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Suppose that there are n patches.

Let X,” = (X'},...,X,}), where X"} is a binary variable
Indicating whether or not patch 7 is occupied at time ¢.

Colonization and extinction happen in distinct, successive
phases.




For many species the propensity for colonization and local
extinction is markedly different in different phases of their life
cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and
the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot
butterfly (Euphydryas editha bayensis), now extinct




Colonization and extinction happen in distinct,
successive phases.

t—1 t t+1 t+ 2

We will we assume that the population is observed after
successive extinction phases (CE Model).




Colonization: unoccupied patch i becomes occupied with

probability
( ZX(n)d iy 25)G ),

where d(z, Z) > 0 measures the ease of movement between
patches located at z and z, a; Is a weight related to the size
of the patch j and ¢ : [0, ) — [0, 1] (called the colonisation

function) is increasing and Lipschitz continuous, with ¢(0) =0
and ¢’(0) > 0.
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Colonization: unoccupied patch i becomes occupied with
probability c(n=">~7_, X)), where ¢: [0,1] — [0,1] (called the
colonisation function) is increasing and Lipschitz continuous,
with ¢(0) = 0 and ¢’(0) > 0.

Extinction: occupied patch i remains occupied with
probability s; ;.

Then, given the current state X,” and survival probabilities

st, the quj’;gl (¢ =1,...,n) are independent with transitions

(n) (n) (n) -1\ (n) (n)
Pr(X;7, =11X"st) =51 X} + si,tc(n > X ) (1-X7).




Extinction: occupied patch i remains occupied with
probability s; ;.

We will assume that (s;;):°, (i = 1,...,n) are independent
Markov chains taking values in [0, 1] with common transition
kernel P(s,dr).

This covers the simple but important case where patches
are classified as being suitable or unsuitable for occupancy.




In the homogeneous case, where s; = s Is the same for
each i, the number N, of occupied patches at time ¢ is

Markovian, and, letting the initial number N of occupied
patches grow at the same rate as n we arrive at:

Theorem If N\ /n 5 x4 (a constant), then
N™ /n Sz, forallt>1,

with (z;) determined by x;,1 = f(x:), Where

fla)=s(o + (1 = 0)fa),
@vival probab@ @onization probab@
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ze41 = f(ze), where f(z) = s(z + (1 — z)c(z)).

Evanescence: 1+ ¢'(0) < 1/s. 0 Is the unique fixed point in
0, 1]. It Is stable.

Quasi stationarity: 1 + ¢’(0) > 1/s. There are two fixed points
In [0, 1]: 0 (unstable) and x* € (0, 1) (stable).
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Number of occupied patches

CE Model simulation (n =100, s =0.8, ¢(x) = cx with ¢ =0.7)
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Return now to the general case, where patch survival
orobabillities evolve in time, and we keep track of which
patches are occupied . ..

(n) (n) (n) —1 (n) (n)
Pr( Xy, =11X,"st) =i X[y + sis c(n > X ) (1-X7).




Treat the collection of patch survival probabilities and those
of occupied patches at time ¢ as point processes on [0, 1].




Treat the collection of patch survival probabilities and those
of occupied patches at time ¢ as point processes on [0, 1].

Define sequences (o, ;) and (u, ) of random measures by
ont(B) =#{six € B}/n, B e B([0,1]),

pnt(B) = #{siz € B: X;}) =1}/n, B € B([0,1]).




Treat the collection of patch survival probabilities and those
of occupied patches at time ¢ as point processes on [0, 1].

Define sequences (o, ;) and (u,+) of random measures by
Un,t<B> - #{Si,t & B}/n, B € B([O, 1]),

pnt(B) = #{siy € B: X,) = 1}/n, B < B([0,1]).




Treat the collection of patch survival probabilities and those
of occupied patches at time ¢ as point processes on [0, 1].

Define sequences (o, ;) and (u, ) of random measures by
ont(B) =#{six € B}/n, B e B([0,1]),

pnt(B) = #{siz € B: X;}) =1}/n, B € B([0,1]).




Treat the collection of patch survival probabilities and those
of occupied patches at time ¢ as point processes on [0, 1].

Define sequences (o, ;) and (u, ) of random measures by
ont(B) =#{six € B}/n, B e B([0,1]),
pnt(B) = #{siz € B: X;}) =1}/n, B € B([0,1]).

We are going to suppose that o,, LN oo for some
non-random (probability) measure oy.




Treat the collection of patch survival probabilities and those
of occupied patches at time ¢ as point processes on [0, 1].

Define sequences (o, ;) and (u, ) of random measures by
ont(B) =#{six € B}/n, B e B([0,1]),
pnt(B) = #{siz € B: X;}) =1}/n, B € B([0,1]).

We are going to suppose that o,, LN oo for some
non-random (probability) measure oy.

Think of oy as being the Initial distribution of survival
probabillities.




Equivalently, we may define (o,:) and (u,+) by
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for » in C7 ([0, 1]), the class of continuous functions that map
0,1] to [0, 00).




Equivalently, we may define (o,;) and (u,+) by

/ O'nt dS Zh Szt
/ ,unt dS ZX(n)

for » in C7 ([0, 1]), the class of continuous functions that map
0,1] to [0, 00). For example (h = 1),

n

/ tint(ds) = %ZX;? (proportion occupied).

1=1




Suppose that o, g 4% 4, for some non-random (probability)
measure o(. Although this assumption concerns only the
initial variation in the survival probabilities, it implies a similar
‘law of large numbers’ for them at all times.

d : : :
Lemma o, — oy, Where o, Is defined by the recursion

/ h(s)oe1 (ds) = / h(s) / P(r, ds)oy(dr),

for all h € CT([0,1)).




Theorem Suppose that o LN uo for some non-random

measure po. Then, pu, 4 us forallt =1,2,..., where u; IS
defined by the following recursion: for h € C* ([0, 1]),

/h $)pi+1(ds) —ct/ / P(s,dr)o(ds)
1—Ct/ / P(s,dr)u(ds),

where ¢; = ¢ (u([0,1])) = ¢ (f p ( ds
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CE Model simulation (n =100, p =0.62, ¢(z) = cz with ¢ =0.7)
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CE Model simulation (n =100, p =0.62, ¢(z) = cz with ¢ =0.7)
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CE Model simulation (n =100, p =0.56, ¢(x) = cz with ¢ =0.7)
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CE Model simulation (n =100, p =0.56, ¢(z) = cx with ¢ =0.7)
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