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The problem

Consider any large-scale stochastic system whose natural
state description is Markovian, yet its behaviour (equilibrium
or time-dependent behaviour) is difficult to analyze.

Can we find an alternative state description, together with
an approximating transition structure, that can be analyzed
more simply?

Our goal is to approximate quantities of interest and to
assess the quality of the approximation.
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Competition for resources

A collection of resources of different types and differing

amounts (capacities)

c1 = 2 c2 = 4 c3 = 6 c4 = 4 c5 = 3 (Capacity)
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Competition for resources

Customers of different types arrive as independent

Poisson streams and request groups of resources

c1 = 2 c2 = 4 c3 = 6 c4 = 4 c5 = 3 (Capacity)
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Competition for resources

Customers are identified by which resources they require

Type A

c1 = 2 c2 = 4 c3 = 6 c4 = 4 c5 = 3 (Capacity)
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Competition for resources

Customers are identified by which resources they require

Type B

c1 = 2 c2 = 4 c3 = 6 c4 = 4 c5 = 3 (Capacity)
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Competition for resources

Customers are identified by which resources they require

Type C

c1 = 2 c2 = 4 c3 = 6 c4 = 4 c5 = 3 (Capacity)

MASCOS Melbourne 14/11/2003 - Page 9



Competition for resources

Resources are captured and held for a random

period and released simultaneousness

u1 = 0 u2 = 0 u3 = 0 u4 = 0 u5 = 0 (Usage)
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Competition for resources

u1 = 0 u2 = 0 u3 = 0 u4 = 0 u5 = 0 (Usage)

Type C (nC = 0)

Type B (nB = 0)

Type A (nA = 0)
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Competition for resources

u1 = 1 u2 = 1 u3 = 1 u4 = 0 u5 = 0 (Usage)

Type C (nC = 0)

Type B (nB = 0)

Type A (nA = 1)
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Competition for resources

u1 = 1 u2 = 2 u3 = 2 u4 = 1 u5 = 0 (Usage)

Type C (nC = 0)

Type B (nB = 1)

Type A (nA = 1)
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Competition for resources

u1 = 1 u2 = 2 u3 = 2 u4 = 1 u5 = 0 (Usage)

Type C (nC = 0)

Type B (nB = 1)

Type A (nA = 1)
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Competition for resources

u1 = 1 u2 = 3 u3 = 3 u4 = 2 u5 = 0 (Usage)

Type C (nC = 0)

Type B (nB = 2)

Type A (nA = 1)
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Competition for resources

u1 = 1 u2 = 3 u3 = 4 u4 = 3 u5 = 1 (Usage)

Type C (nC = 1)

Type B (nB = 2)

Type A (nA = 1)
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Competition for resources

u1 = 0 u2 = 2 u3 = 3 u4 = 3 u5 = 1 (Usage)

Type C (nC = 1)

Type B (nB = 2)

Type A (nA = 0)
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Competition for resources

u1 = 0 u2 = 3 u3 = 4 u4 = 4 u5 = 1 (Usage)

Type C (nC = 1)

Type B (nB = 3)

Type A (nA = 0)
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Competition for resources

u1 = 0 u2 = 3 u3 = 4 u4 = 4 u5 = 1 (Usage)

Type-B and Type-C customers are now blocked because there is no more

BLOCKED Type C (nC = 1)

BLOCKED Type B (nB = 3)

Type A (nA = 0)
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Competition for resources

Let R be the set of customer types and let n = (nr, r ∈ R),
where nr is the number of type-r customers in the system.

Let c = (cj , j = 1, . . . , J) be the resource capacities, and
Λ = (λjr) be the J ×R design matrix with λjr = 1 if resource
j is used by type-r customers. The set of all states is then
S = {n ∈ ZR+ : Λn ≤ c}.

If type-r customers arrive at rate νr (independent Poisson
streams) and hold sets of resources for independent
exponentially distributed times (with unit mean say), then
(nt, t ≥ 0) is a Markov chain with transition rates:

q(n,n+ er) = νr q(n,n− er) = nr

(here er is the unit vector with a 1 as its r-th entry).
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Competition for resources

The chain has stationary distribution

p(n) = B
∏

r∈R

νnr
r

nr!
, n ∈ S,

where B = B(c) is a normalizing constant.

The chance that an arriving type-r customer is blocked is
br = 1−B(c)/B(c− Λer).

However, this cannot (usually) be computed in polynomial
time.
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Expected rates
We have a large-scale stochastic system whose natural
state description is Markovian, yet its behaviour (equilibrium
or time-dependent behaviour) is difficult to analyze.

Idea (Peter Taylor, 1996). Find an alternative state
description, together with an approximating transition
structure, that can be analyzed more simply. For this
description, impose a Markovian assumption: the rates of
transition are given by the expected rates of the
corresponding transitions of the original chain:

q ′(u, v) = Ep

(

∑

m∈A(n(t)) q(n(t),m)
)

,

where n→ A(n) is all transitions out of n that give rise to a
u→ v transition in the new structure.
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Expected rates
We have a large-scale stochastic system whose natural
state description is Markovian, yet its behaviour (equilibrium
or time-dependent behaviour) is difficult to analyze.

Idea (Peter Taylor, 1996). Find an alternative state
description, together with an approximating transition
structure, that can be analyzed more simply. For this
description, impose a Markovian assumption: the rates of
transition are given by the expected rates of the
corresponding transitions of the original chain:

q ′(u, v) = Ep

(

∑

m∈A(n(t)) q(n(t),m)
∣

∣

∣
n(t) ∈ Au

)

,

where n→ A(n) is all transitions out of n that give rise to a
u→ v transition in the new structure.

States n for
which the new
state is u
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A general fixed point method

Modified idea.

q ′(u, v) = Eπ(0)

(

∑

m∈A(n(t)) q(n(t),m)
∣

∣

∣
n(t) ∈ Au

)

,

where π(0) is our best guess for the stationary distribution of
the new Markov chain.

Now evaluate the stationary distribution π(1) of the new
chain using transition rates q ′(u, v).

Repeat the procedure.
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A general fixed point method

Hopes

π(n) will converge (to π say)

π will provide good estimates of quantities of interest

π will provide the best estimate of a particular quantity
of interest among members of a class of distributions
(for example, product-form distributions)

to delimit conditions under which the approximations
are good
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Application to the resource model

Focus on the usage u = (uj , j = 1, . . . , J). The process
(ut, t ≥ 0) is not (usually) Markovian. Let

π(u) =
J
∏

j=1

πj(uj), πj(u) =
auj
u!

(

cj
∑

v=0

avj
v!

)−1

(u = 0, . . . , cj)

where the aj ’s are to be determined. Then,

q ′(u,u+ ek) = Eπ

(

∑

r∈R:k∈r νr
∏

i∈r−{k} 1{Ui<ci}

∣

∣

∣
Uk = uk

)

.
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Application to the resource model
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Application to the resource model
Similarly,

q ′(u,u− ek) = Eπ

(

uk1{Uk=uk}

∣

∣

∣
Uk = uk

)

= uk.

The limiting set of resource blocking probabilities
l = (lj , j = 1, . . . , J) will satisfy

lj = E
(

∑

r∈R λjrνr
∏

i∈r−{j}(1− li) , cj

)

,

where

E(a, c) =
ac

c!

(

c
∑

v=0

av

v!

)−1

. (Erlang’s formula)
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Conclusion

We have a method that has the potential to be applied
to any large-scale Markovian model

In the case of resource systems, it gives the widely
used, and highly accurate, Erlang fixed point
approximation

Plenty of scope for applications (for example, queueing
networks with blocking)

Plenty of scope for mathematical developments (for
example, fixed point theory)
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