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PACKET SWITCHING NETWORKS

A packet switching network with 4 nodes (labelled
A,B,C and D) and 5 links (labelled 1,2...,5)



PACKET SWITCHING NETWORKS
N switching nodes (labelled n =1,2,...,N)
J links (labelled j =1,2,...,J)

Poisson traffic on route m — n at rate vmn

(type-mn traffic)

Common expected message length: 1/u (bits)

(Message lengths have an arbitrary dis-
tribution which does not depend on type)

Transmission rate on link j is ¢; (bits/sec.)

(There is a first-come first-served (FCFS)
discipline at each link)



ROUTING MECHANISMS

Define R(m,n) to be the collection of
(distinct) links used by type-mn traffic:

R(m,n) = {Tmn(l)a .. a"“mn(smn)} 3

where s, IS the number of links on
route m — n and rmn(s) is the link used
at stage s.

This can be accommodated within the
framework of fixed routing by allowing
a finer classification of type (mni):

Vmni — mnQmns 5
where q,,,; 1S the probability that alter-
native route ¢ is chosen; there is fixed
set of alternative routes for each OD
pair (m,n).



PACKET SWITCHING NETWORK AND
CORRESPONDING QUEUEING NETWORK
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A NETWORK OF QUEUES
Links <> queues
Messages <> customers
T - set of customer types

vy - arrival rate of type-t customers

(Independent Poisson streams)

Route for type-t customers:

R(t) = {re(1),...,r¢(s¢)} .



A NETWORK OF QUEUES

If message lengths have an
the links behave (indeed,
), each with indepen-
dent streams of Poisson offered traffic (inde-
pendent among types). For example, if

Oé(t S) — Vt, if ’I"t(S) :j7
I 0, otherwise,

so that the arrival rate at link 3 is given by

Z Z a;(t,s)

teT s=1

and the demand by a; = «a;/un (bits/sec), then,
if the system is stable (a; < ¢; for each j), the
expected number of messages at link 5 is

a
E(nj)z . J .
J — 4y

and the expected delay is

E(W')_1< a; >_ 1
o aj\ej—aj)  poj—oy




THE INDEPENDENCE ASSUMPTION

Kleinrock (1964) proposed the following as-
sumption: that successive messages requesting
transmission along have lengths
which are

, and that message lengths at different
links are independent.

Thus, we shall assume that at link 5 mes-
sage lengths have a distribution function F;(x)

which has mean M}l and variance o2.

J
Even under this assumption, the model (now
a network of -/G/1 queues with a FCFS dis-
cipline) is not analytically tractable. To make
progress, we shall use the Residual-life Approx-
imation (Pollett (1984)).



THE RESIDUAL LIFE APPROXIMATION

Let Q;(xz) be the distribution function of the
at link 7: the time a message

spends in the buffer before transmission. The
(RLA) provides an

accurate approximation for @Q;(x):

Qj(@) ~ Y Pr(n; =n)G{(2), (1)

n=0

where
bjx
Gi(@) = u; [ (1= Fy()) dy

and G§”)(x) denotes the n-fold convolution of
Gi(xz). The distribution of n;, the number of
messages at link j, used in (1) is that of the
corresponding of sym-
metric queues obtained by imposing a symme-
try condition at each link 3. In the present
context, this amounts to replacing FCFS by a
last-come first-served (LCFS) discipline.



THE RESIDUAL LIFE APPROXIMATION

One immediate consequence of (1) is that the
expected queueing time Q; is approximately

1 + ’u?quQ E(n)
210 7

where E(n;) is the expected number of mes-

sages at link 5 in the quasireversible network.

Hence, the expected delay at link 5 is approxi-

mated as follows:

2 .2

Ew) ~— L 4 T ey (2

Hi®; 2159

In the RLA, it is only E(n;) which changes

when the service discipline is altered. For the
present FCFS discipline E(n;) is given by

&y

E(n;) =
T i —ay
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OPTIMAL ALLOCATION OF EFFORT

We shall minimize the average network delay,
or equivalently the average number of mes-
sages in the network:

m

J

> o E(W))
J=1
(using the RLA for E(W;)).

$F - overall network budget

fi®; ($-seconds/bit) - cost of operating link j

(The cost of operating link j is propor-
tional to the capacity ¢;)

Thus, we should choose the capacities subject
to the cost constraint

J
> fi¢j=F.

j=1
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THE PROBLEM

Let ¢; = ,LL? 32 be the squared coefficient of
variation of F;(z) and let a; = a;/u;.

Minimize

J a;(14+ c;) }
J J
z:: { 2¢(¢; — a;)

over ¢1,...,¢ 5 subject to

J
> fioj=F.
j=1

Introduce a lagrange multiplier A—2; our prob-
lem then becomes one of minimizing

1 J
L<¢>1,...,¢J;/\—2)=m+p (Z fj¢j_F)'
Jj=1
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Setting 0L/0¢; = 0O yields a quartic polynomial
equation in ¢;:

2fg¢3 40’3](:79253 =+ 2a](ajf] )‘Q)Q?

— 2eja5X\’p; + e;aiX" =0, (3)
where €¢; = ¢; — 1.
Find solutions such that ¢; > a; (recall that

this latter condition is a requirement for sta-
bility).

Using the transformation

¢ifi/F — ¢j, a;fj/F — aj, N2/F - X2, (4)
the problem reduces to one with unit costs
f; = F =1, equation (3) becomes

2¢;-1 — 4ajqb? + 2a;(a; — )\Q)qu
— 2¢jaA\’¢; + e;aiX* =0, (5)

and the constraint becomes
Z = (6)
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EXPONENTIAL SERVICE TIMES

If transmission times are exponentially distrib-
uted (e; = O for each j) it is easy to verify that
(5) has a unique solution on (aj,c0) given by

¢ — a4 |>‘|\/
Upon application of the constraint (6) we ar-
rive at the optimal capacity assignment

a;
= 1-— a
P30 ( Z k)zk 1V

for unit costs. In the case of general costs this
becomes

1 NEELT
¢; = a; + ( Z fk;ak:) 7

£ k=1 Sih—1VIkar
after applying the transformation (4). This is
a result obtained by Kleinrock (1964).
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THE GENERAL CASE

We shall adopt a perturbation approach, as-
suming that the lagrange multiplier and the
optimal allocation take the following forms:

J
A=Xo+ Y Ager + O(e?),
k=1
J , (7)
¢; = doj + > d1jker + O(e7),
k=1
j=1,...,J,
where by O(e?) we mean terms of order eey.
The zerot! order terms come from Kleinrock’s

solution:

¢Oj:aj+)‘0\/a’j7 j:17'°°7J7
where
0 — T .
Zk;:]_ V ag
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FIRST-ORDER SOLUTION

On substituting (7) into (5) we obtain an ex-
pression for qbljk in terms of Aqx, which in turn
is calculated using the constraint (6) and by
setting e, = d; (the Kronecker delta).

To first order, the optimal allocation is

-
¢j = aj + Ao\/aj — J\/_J > brek

where

1 3/2 a + 2o+ /ag
4 (ar + Aov/ax)
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SENSITIVITY

Let ¢;, j = 1,2,...,J, be the new optimal al-
location obtained after incrementing €; by a
small quantity 6 > 0. We find that, to first

order in 4,

O i |
o -6;= 1 Zgﬂm)bjbo

and, for @ # 7,

/
o —p=——VU (4 _p)<O0.
> 1\/— RE
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