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Metapopulations

Colonization
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Metapopulations

Local Extinction
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Metapopulations
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SPOM

A stochastic patch occupancy model (SPOM)
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SPOM

A stochastic patch occupancy model (SPOM)

Suppose that there are n patches.

Let X (n)

t = (X
(n)

1,t , . . . , X
(n)

n,t), where X
(n)

i,t is a binary variable
indicating whether or not patch i is occupied at time t.



MMEE Paris July 2015 - Page 10

SPOM

A stochastic patch occupancy model (SPOM)

Suppose that there are n patches.

Let X (n)

t = (X
(n)

1,t , . . . , X
(n)

n,t), where X
(n)

i,t is a binary variable
indicating whether or not patch i is occupied at time t.

Colonization and extinction happen in distinct, successive
phases.
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SPOM - Phase structure

For many species the propensity for colonization and local
extinction is markedly different in different phases of their life
cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and

the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot

butterfly (Euphydryas editha bayensis), now extinct



MMEE Paris July 2015 - Page 12

SPOM - Phase structure

Colonization and extinction happen in distinct,
successive phases.

t− 1 t t+ 1 t+ 2

We will we assume that the population is observed after
successive extinction phases (CE Model).
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SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with
probability

c

(

1

n

n
∑

j=1

X
(n)

j,t d(zi, zj)aj

)

,

where d(z, z̃) ≥ 0 measures the ease of movement between
patches located at z and z̃, aj is a weight related to the size
of the patch j and c : [0,∞) → [0, 1] (called the colonisation
function) is increasing and Lipschitz continuous, with c(0) = 0

and c ′(0) > 0.
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SPOM - Phase structure

For simplicity, take d ≡ 1 and a ≡ 1. So, . . .

Colonization: unoccupied patch i becomes occupied with
probability c(n−1

∑n

j=1
X

(n)

j,t ), where c : [0, 1] → [0, 1] (called the
colonisation function) is increasing and Lipschitz continuous,
with c(0) = 0 and c ′(0) > 0.
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SPOM - Phase structure

For simplicity, take d ≡ 1 and a ≡ 1. So, . . .

Colonization: unoccupied patch i becomes occupied with
probability c(n−1

∑n

j=1
X

(n)

j,t ), where c : [0, 1] → [0, 1] (called the
colonisation function) is increasing and Lipschitz continuous,
with c(0) = 0 and c ′(0) > 0.

Proportion of patches occupied
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SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with
probability c(n−1

∑n

j=1
X

(n)

j,t ), where c : [0, 1] → [0, 1] (called the
colonisation function) is increasing and Lipschitz continuous,
with c(0) = 0 and c ′(0) > 0.

Extinction: occupied patch i remains occupied with
probability si,t.
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SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with
probability c(n−1

∑n

j=1
X

(n)

j,t ), where c : [0, 1] → [0, 1] (called the
colonisation function) is increasing and Lipschitz continuous,
with c(0) = 0 and c ′(0) > 0.

Extinction: occupied patch i remains occupied with
probability si,t.

Then, given the current state X
(n)

t and survival probabilities
st, the X

(n)

i,t+1
(i = 1, . . . , n) are independent with transitions

Pr
(

X
(n)

i,t+1
=1 |X

(n)

t , st
)

=si,tX
(n)

i,t + si,t c
(

n−1
∑n

j=1
X

(n)

j,t

)

(

1−X
(n)

i,t

)

.
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SPOM - Phase structure

Extinction: occupied patch i remains occupied with
probability si,t.

We will assume that (si,t)∞t=0
(i = 1, . . . , n) are independent

Markov chains taking values in [0, 1] with common transition
kernel P (s, dr).

This covers the simple but important case where patches
are classified as being suitable or unsuitable for occupancy.
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SPOM - Homogeneous case

In the homogeneous case, where si = s is the same for
each i, the number N

(n)

t of occupied patches at time t is
Markovian, and, letting the initial number N (n)

0
of occupied

patches grow at the same rate as n we arrive at:

Theorem If N (n)

0
/n

p
→ x0 (a constant), then

N
(n)

t /n
p
→ xt, for all t ≥ 1,

with (xt) determined by xt+1 = f(xt), where

f(x) = s(x+ (1− x)c(x)).

Survival probability Colonization probability
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CE Model - Evanescence
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CE Model - Quasi stationarity
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Stability

xt+1 = f(xt), where f(x) = s(x+ (1− x)c(x)).

Evanescence: 1 + c ′(0) ≤ 1/s. 0 is the unique fixed point in
[0, 1]. It is stable.

Quasi stationarity : 1 + c ′(0) > 1/s. There are two fixed points
in [0, 1]: 0 (unstable) and x∗ ∈ (0, 1) (stable).
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CE Model - Evanescence
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CE Model - Quasi stationarity
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SPOM - General case

Return now to the general case, where patch survival
probabilities evolve in time, and we keep track of which
patches are occupied . . .

Pr
(

X
(n)

i,t+1
=1 |X

(n)

t , st
)

=si,tX
(n)

i,t + si,t c
(

n−1
∑n

j=1
X

(n)

j,t

)

(

1−X
(n)

i,t

)

.
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Our approach - Point processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].
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Our approach - Point processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn,t) and (µn,t) of random measures by

σn,t(B) = #{si,t ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si,t ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).
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µn,t(B) = #{si,t ∈ B : X
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We are going to suppose that σn,0
d
→ σ0 for some

non-random (probability) measure σ0.
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Our approach - Point processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn,t) and (µn,t) of random measures by

σn,t(B) = #{si,t ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si,t ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).

We are going to suppose that σn,0
d
→ σ0 for some

non-random (probability) measure σ0.

Think of σ0 as being the initial distribution of survival
probabilities.
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Our approach - Point processes

Equivalently, we may define (σn,t) and (µn,t) by

∫

h(s)σn,t(ds) =
1

n

n
∑

i=1

h(si,t)

∫

h(s)µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t h(si,t),

for h in C+([0, 1]), the class of continuous functions that map
[0, 1] to [0,∞).
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Our approach - Point processes

Equivalently, we may define (σn,t) and (µn,t) by

∫

h(s)σn,t(ds) =
1

n

n
∑

i=1

h(si,t)

∫

h(s)µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t h(si,t),

for h in C+([0, 1]), the class of continuous functions that map
[0, 1] to [0,∞). For example (h ≡ 1),

∫

µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t (proportion occupied).
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Our approach - Point processes

Suppose that σn,0
d
→ σ0 for some non-random (probability)

measure σ0. Although this assumption concerns only the
initial variation in the survival probabilities, it implies a similar
‘law of large numbers’ for them at all times.

Lemma σn,t
d
→ σt, where σt is defined by the recursion

∫

h(s)σt+1(ds) =

∫

h(s)

∫

P (r, ds)σt(dr),

for all h ∈ C+([0, 1]).
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A measure-valued difference equation

Theorem Suppose that µn,0
d
→ µ0 for some non-random

measure µ0. Then, µn,t
d
→ µt for all t = 1, 2, . . ., where µt is

defined by the following recursion: for h ∈ C+([0, 1]),

∫

h(s)µt+1(ds) = ct

∫

s

∫

h(r)P (s, dr)σt(ds)

(1− ct)

∫

s

∫

h(r)P (s, dr)µt(ds),

where ct = c (µt([0, 1])) = c
(∫

µt(ds)
)

.
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Survival probability simulation
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CE Model - Evanescence
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CE Model - Persistence
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CE Model - Persistence
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CE Model - Evanescence
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CE Model - Evanescence
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CE Model - Persistence
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