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We will we assume that the population is observed after
successive extinction phases (CE Model).
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[In our most recent work, we allow the patch colonization
probabillity ¢(-) to depend on the positions of all patches
and their areas.]
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n = 30, s; ~Beta(25.2, 19.8) (Es; = 0.56) and ¢(x) = 0.7z
0000101101010000112101010001000

1) = 0.7 x 0.36 = 0.256

CJO|b—\
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0.60 0.56 0.63 0.62 0.52 0.61 0.68 0.49 0.49 0.49 0.50
0.41 0.59 0.63 0.60 0.61

[Survival probabilities listed for occupied patches only]
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Thus, we have a Chain Bernoulli structure:

X(“) = Bln(X(”) + Bln(l — Xz.(,’;),c(lzf‘_ X(.”))>,s7;)

n




In the homogeneous case, where s; = s (non-random) is
the same for each 4, the number N;” of occupied patches

at time ¢ iIs Markovian.

It has the following Chain Binomial structure:

N2y L Bin(N 4 Bin(n = N e(AN") ) 5)




Letting the initial number N, of occupied patches grow at
the samerateas n ...

Theorem [BP] If N\” /n & x4 (a constant), then
N™ n 5 ay, forallt>1,
with (z;) determined by x;,1 = f(z;), Where

f(x)=s(z+ (1 —x)c(x)).

[BP] Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time
metapopulation models. Probability Surveys 7, 53-83.




zer1 = f(zy), where f(z) = s(z + (1 - z)e(x)).
Stationarity: ¢(0) > 0. There is a unique fixed point
v* € [0,1]. It satisfies z* € (0,1) and Is stable.

Evanescence: ¢(0) =0and 1+ ¢'(0) < 1/s. Now 0 Is the
unique fixed point in [0, 1]. It is stable.

Quasi stationarity: ¢(0) =0 and 1+ ¢’(0) > 1/s. There are
two fixed points in [0, 1]: 0 (unstable) and «* € (0, 1) (stable).

[Notice that ¢(0) = 0 implies that ¢’(0) > 0.]
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CE Model simulation (n =100, s =0.56, ¢(z) = cx with ¢ =0.7)
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CE Model simulation (n =100, s =0.8, ¢(z) = cx with ¢ =0.7)
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Returning to the general case, where patch survival
probabilities (s;) are random and patch dependent, and we
Keep track of which patches are occupied ...

(n) (n) (n) (n)
Xy = BIH(X + Bln(l - XY (5 Z?Zlijt)),si).




Returning to the general case, where patch survival
probabilities (s;) are random and patch dependent, and we
Keep track of which patches are occupied ...

n d - n . mn n
X LBin(Xf) 4 Bin(1- X7 (3500, X)) i),

Notice that

X(7 £ BiN(X( ) + Bin(1- X[ sie (A7, X)) )
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Equivalently, we may define (o,,) and (u,+) by

/ 5)on(ds) Zh 5)
[ 1s)nstas) - %ZX&? h(s),

1=1

for » in C7 ([0, 1]), the class of continuous functions that map
0,1] to [0, c0).




Equivalently, we may define (o,,) and (u,+) by

/ s)on(ds) Zh Si)
/ ,unt dS ZX(R)

for » in C7 ([0, 1]), the class of continuous functions that map
0,1] to [0, c0). For example (h = 1),

/unt (ds) ZX(’” (proportion occupied).




Theorem Suppose that o, 4 & and L0 L\ uo for some

non-random measures ¢ and pg. Then, pu, L\ u; for all
t=1,2,..., where u; is defined by the following recursion:
for h € C*([0,1]),

[ 16 nesatas) = (1= [ shis)uutas) + e [ shis)atas)

where ¢; = ¢ (1([0,1])) = ¢ (f ,ut(ds)).




Set h(s) = s*. Then, our recursion is
[ s*pisa(ds) = (1 —cp) [ s"Hpi(ds) + ¢ [ s¥o(ds),

where ¢; = ¢ (u([0,1])) = ¢ (f ,ut(ds)).




Set h(s) = s*. Then, our recursion is
[ s*pisa(ds) = (1 —cp) [ s"Hpi(ds) + ¢ [ s¥o(ds),

where ¢; = ¢ (1([0, 1]) (f ue(ds)). So, with moments
defined by 6 := fs o(ds) and ;" = [ su,(ds),

— (k) —(0) (k+1) —(0) =
oy = (L —fig )y "+ iy o®+D,

and the theorem allows to conclude that
s s XY (= [ ung(ds)) — iy

for example, - >°" | X% — 1.




Our recursion Is

/ h(s) g1 (ds) = (1 — ) / sh(s)uz(ds) + ci / sh(s)o(ds).




Our recursion is
/h(s)ut+1(ds) = (1 — ct)/sh(s),ut(ds) + ¢ / sh(s)o(ds).

Let M be the set of measures that are absolutely
continuous with respect to o and whose Radon-Nikodym
derivative is bounded by 1, o — a.e.

We shall be interested in the behaviour of solutions to our
recursion starting with g € M.




"Differentiating"” with respect to o, we see that our recursion
can be written

=Ss— +s¢ |1 ———

Opey1  Opy Opiy
0o 0o oo |
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"Differentiating" with respect to o, we see that our recursion
can be written

=Ss— +s¢ |1 ———

Ofit+1 Ot Oput
Do Do oo |

It will be clear that g € M iImplies that ;; € M for all ¢.

Furthermore, a measure ., € M will be an equilibrium
point of our recursion If it satisfies

Olloc  Olieo Oloo
o o +SCOO<1_ 80)’

where ¢, = ¢ (1so([0,1])).




Theorem Suppose that ¢(0) =0 and ¢'(0) < co. Let v* be a
solution to the equation

Y = Ra(w) . 1_23_(;@(%0'(618). (1)

The fixed points of our recursion are given by

foo(ds) = 1 _ Zciws*g(w*)a(ds).

Equation (1) has the unique solution ¢* = 0 if and only if
c'(0) | t20o(ds) < 1.
Otherwise, there are two solutions, one of which Is ¢* = 0.
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positive probability.
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Fix the initial configuration X" (= Xy), and let n — oo.

The aim is to determine conditions under which a (large)
metapopulation that is close to extinction may recover with
positive probability.

First notice that if ¢ has a continuous second derivative
near 0, then, for fixed m, Bin(n — m, ¢(m/n)) 4 Poi(Am) as
n — oo, Where A = ¢’(0). So, If every patch had the same
survival probability, then we might expect the number of
occupied patches (N,”,t=0,1,...) to converge to a
Galton-Watson process (see [BP] for detalls).
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As before, treat the collection of patch survival probabilities
of occupied patches at time ¢ as a point process on [0, 1],

but now define (5;"”, t > 0) by S, = {s; : X;} =1}.

Extinction of the metapopulation by time ¢ corresponds to
the event that S, is the empty set.

The aim Is to show that there Is a point process S; such that
S;” = S, as n — oo and then to evaluate lim; ., Pr (S; = ).

We now work with the sequence (u, ;) of random measures
defined by 1, +(B) = #{si € B: X, =1}, B € B([0,1]).




Define the probability generating functional (p.g.fl) of a
point process S by

Golé) = E([Tes€)):

where ¢ : [0,1] — [0, 1] Is some Borel function. It determines
the point process uniquely. Convergence of GG e to G,
establishes that S, = S,. Furthermore,

Pr (¢ = @) = limy o G, [1p(2)].

*Daley, D. J. and Vere-Jones, D. (2008) An Introduction to the Theory of Point Processes.
Volume Il: General Theory and Structure, 2nd Edn., Springer, New York.




Theorem Suppose that S, converges weakly to a point
process Sy as n — oo (its p.g.fl being G;, )*.

Then, S;™ converges weakly to a point process S; whose
p.g.fl satisfies the recursion G,  [¢] = G, [h[¢]] (t > 0), where
h[&] Is given by

hE](s) = (1 — s(1 = &(s))) exp (—C’(O) /y(l — &) 0(6@)) -

*More general than (as earlier) fixing the initial configuration and letting n — oc.




The limit point process (S;,t =0,1,...) IS a multiplicative
population chain*, where each member of the population at
time ¢ produces offpring independently of the other
members of the population. The offspring from the member
of the population "located" at s Is generated according to an
Inhomogeneous Poisson process with intensity measure
¢'(0)so(-), and the original member of the population
survives to the next generation with probability s.

*Moyal, J.E. (1962). Multiplicative population chains. Proc. R. Soc. Lond. A, 266, 518-526.




Theorem S; eventually becomes empty with probability 1
(S¢ = @ for some ¢ > 0) If

¢'(0) | 1=0(ds) < 1.

Otherwise, it eventually becomes empty with probability
Gy 9], where g(s) = (1 —s)/(1 —s), with ¥ (< 1) being the
unique solution to

v = exp (—e'(0)f G2 o(ds) ).
that is, with probability




Suppose that (s;) are chosen independently according to o
and patches are initially occupied independently with
probability p,,, where np, — X (> 0).
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Suppose that (s;) are chosen independently according to o
and patches are initially occupied independently with
probability p,,, where np, — A (> 0). Then,

%))

Gy €] = E(Hsesé“) §(5>) = E(E (H?:l §(si)
:E(H ((X0E(s) +1 = X[) ) (pn [ €(s)o(ds) +1—py)"

(1——(1—f§ ds))n%GSO[ﬁ], as n — oo,

where

G’SO[ﬁ—eXp( (fl— ))




So, Sy = Sy, where S, contains a Poi(\) number of points
distributed on [0, 1] independently according to o.




So, Sy = Sy, where S, contains a Poi(\) number of points
distributed on [0, 1] independently according to o.

That is, in the limiting initial patch configuration, there is a
Poi()\) number of occupied patches, and the survival
probabillities are distributed independently according to o.




In the example, where the limiting (n large) initial patch
configuration had a Poi(\) number of occupied patches,
and survival probabilities were distributed independently
according to o, the “limiting metapopulation” will eventually

go extinct with probability 1 if
¢'(0) [ t20(ds) < 1.

Otherwise, it will go extinct with probability

exp (—)\f 11——_155 J(ds)) .




In the case where ¢ Is the beta distribution with parameters
« and g (both > 0), that is

o(ds) = [a+0) s@H1 — 5)P 1 ds, s € (0, 1],

INCIINEE)

we have that




So, the “limiting metapopulation” (n large) will eventually go
extinct with probability 1 1f 8 > 1 4+ ac’(0). Otherwise, it will
go extinct with probability

exp (—)\f 11—_@55 J(ds)) ,

where ¢ solves (uniquely)

W = exp (—C'(O)f g U(ds)) '
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