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Transition functions

State-space. S = {0, 1, . . . }

Transition functions. A set of real-valued functions
P (·) = (pij(·), i, j ∈ S) defined on (0,∞) is called a transition
function (or simply process) if

pij(t) ≥ 0,
∑

j pij(t) ≤ 1, and

pij(s+ t) =
∑

k pik(s)pkj(t). [Chapman-Kolmogorov]

It is called standard if

limt↓0 pij(t) = δij

and honest if
∑

j pij(t) = 1, for some (and then for all) t > 0.

MASCOS Oberwolfach 2003 - 2



Transition functions

State-space. S = {0, 1, . . . }
Transition functions. A set of real-valued functions
P (·) = (pij(·), i, j ∈ S) defined on (0,∞) is called a transition
function (or simply process) if

pij(t) ≥ 0,
∑

j pij(t) ≤ 1, and

pij(s+ t) =
∑

k pik(s)pkj(t). [Chapman-Kolmogorov]

It is called standard if

limt↓0 pij(t) = δij

and honest if
∑

j pij(t) = 1, for some (and then for all) t > 0.

MASCOS Oberwolfach 2003 - 2



Transition functions

State-space. S = {0, 1, . . . }
Transition functions. A set of real-valued functions
P (·) = (pij(·), i, j ∈ S) defined on (0,∞) is called a transition
function (or simply process) if

pij(t) ≥ 0

pij(t) ≥ 0,
∑

j pij(t) ≤ 1, and

pij(s+ t) =
∑

k pik(s)pkj(t). [Chapman-Kolmogorov]

It is called standard if

limt↓0 pij(t) = δij

and honest if
∑

j pij(t) = 1, for some (and then for all) t > 0.

MASCOS Oberwolfach 2003 - 2



Transition functions

State-space. S = {0, 1, . . . }
Transition functions. A set of real-valued functions
P (·) = (pij(·), i, j ∈ S) defined on (0,∞) is called a transition
function (or simply process) if

pij(t) ≥ 0,
∑

j pij(t) ≤ 1

pij(t) ≥ 0,
∑

j pij(t) ≤ 1, and

pij(s+ t) =
∑

k pik(s)pkj(t). [Chapman-Kolmogorov]

It is called standard if

limt↓0 pij(t) = δij

and honest if
∑

j pij(t) = 1, for some (and then for all) t > 0.

MASCOS Oberwolfach 2003 - 2



Transition functions

State-space. S = {0, 1, . . . }
Transition functions. A set of real-valued functions
P (·) = (pij(·), i, j ∈ S) defined on (0,∞) is called a transition
function (or simply process) if

pij(t) ≥ 0,
∑

j pij(t) ≤ 1, and

pij(s+ t) =
∑

k pik(s)pkj(t). [Chapman-Kolmogorov]

It is called standard if

limt↓0 pij(t) = δij

and honest if
∑

j pij(t) = 1, for some (and then for all) t > 0.

MASCOS Oberwolfach 2003 - 2



Transition functions

State-space. S = {0, 1, . . . }
Transition functions. A set of real-valued functions
P (·) = (pij(·), i, j ∈ S) defined on (0,∞) is called a transition
function (or simply process) if

pij(t) ≥ 0,
∑

j pij(t) ≤ 1, and

pij(s+ t) =
∑

k pik(s)pkj(t). [Chapman-Kolmogorov]

It is called standard if

limt↓0 pij(t) = δij

and honest if
∑

j pij(t) = 1, for some (and then for all) t > 0.

MASCOS Oberwolfach 2003 - 2



Transition functions

State-space. S = {0, 1, . . . }
Transition functions. A set of real-valued functions
P (·) = (pij(·), i, j ∈ S) defined on (0,∞) is called a transition
function (or simply process) if

pij(t) ≥ 0,
∑

j pij(t) ≤ 1, and

pij(s+ t) =
∑

k pik(s)pkj(t). [Chapman-Kolmogorov]

It is called standard if

limt↓0 pij(t) = δij

and honest if
∑

j pij(t) = 1, for some (and then for all) t > 0.

MASCOS Oberwolfach 2003 - 2



The q-matrix

For a standard process P , the right-hand derivative
p ′ij(0+) = qij exists

For a standard process P , the

right-hand derivative p ′ij(0+) = qij exists and defines a
q-matrix Q = (qij , i, j ∈ S). Its entries satisfy

0 ≤ qij <∞, j 6= i, and
∑

j 6=i qij ≤ −qii ≤ ∞.

We set qi = −qii, i ∈ S.

Suppose that Q is given. Assume that Q is stable, that is
qi <∞ for all i in S. A standard process P will then be
called a Q-process if its q-matrix is Q.
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The Kolmogorov DEs

For simplicity, we assume Q is conservative

For simplicity,

we assume Q is conservative, that is
∑

j 6=i qij = qi, i ∈ S.

Under this condition, every Q-process P satisfies the
backward equations,

BEij p ′ij(t) =
∑

k qikpkj(t), t > 0,

but might not satisfy the forward equations,

FEij p ′ij(t) =
∑

k pik(t)qkj , t > 0.
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Stationary distributions

A collection of positive numbers π = (πj , j ∈ S) is a
stationary distribution if

∑

j πj = 1 and
∑

i πipij(t) = πj , j ∈ S. (1)

Recipe. Find a collection of strictly positive numbers
m = (mj , j ∈ S) such that

∑

imiqij = 0.

Such an m is called an invariant measure for Q. If
∑

imi <∞, we set πj = mj/
∑

imi and hope π satisfies (1).
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Birth-death processes

Transition rates.

qi,i+1 = λi (↑ - birth rates)
qi,i−1 = µi (↓ - death rates) (µ0 = 0)

Solve
∑

i≥0miqij = 0, j ≥ 0, that is, −m0λ0 +m1µ1 = 0, and,

mj−1λj−1 −mj(λj + µj) +mj+1µj+1 = 0, j ≥ 1.

Solution. m0 = 1 and

mj =
∏j

i=1
λi−1

µi
, j ≥ 1.
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Miller’s example

Transition rates.

Fix r > 0 and set

λi = r2i, i ≥ 0,

µi = r2i−1, i ≥ 1.

Solution. m0 = 1 and

mj =
∏j

i=1
λi−1

µi
, j ≥ 1.

So, mj = ρj, where ρ = 1/r, and hence if r > 1,

πj = (1− ρ)ρj , j ≥ 0.
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Simulation
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Birth−death process simulation (minimal): λ
i
=22i, µ

i
=22i−1, x(0)=1

t

x(
t)
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What is going wrong?

Transition rates.

λj = r2j , j ≥ 0,

µj = r2j−1, j ≥ 1.

The relative proportion of births to deaths is rand so, if
r > 1, the “process” is clearly transient .

In fact, the “process” is explosive. (Q is not regular.)R.G.
Miller∗ showed that Q needs to be regular for the recipe to
work.

∗Miller, R.G. Jr. (1963) Stationary equations in continuous time Markov chains. Trans. Amer.
Math. Soc. 109, 35–44.
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Motivating question

If Q is regular, then there exists uniquely a Q-process,
namely the minimal process: the minimal solution
F (·) = (fij(·), i, j ∈ S) to BEij.

If Q is not regular, then there are infinitely many
Q-processes, infinitely many of which are honest.

Question.Suppose that there exists a collection of strictly
positive numbers π = (πj , j ∈ S) such that

∑

i πi = 1 and
∑

i πiqij = 0.

Does π admit an interpretation as a stationary distribution
for any of these processes?
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Simulation
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An invariance result

Let m = (mi, i ∈ S) be a collection of strictly positive
numbers.

We call m a subinvariant measure for Q if
∑

imiqij ≤ 0, and an invariant measure for Q if
∑

imiqij = 0.
It is called an invariant measure for P if

∑

imipij(t) = mj.

Theorem. Let P be an arbitrary Q-process. If m is invariant
for P , then m is subinvariant for Q, and invariant for Q if and
only if P satisfies the forward equations FEij over S.

Corollary. If m is invariant for the minimal process F ,
then m is invariant for Q.
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A construction problem

Suppose that Q is a stable and conservative q-matrix, and
that m is subinvariant for Q.

Problem 1. Does there exist a Q-process for which m is
invariant?

Problem 2. Does there exist an honest Q-process for
which m is invariant?

Problem 3. When such a Q-process exists, is it unique?

Problem 4. In the case of non-uniqueness, can one identify
all Q-processes (or perhaps all honest Q-processes) for
which m is invariant?
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The resolvent
Let P be a transition function.

If we write

ψij(λ) =
∫∞

0 e−λtpij(t)dt, λ > 0,

for the Laplace transform of pij(·), then
Ψ(·) = (ψij(·), i, j ∈ S) enjoys the following properties:

ψij(λ) ≥ 0,
∑

j λψij(λ) ≤ 1, and

ψij(λ)− ψij(µ) + (λ− µ)
∑

k ψik(λ)ψkj(µ) = 0.

Ψ is called the resolvent of P .Indeed, if Ψ is a given
resolvent, in that it satisfies these properties, then there
exists a standard (!) process P with Ψ as its resolvent∗.

∗Reuter, G.E.H. (1967) Note on resolvents of denumerable submarkovian processes. Z.
Wahrscheinlichkeitstheorie 9, 16–19.
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Identifying Q-processes

Now, if one is given a stable and conservative q-matrix Q,
and a resolvent Ψ satisfying the backward equations,

λψij(λ) = δij +
∑

k qikψkj(λ), λ > 0,

then Ψ determines a standard Q-process:

as λ→∞,

λψij(λ)→ δij, and

λ(λψij(λ)− δij)→ qij.

One can also use the resolvent to determine whether or not
the Q-process is honest .This happens if and only if

∑

j λψij(λ) = 1, i ∈ S, λ > 0.
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Identifying invariant measures

Theorem. Let P be an arbitrary process and let Ψ be its
resolvent.

Then, m is invariant for P if and only if it is
invariant for Ψ, that is,

∑

imipij(t) = mj

if and only if
∑

imiλψij(λ) = mj .
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Existence of a Q-process

Theorem. Let Q be a stable and conservative q-matrix, and
suppose that m is a subinvariant measure for Q.

Let
Φ(·) = (φij(·), i, j ∈ S) be the resolvent of the minimal
Q-processand define z(·) = (zi(·), i ∈ S) and
d(·) = (di(·), i ∈ S) by

zi(λ) = 1−
∑

j λφij(λ),
and

di(λ) = mi −
∑

jmjλφji(λ).

Then, if d = 0, m is invariant for the minimal Q-process.
Otherwise, if

∑

i di(λ) ≤
∑

imizi(λ) <∞, for all λ > 0, there
exists a Q-process P for which m is invariant.
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Existence of a Q-process

Theorem continued. The resolvent of one such process
is given by

ψij(λ) = φij(λ) +
zi(λ)dj(λ)

λ
∑

kmkzk(λ)
, (2)

and this is honest if and only if
∑

i di(λ) =
∑

imizi(λ), for all
λ > 0.A sufficient condition for there to exist an honest
Q-process for which m is invariant is that m satisfies
∑

jmj(1− λφjj(λ)) <∞, for all λ > 0.

Corollary. If m is a subinvariant probability distribution
for Q, then there exists an honest Q-process with stationary
distribution m. The resolvent of one such process is given
by (2).
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The single-exit case

Suppose that Q is a single-exit q-matrix

, that is, the space of
bounded, non-negative vectors ξ = (ξi, i ∈ S) which satisfy

∑

j qijξj = αξi, α > 0,

has dimension 1.(The minimal process has only one
available “escape route” to infinity.)Then, the condition

∑

i di(λ) ≤
∑

imizi(λ) <∞

is necessary for the existence of a Q-process for which the
specified measure is invariant;the Q-process is then
determined uniquely by

ψij(λ) = φij(λ) +
zi(λ)dj(λ)

λ
∑

k
mkzk(λ) .

MASCOS Oberwolfach 2003 - 20



The single-exit case

Suppose that Q is a single-exit q-matrix, that is, the space of
bounded, non-negative vectors ξ = (ξi, i ∈ S) which satisfy

∑

j qijξj = αξi, α > 0,

has dimension 1.

(The minimal process has only one
available “escape route” to infinity.)Then, the condition

∑

i di(λ) ≤
∑

imizi(λ) <∞

is necessary for the existence of a Q-process for which the
specified measure is invariant;the Q-process is then
determined uniquely by

ψij(λ) = φij(λ) +
zi(λ)dj(λ)

λ
∑

k
mkzk(λ) .

MASCOS Oberwolfach 2003 - 20



The single-exit case

Suppose that Q is a single-exit q-matrix, that is, the space of
bounded, non-negative vectors ξ = (ξi, i ∈ S) which satisfy

∑

j qijξj = αξi, α > 0,

has dimension 1. (The minimal process has only one
available “escape route” to infinity.)

Then, the condition
∑

i di(λ) ≤
∑

imizi(λ) <∞

is necessary for the existence of a Q-process for which the
specified measure is invariant;the Q-process is then
determined uniquely by

ψij(λ) = φij(λ) +
zi(λ)dj(λ)

λ
∑

k
mkzk(λ) .

MASCOS Oberwolfach 2003 - 20



The single-exit case

Suppose that Q is a single-exit q-matrix, that is, the space of
bounded, non-negative vectors ξ = (ξi, i ∈ S) which satisfy

∑

j qijξj = αξi, α > 0,

has dimension 1. (The minimal process has only one
available “escape route” to infinity.) Then, the condition

∑

i di(λ) ≤
∑

imizi(λ) <∞

is necessary for the existence of a Q-process for which the
specified measure is invariant;

the Q-process is then
determined uniquely by

ψij(λ) = φij(λ) +
zi(λ)dj(λ)

λ
∑

k
mkzk(λ) .

MASCOS Oberwolfach 2003 - 20



The single-exit case

Suppose that Q is a single-exit q-matrix, that is, the space of
bounded, non-negative vectors ξ = (ξi, i ∈ S) which satisfy

∑

j qijξj = αξi, α > 0,

has dimension 1. (The minimal process has only one
available “escape route” to infinity.) Then, the condition

∑

i di(λ) ≤
∑

imizi(λ) <∞

is necessary for the existence of a Q-process for which the
specified measure is invariant; the Q-process is then
determined uniquely by

ψij(λ) = φij(λ) +
zi(λ)dj(λ)

λ
∑

k
mkzk(λ) .

MASCOS Oberwolfach 2003 - 20



Non-uniqueness

Consider a pure-birth process with strictly positive birth
rates (qi, i ≥ 0), but imagine that we have two distinct sets
of birth rates, (q(0)

i , i ≥ 0) and (q(1)
i , i ≥ 0), which satisfy

∑∞
i=0 1/q

(r)
i <∞, r = 0, 1.

Let S = {0, 1} × {0, 1, . . . } and
define Q = (qxy, x, y ∈ S) by

q(r,i)(s,j) =











q
(r)
i , ifj = i+ 1 and s = r,

−q
(r)
i , ifj = i and s = r,

0, otherwise,

for r = 0, 1 and i ≥ 0.The measure m = (mx, x ∈ S), given by
m(r,i) = 1/q

(r)
i , r = 0, 1, i ≥ 0, is subinvariant for Q.
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Non-uniqueness
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Non-uniqueness

The resolvents of two distinct Q-processes for which m is
invariant are given by

ψ(r,i)(s,j)(λ) = δrsφ
(r)
ij (λ) +

z
(r)
i (λ)φ

(s)
0j (λ)

2−{z
(0)
0 (λ)+z

(1)
0 (λ)}

and

ψ(r,i)(s,j)(λ) =























φ
(r)
ij (λ) +

z
(r)
i (λ)z

(1−r)
0 (λ)φ

(r)
0j (λ)

1−z
(0)
0 (λ)z

(1)
0 (λ)

, s = r

z
(r)
i (λ)φ

(1−r)
0j (λ)

1−z
(0)
0 (λ)z

(1)
0 (λ)

, s 6= r.
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Non-uniqueness

Interpretation.

The first process chooses between (0, 0) and (1, 0) with
equal probability as the starting point following an
explosion, no matter which was the most recently traversed
path.

The second process traverses alternate paths following
successive explosions.
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The reversible case

Suppose that Q is symmetrically reversible with respect
to m

, that is, miqij = mjqji, i, j ∈ S.Then, di(λ) = mizi(λ),
and so we arrive at the following corollary∗.

Corollary. If Q is reversible with respect to m, then there
exists uniquely a Q-function P for which m is invariant if and
only if

∑

jmjzj(λ) <∞, for all λ > 0.It is honest and its
resolvent is given by

ψij(λ) = φij(λ) +
zi(λ)mjzj(λ)

λ
∑

k∈S
mkzk(λ) .

Moreover, P is reversible with respect to m in that
mipij(t) = mjpji(t) (or, equivalently, miψij(λ) = mjψji(λ)).
∗Hou Chen-Ting and Chen Mufa (1980) Markov processes and field theory. Kexue.
Tongbao 25, 807–811.
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Birth-death processes
Suppose that the birth rates (λi, i ≥ 0) and death rates
(µi, i ≥ 1) are strictly positive.

Q is then regular if and only if
∑∞

i=0
1

λimi

∑i
j=0mj =∞. (3)

Proposition. Let m = (mi, i ∈ S) be the essentially unique
invariant measure for Q.

m is invariant for the minimal Q-process if and only if (3)
holds.

When (3) fails, there exists uniquely a Q-process P for
which m is invariant if and only if m is finite, in which
case P is the unique, honest Q-process which satisfies
FEij; P is positive recurrent and its stationary
distribution is obtained by normalizing m.
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µ-Invariance

Suppose that S = {0} ∪ C, where 0 is an absorbing state
and C is irreducible (for F ).

Let µ ≥ 0.A collection
m = (mi, i ∈ C) of strictly positive numbers is called a
µ-subinvariant measure for Q if

∑

i∈C miqij ≤ −µmj , j ∈ C,

and a µ-invariant measure for Q if
∑

i∈C miqij = −µmj , j ∈ C.

It is called a µ-invariant measure for P , where P is any
transition function, if

∑

i∈C mipij(t) = e−µtmj , j ∈ C.

MASCOS Oberwolfach 2003 - 27



µ-Invariance

Suppose that S = {0} ∪ C, where 0 is an absorbing state
and C is irreducible (for F ). Let µ ≥ 0.

A collection
m = (mi, i ∈ C) of strictly positive numbers is called a
µ-subinvariant measure for Q if

∑

i∈C miqij ≤ −µmj , j ∈ C,

and a µ-invariant measure for Q if
∑

i∈C miqij = −µmj , j ∈ C.

It is called a µ-invariant measure for P , where P is any
transition function, if

∑

i∈C mipij(t) = e−µtmj , j ∈ C.

MASCOS Oberwolfach 2003 - 27



µ-Invariance

Suppose that S = {0} ∪ C, where 0 is an absorbing state
and C is irreducible (for F ). Let µ ≥ 0. A collection
m = (mi, i ∈ C) of strictly positive numbers is called a
µ-subinvariant measure for Q if

∑

i∈C miqij ≤ −µmj , j ∈ C,

and a µ-invariant measure for Q if
∑

i∈C miqij = −µmj , j ∈ C.

It is called a µ-invariant measure for P , where P is any
transition function, if

∑

i∈C mipij(t) = e−µtmj , j ∈ C.

MASCOS Oberwolfach 2003 - 27



µ-Invariance

Suppose that S = {0} ∪ C, where 0 is an absorbing state
and C is irreducible (for F ). Let µ ≥ 0. A collection
m = (mi, i ∈ C) of strictly positive numbers is called a
µ-subinvariant measure for Q if

∑

i∈C miqij ≤ −µmj , j ∈ C,

and a µ-invariant measure for Q if
∑

i∈C miqij = −µmj , j ∈ C.

It is called a µ-invariant measure for P , where P is any
transition function, if

∑

i∈C mipij(t) = e−µtmj , j ∈ C.

MASCOS Oberwolfach 2003 - 27



µ-Invariance

Suppose that S = {0} ∪ C, where 0 is an absorbing state
and C is irreducible (for F ). Let µ ≥ 0. A collection
m = (mi, i ∈ C) of strictly positive numbers is called a
µ-subinvariant measure for Q if

∑

i∈C miqij ≤ −µmj , j ∈ C,

and a µ-invariant measure for Q if
∑

i∈C miqij = −µmj , j ∈ C.

It is called a µ-invariant measure for P , where P is any
transition function, if

∑

i∈C mipij(t) = e−µtmj , j ∈ C.

MASCOS Oberwolfach 2003 - 27



Quasi-stationary distributions

Proposition. A probability distribution π = (πi, i ∈ C) is a
µ-invariant measure for some µ > 0, that is,

∑

i∈C

πipij(t) = e−µtπj , j ∈ C,

if and only if it is a quasi-stationary distribution

: for j ∈ C,

pj(t) =
∑

i∈C

mipij(t) ⇒
pj(t)

∑

k∈C pk(t)
= mj .
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µ-invariance for F
Theorem. If m is µ-invariant for P , then m is µ-subinvariant
for Q

, and µ-invariant for Q if and only if P satisfies the
forward equations over C.For example, if m is µ-invariant for
the minimal process, then it is µ-invariant for Q.

Theorem. If m is µ-invariant for Q, then it is µ-invariant
for F if and only if the equations

∑

i∈C yiqij = −νyj,
0 ≤ yi ≤ mi, i ∈ C, have no non-trivial solution for some
(and then all) ν < µ.

Theorem. If m is a finite µ-invariant measure for Q, then

µ
∑

i∈C mia
F
i ≤

∑

i∈C miqi0, (4)

where aFi = limt→∞ fi0(t), and m is µ-invariant for F if and
only if equality holds in (4).
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for F if and only if the equations

∑

i∈C yiqij = −νyj,
0 ≤ yi ≤ mi, i ∈ C, have no non-trivial solution for some
(and then all) ν < µ.

Theorem. If m is a finite µ-invariant measure for Q, then

µ
∑

i∈C mia
F
i ≤

∑

i∈C miqi0, (4)

where aFi = limt→∞ fi0(t), and m is µ-invariant for F if and
only if equality holds in (4).
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Q-processes with a given m

Theorem. Suppose that Q is single-exit and that m is a
finite µ-subinvariant measure for Q.

Then, there exists a
Q-process for which m is µ-invariant if and only if

∑

i∈C miqi0 ≤ µ
∑

i∈C mi.

The resolvent Ψ of any Q-process for which m is µ-invariant
must be of the form

ψij(λ) = φij(λ) +
zi(λ)dj(λ)

(λ+µ)
∑

k∈C
mkzk(λ) , i, j ∈ S,

where dj(λ) = mj −
∑

i∈C mi(λ+ µ)φij(λ), j ∈ C,

d0(λ) = e/λ−
∑

i∈C mi(λ+ µ)φi0(λ),

and e satisfies
∑

i∈C miqi0 ≤ e ≤ µ
∑

i∈C mi.
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Q-processes with a given m

Theorem continued.

Conversely, if
∑

i∈C miqi0 ≤ µ
∑

i∈C mi,

then all Q-processes for which m is µ-invariant can be
constructed in this way by varying e in the range

∑

i∈C miqi0 ≤ e ≤ µ
∑

i∈C mi.

Exactly one of these is honest; this is obtained by setting
e = µ

∑

i∈C mi.And, exactly one satisfies the forward
equations FEi0 over i ∈ C; this is obtained by setting
e =

∑

i∈C miqi0.
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