N) — 6;5, and
® AAYi5(A) — dij) = qij-
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Identifying ()-processes

Now, if one is given a stable and conservative ¢g-matrix @,
and a resolvent ¥ satisfying the backward equations,

AMig(A) = bij + D Gik¥rj(A), A >0,
then ¥ determines a standard ()-process: as A — oo,
® \)i;(N) — 6;5, and
® AAYi5(A) — dij) = qij-

One can also use the resolvent to determine whether or not
the Q-process is honest.
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Identifying ()-processes

Now, if one is given a stable and conservative ¢g-matrix @,
and a resolvent ¥ satisfying the backward equations,

AMig(A) = bij + D Gik¥rj(A), A >0,
then ¥ determines a standard ()-process: as A — oo,
® \)i;(N) — 6;5, and
® AAYi5(A) — dij) = qij-

One can also use the resolvent to determine whether or not
the Q-process is honest. This happens if and only if

YA (A) =1, i€S, A>0.
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Identifying invariant measures

Theorem. Let P be an arbitrary process and let ¥ be its
resolvent.
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Identifying invariant measures

Theorem. Let P be an arbitrary process and let ¥ be its
resolvent. Then, m is invariant for P if and only if it is
invariant for ¥
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Identifying invariant measures

Theorem. Let P be an arbitrary process and let ¥ be its
resolvent. Then, m is invariant for P if and only if it Is
invariant for ¥, that is,

D i Mipij(t) = my
if and only if

> i MiAYii(A) = my.
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Existence of a ()-process

Theorem. Let ) be a stable and conservative ¢g-matrix, and
suppose that m is a subinvariant measure for Q).
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Existence of a ()-process

Theorem. Let () be a stable and conservative ¢g-matrix, and
suppose that m is a subinvariant measure for (). Let

®(-) = (¢i;(-),4,5 € 5) be the resolvent of the minimal
()-process
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Existence of a ()-process

Theorem. Let () be a stable and conservative ¢g-matrix, and
suppose that m is a subinvariant measure for (). Let
®(-) = (¢i;(-),4,5 € 5) be the resolvent of the minimal
()-process and define z(-) = (z(+),7 € S) and
d(-) = (di(-), 7 € S) by

zi(A) =1 =3 Adij(A),
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Existence of a ()-process

Theorem. Let () be a stable and conservative ¢g-matrix, and
suppose that m is a subinvariant measure for (). Let
®(-) = (¢i;(-),4,5 € 5) be the resolvent of the minimal
Q-process and define z(-) = (z;(-),7 € S) and
d(-) = (di(-), 7 € S) by
zi(A) =1 =) Adij(N),

and

di(A) = mi — 3 miAdji(A).
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Existence of a ()-process

Theorem. Let () be a stable and conservative ¢g-matrix, and
suppose that m is a subinvariant measure for (). Let
®(-) = (¢i;(-),4,5 € 5) be the resolvent of the minimal
Q-process and define z(-) = (z;(-),7 € S) and
d(-) = (di(-), 7 € S) by
zi(A) =1 =2 Agi(A),

and

di(A) = mi — 3 miAdji(A).

Then, if d =0, m is invariant for the minimal Q)-process.
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Existence of a ()-process

Theorem. Let () be a stable and conservative ¢g-matrix, and
suppose that m is a subinvariant measure for (). Let
®(-) = (¢i;(-),4,5 € 5) be the resolvent of the minimal
()-process and define z(-) = (z(+),7 € S) and
d(-) = (di(-),7 € S) by
zi(A) =1 =2 Agij(N),

and

di(A) = mi — 3 miAdji(A).
Then, if d =0, m is invariant for the minimal Q)-process.
Otherwise, if > . d;(\) < ) .m;zi(A\) < oo, for all A > 0, there
exists a ()-process P for which m is invariant.
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Existence of a ()-process

Theorem continued. The resolvent of one such process
IS given by

zi(A)d;(N)

Dij(A) = dij(A) + NS mpzE(N)

(2)
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Existence of a ()-process

Theorem continued. The resolvent of one such process
IS given by

zi(A)d;(A)
A Zk mkzk()\) 7

and this is honest if and only if > . d;(\) = ). m;z;(\), for all
A > 0.

Vij(A) = ¢ij(N) + (2)
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Existence of a ()-process

Theorem continued. The resolvent of one such process
IS given by

zi(A)d;(A)
A Zk mkzk()‘) |

and this is honest if and only if > . d;(\) = ). m;z;(\), for all
A > 0. A sufficient condition for there to exist an honest

(-process for which m is invariant is that m satisfies
> mj(1 = Agj;(A)) < oo, forall A > 0.

Vij(A) = ¢i5(A) +

(2)
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Existence of a ()-process

Theorem continued. The resolvent of one such process
IS given by

AD e Mezk(A)

and this is honest if and only if > . d;(\) = ). m;z;(\), for all
A > 0. A sufficient condition for there to exist an honest

(-process for which m is invariant is that m satisfies
> mj(1 = Agj;(A)) < oo, forall A > 0.

Vij(A) = ¢i5(A) +

(2)

Corollary. If m is a subinvariant probability distribution
for (), then there exists an honest )-process with stationary
distribution m. The resolvent of one such process is given

by (2).
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The single-exit case

Suppose that @ is a single-exit g-matrix
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The single-exit case

Suppose that @) is a single-exit g¢-matrix, that is, the space of
bounded, non-negative vectors ¢ = (§;,7 € S) which satisfy

> i€ = a&i, a >0,

has dimension 1.
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The single-exit case

Suppose that @) is a single-exit g-matrix, that is, the space of
bounded, non-negative vectors ¢ = (§;,7 € S) which satisfy

> i€ = a&i, a >0,

has dimension 1. (The minimal process has only one
available “escape route” to infinity.)
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The single-exit case

Suppose that @) is a single-exit g-matrix, that is, the space of
bounded, non-negative vectors ¢ = (§;,7 € S) which satisfy

> i€ = a&i, a >0,

has dimension 1. (The minimal process has only one
available “escape route” to infinity.) Then, the condition

2. di(A) < 2 ymizi(A) < o9

IS necessary for the existence of a ()-process for which the
specified measure is invariant;
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The single-exit case

Suppose that @) is a single-exit g-matrix, that is, the space of
bounded, non-negative vectors ¢ = (§;,7 € S) which satisfy

> i€ = a&i, a >0,

has dimension 1. (The minimal process has only one
available “escape route” to infinity.) Then, the condition

2. di(A) < 2 ymizi(A) < o9

IS necessary for the existence of a ()-process for which the
specified measure is invariant; the QQ-process is then
determined uniquely by

ij(A) = ¢ij(A) + A%%ifij(&)'
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Non-uniqueness

Consider a pure-birth process with strictly positive birth
rates (¢;,7 > 0), but imagine that we have iwo distinct sets

of birth rates, (q§0),z‘ > 0) and (q§1),i > 0), which satisfy
PRy 1/%(7«) < oo, r=0,1.
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Non-uniqueness

Consider a pure-birth process with strictly positive birth
rates (¢;,7 > 0), but imagine that we have iwo distinct sets

of birth rates, (q§0),z' > 0) and (qfl),z' > 0), which satisfy

D im0 1/%(7«) <oo,7=0,1. Let S={0,1} x {0,1,...} and
define @ = (guy, z,y € S) by
(- (1)

q; if)=174+1and s =r,

q(ri)(s,5) = < —qgr), if)=7and s =r,

L 0, otherwise,

forr=0,1and i > 0.
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Non-uniqueness

Consider a pure-birth process with strictly positive birth
rates (¢;,7 > 0), but imagine that we have iwo distinct sets

of birth rates, (q§0),z' > 0) and (qfl),z' > 0), which satisfy

D im0 1/%(7«) <oo,7=0,1. Let S={0,1} x {0,1,...} and
define @ = (guy, z,y € S) by
(- (1)

q; if)=174+1and s =r,

q(ri)(s,5) = < —qgr), if)=7and s =r,

L 0, otherwise,

forr=0,1and ¢ > 0. The measure m = (m,,x € S), given
by m ;. ;) = 1/q§r), r=0,1, i > 0, Is subinvariant for Q).
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Non-uniqueness
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Non-uniqueness

The resolvents of iwo distinct Q-processes for which m is
iInvariant are given by
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Non-uniqueness

The resolvents of iwo distinct Q-processes for which m is
iInvariant are given by

27 (V65 (A)

_ (7)
i) (s,5)(A) = 0rsy;” (A) + 2— {232 V) +2" ()}
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Non-uniqueness

The resolvents of iwo distinct Q-processes for which m is
iInvariant are given by

SRIONIINUPY
2—{2" (V425 ()}

w(T,’I;)(S,])( )_ 5rs§b(r)( )

and
( 2 ()23 (60 (A
(r) (A)z (Mg, (M) B
Qbij ()‘) T 1 (%)( Nz (1)( N =T
Viri)(s.) (A) = S
2 (A)plL ")
(Nog; (N

\ 1— zg(’)(,\)z(”(,\)’ SFT.
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Non-uniqueness

Interpretation.
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Non-uniqueness

Interpretation.

The first process chooses between (0,0) and (1,0) with
equal probability as the starting point following an
explosion, no matter which was the most recently traversed
path.
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Non-uniqueness

Interpretation.

The first process chooses between (0,0) and (1,0) with
equal probability as the starting point following an
explosion, no matter which was the most recently traversed

path.

The second process traverses alternate paths following
successive explosions.
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The reversible case

Suppose that @) is symmetrically reversible with respect
tom
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The reversible case

Suppose that @) is symmetrically reversible with respect
to m, that iS, miQ;; = Mjqji, 1, € S.
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The reversible case

Suppose that @ is symmetrically reversible with respect
to m, that iS, mM;Qi; = Mjqj4, 1, € S. Then, dz'()\) = mizi()\),
and so we arrive at the following corollary*.
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The reversible case

Suppose that @ is symmetrically reversible with respect
to m, that iS, mM;Qi; = Mjqj4, 1, € S. Then, dz'()\) = mizi()\),
and so we arrive at the following corollary*.

Corollary. If Q) is reversible with respect to m
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The reversible case

Suppose that @ is symmetrically reversible with respect
to m, that iS, mM;Qi; = Mjqj4, 1, € S. Then, di()\) = mizi()\),
and so we arrive at the following corollary*.

Corollary. If @) is reversible with respect to m, then there

exists uniquely a Q-function P for which m is invariant /f and
only it » ;mjzj(A) < oo, forall A > 0.
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The reversible case

Suppose that @ is symmetrically reversible with respect
to m, that iS, mM;Qi; = Mjqj4, 1, € S. Then, di()\) = mizi()\),
and so we arrive at the following corollary*.

Corollary. If Q is reversible with respect to m, then there
exists uniquely a Q-function P for which m is invariant /f and
only it » ;mjzj(A) < oo, forall A > 0. Itis honest and its

resolvent is given by

Vi) = 03 (M) + g3

keS mkzk()\) )

MASCQOS Oberwolfach 2003 - 25



The reversible case

Suppose that @ is symmetrically reversible with respect
to m, that iS, mM;Qi; = Mjqj4, 1, € S. Then, di()\) = mizi()\),
and so we arrive at the following corollary*.

Corollary. If Q is reversible with respect to m, then there
exists uniquely a Q-function P for which m is invariant /f and
only it y_;mjzj(A) < oo, forall A > 0. Itis honest and its

resolvent is given by

Vi) = 03 (M) + g3

keS mkzk()\) )

Moreover, P is reversible with respect to m in that
mM;Pij (t) = mjpjz-(t) (or, equivalently, mzww()\) = mﬂbﬂ()\)).

*Hou Chen-Ting and Chen Mufa (1980) Markov processes and field theory. Kexue.
Tongbao 25, 807-811.
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Birth-death processes

Suppose that the birth rates ()\;,7 > 0) and death rates
(i, i > 1) are strictly positive.

MASCQOS Oberwolfach 2003 - 26



Birth-death processes

Suppose that the birth rates (\;,7 > 0) and death rates
(pi,? > 1) are strictly positive. @ is then regular if and only if

D i %n Z;’:o mj = 0. (3)
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Birth-death processes

Suppose that the birth rates (\;,7 > 0) and death rates
(pi,? > 1) are strictly positive. @ is then regular if and only if

D i %n Z;’:o mj = 0. (3)

Proposition. Let m = (m;, ¢ € S) be the essentially unique
iInvariant measure for Q.
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Birth-death processes

Suppose that the birth rates (\;,7 > 0) and death rates
(pi,? > 1) are strictly positive. @ is then regular if and only if

D i ﬁ Z;’:o mj = 0. (3)

Proposition. Let m = (m;, ¢ € S) be the essentially unique
iInvariant measure for Q.

# mis invariant for the minimal Q-process if and only if (3)
holds.
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Birth-death processes

Suppose that the birth rates (\;,7 > 0) and death rates
(pi,? > 1) are strictly positive. @ is then regular if and only if

>0 K Dm0 M = 00, )
Proposition. Let m = (m;, 7« € S) be the essentially unique
iInvariant measure for Q.

# m is invariant for the minimal Q-process if and only if (3)
holds.

#® When (3) fails, there exists uniquely a Q-process P for
which m is invariant if and only if m is finite
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Birth-death processes

Suppose that the birth rates (\;,7 > 0) and death rates
(pi,? > 1) are strictly positive. @ is then regular if and only if

D i ﬁ Z;’:o mj = 0. (3)

Proposition. Let m = (m;, 7« € S) be the essentially unique
iInvariant measure for Q.

# m is invariant for the minimal Q-process if and only if (3)
holds.

#® When (3) fails, there exists uniquely a Q-process P for
which m is invariant if and only if m is finite, in which
case P is the unique, honest ()-process which satisfies
FE;;
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Birth-death processes

Suppose that the birth rates (\;,7 > 0) and death rates
(pi,? > 1) are strictly positive. @ is then regular if and only if

D i ﬁ Z;’:o mj = 0. (3)

Proposition. Let m = (m;, 7« € S) be the essentially unique
iInvariant measure for Q).

# m is invariant for the minimal Q-process if and only if (3)
holds.

#® When (3) fails, there exists uniquely a Q-process P for
which m is invariant if and only if m is finite, in which
case P is the unique, honest ()-process which satisfies
FE;;; P Is positive recurrent and its stationary
distribution is obtained by normalizing m.
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u~lnvariance

Suppose that S = {0} U C, where 0 is an absorbing state
and C' is irreducible (for F).
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u~lnvariance

Suppose that S = {0} U C, where 0 is an absorbing state
and C'is irreducible (for F). Let . > 0.
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u=lnvariance

Suppose that S = {0} U C, where 0 is an absorbing state
and C is irreducible (for F). Let 1 > 0. A collection

m = (m;,i € C) of strictly positive numbers is called a
u-subinvariant measure for Q) if

ZiEC mqidsg S — Mg, ] < C)
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u=lnvariance

Suppose that S = {0} U C, where 0 is an absorbing state
and C is irreducible (for F). Let 1 > 0. A collection

m = (m;,i € C) of strictly positive numbers is called a
u-subinvariant measure for Q) if

ZiEC mqidsg S — Mg, ] < C)
and a y.-invariant measure for () if

> icc MiGij = —pmyj, j € C.
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u=lnvariance

Suppose that S = {0} U C, where 0 is an absorbing state
and C is irreducible (for F). Let 1 > 0. A collection
m = (m;,i € C) of strictly positive numbers is called a
u-subinvariant measure for Q) if

ZiEC mqidsg S — Mg, ] < C)
and a y.-invariant measure for () if

D icc Miqij = —pmy, j € C.
It is called a ;.-invariant measure for P, where P is any
transition function, if

> icomipij(t) =e Mmy;,  jel
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Quasi-stationary distributions

Proposition. A probability distribution = = (7;,i € C') is a
p-invariant measure for some p > 0, that is,

S mig(t) = My, jEC,

if and only if it is a quasi-stationary distribution
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Quasi-stationary distributions

Proposition. A probability distribution = = (7;,i € C') is a
u-invariant measure for some ;. > 0, that is,

S mipy(t) = e Hny, jEC,

if and only if it is a quasi-stationary distribution: for j € C,

pi(t) = > mipi(t) = i) = mj.

icO Zkec Pk (t)
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u~invariance for I

Theorem. If m is p-invariant for P, then m is u-subinvariant
for ()
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u~invariance for I

Theorem. If m is p-invariant for P, then m is u-subinvariant

for @, and u-invariant for  if and only if P satisfies the
forward equations over (.
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u~invariance for I

Theorem. If m is p-invariant for P, then m is u-subinvariant
for @, and u-invariant for  if and only if P satisfies the
forward equations over C'. For example, if m Is p-invariant
for the minimal process, then it is p-invariant for Q).
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u~invariance for F

Theorem. If m is p-invariant for P, then m is u-subinvariant
for @, and u-invariant for  if and only if P satisfies the
forward equations over C'. For example, if m Is p-invariant
for the minimal process, then it is p-invariant for Q).

Theorem. If m Is u-invariant for @, then it is p-invariant
for £ if and only if the equations >, viqij = —vyj,
0<vy; <my, 1€ C, have no non-trivial solution for some
(and then all) v < p.
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u~invariance for F

Theorem. If mis p-invariant for P, then m is u-subinvariant
for @, and u-invariant for  if and only if P satisfies the
forward equations over C'. For example, if m is p-invariant
for the minimal process, then it is u-invariant for Q.

Theorem. If m Is u-invariant for @, then it is p-invariant
for £ if and only if the equations >, viqij = —vyj,

0<vy; <my, 1€ C, have no non-trivial solution for some
(and then all) v < p.

Theorem. It m Is a finite py-invariant measure for @, then
M Z@'QC miaf < ZieC miqio, (4)

where af" = lim;_. fio(t), and m is p-invariant for F if and
only if equality holds in (4).
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()-processes with a given m

Theorem. Suppose that @ is single-exit and that m is a
finite u-subinvariant measure for Q.
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()-processes with a given m

Theorem. Suppose that @ is single-exit and that m is a
finite u-subinvariant measure for ). Then, there exists a
()-process for which m is p-invariant if and only if

ZieC miqio < W Zf;ec my;.
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()-processes with a given m

Theorem. Suppose that @ is single-exit and that m is a
finite u-subinvariant measure for ). Then, there exists a
()-process for which m is p-invariant if and only if

Zie(] miqio < W ZiEC myq.

The resolvent ¥ of any Q-process for which m is p-invariant
must be of the form

wz'j()‘) — ¢ij()\) + (A‘i‘ﬂ)z(k)ec(m)kzk()‘)’ i,J €9,
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()-processes with a given m

Theorem. Suppose that @ is single-exit and that m is a
finite u-subinvariant measure for ). Then, there exists a
()-process for which m is p-invariant if and only if

Zie(] miqio < W ZiEC myq.

The resolvent ¥ of any Q-process for which m is p-invariant
must be of the form

wz'j()‘) — ¢ij()\) + (A‘i‘ﬂ)z(k)ec(m)kzk()‘)’ i,J €9,

where d;(A\) =mj; — > .comi(A+ p)dii(A), jeC,

do(A) = e/A =2 iccmi(A+ 1) Pio(A),
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()-processes with a given m

Theorem. Suppose that @ is single-exit and that m is a
finite u-subinvariant measure for ). Then, there exists a
()-process for which m is p-invariant if and only if

Zie(] miqio < W ZiEC myq.

The resolvent ¥ of any Q-process for which m is p-invariant
must be of the form

wij()‘) — §bij()\) + ()\_FM)Z%);)GCZ;%)]C%()\)» i,J €5,
where d;(A\) =mj; — > .comi(A+ p)dii(A), jeC,
do(A) = /A =2 iec mi(A =+ 11)dio(A),

and e satisfies ) .o migio <e < p) comi.
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()-processes with a given m

Theorem continued.
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()-processes with a given m

Theorem continued. Conversely, if

ZiEC miqio < W Z@'eo myg,

then all Q-processes for which m is u-invariant can be
constructed in this way by varying e in the range

2 iec Midio < € <) e M-
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()-processes with a given m

Theorem continued. Conversely, if

D icc Midio < 1) e M,

then all Q-processes for which m is u-invariant can be
constructed in this way by varying e in the range

2 iec Midio < € <) e M-

Exactly one of these is honest
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()-processes with a given m

Theorem continued. Conversely, if
2_icc Midio < [ ) icc M,

then all Q-processes for which m is u-invariant can be
constructed in this way by varying e in the range

2 iec Midio < € <) e M-

Exactly one of these is honest; this is obtained by setting
e =) iccMy.
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()-processes with a given m

Theorem continued. Conversely, if
2_icc Midio < [ ) icc M,

then all Q-processes for which m is u-invariant can be
constructed in this way by varying e in the range

2 iec Midio < € <) e M-

Exactly one of these is honest; this is obtained by setting
e = pY .o m;. And, exactly one satisfies the forward
equations FE;y over i € C
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()-processes with a given m

Theorem continued. Conversely, if
2_icc Midio < [ ) icc M,

then all Q-processes for which m is u-invariant can be
constructed in this way by varying e in the range

2 iec Midio < € <) e M-

Exactly one of these is honest; this is obtained by setting
e = pY .o m;. And, exactly one satisfies the forward
equations FE;g over i € (' this is obtained by setting

€ = ZZEC mZQZO
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