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Colonization and extinction happen in distinct, successive
phases.




For many species the propensity for colonization and local
extinction is markedly different in different phases of their
life cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and
the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot
butterfly (Euphydryas editha bayensis), now extinct




Colonization and extinction happen in distinct, successive
phases.

t—1 t t+1 t+ 2

We will we assume that the population is observed after
successive extinction phases (CE Model).




Colonization: unoccupied patch i becomes occupied with

probabllity
1 0
C (E g X;,t)d(zi,zj)aj> ,

j=1

where d(z, Z) > 0 measures the ease of movement between
patches located at » and z, «; IS a weight related to the size
of the patch j and ¢: [0,00) — [0, 1] (called the colonisation
function) Is increasing and Lipschitz continuous, with

c(0) =0 and ¢’(0) > 0.
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Colonization: unoccupied patch i becomes occupied with
probability ¢(n~" 37" X77), where ¢ : [0,1] — [0,1] (called

the colonisation functlon) IS Increasing and Lipschitz
continuous, with ¢(0) = 0 and ¢’(0) > 0.

Extinction: occupied patch : remains occupied from time ¢
to time ¢ + 1 with probability s; ;.

Then, given the current state X,” and survival probailities

s, the X;V. | (i = 1,...,n) are independent with transitions

Pr(X(yy =1 X st) =sua X[+ suae(n S X0 ) (1= X[7).




Suppose that (s; )2, (i = 1,...,n) are independent Markov
chains taking values in [0, 1] with common transition kernel
P(s,dr), assumed to satisfy the weak Feller property: for
every continuous function ~ on [0, 1], the function defined by

= [ h(r)P(s,dr), se€]0,1],

IS also continuous.




Suppose that (s; )2, (i = 1,...,n) are independent Markov
chains taking values in [0, 1] with common transition kernel
P(s,dr), assumed to satisfy the weak Feller property: for
every continuous function ~ on [0, 1], the function defined by

= [ h(r)P(s,dr), se€]0,1],
IS also continuous.

This Markov chain model for the survival probabilities can
Incorporate the suitable/unsuitable approach to landscape
dynamics.




In the homogeneous case, where s; = s Is the same for
each i, the number N, of occupied patches at time ¢ is
Markovian. It has the following Chain Binomial structure:

Nyt L BIn(N7 4 Bin(n = N e(AN")).s).




Letting the initial number N;" of occupied patches grow at
the samerateas n ...

Theorem If N\ /n 5 x4 (a constant), then
N™ n 5 ay, forallt>1,
with (z;) determined by x;,1 = f(z;), Where

f(x) = s(z + (1 = z)c(x)).




Letting the initial number N;" of occupied patches grow at
the samerateas n ...

Theorem If N\ /n 5 x4 (a constant), then
N™ n 5 ay, forallt>1,

with (z;) determined by x;,1 = f(z;), Where

fla) =s(o + (1 = 2)e(o))
@vival probab@ @onization probabD




Number of occupied patches

CE Model simulation (n =100, s =0.56, ¢(z) = cx with ¢ =0.7)
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ver1 = flxe), Where f(z) = s(x + (1 — z)c(z)).

Evanescence: 1+ ¢’(0) < 1/s. 0 Is the unique fixed point in
0, 1]. It Is stable.

Quasi stationarity: 1+ ¢’(0) > 1/s. There are two fixed
points in [0, 1]: 0 (unstable) and z* € (0, 1) (stable).




i1 = fxe), where f(z) = s(z + (1 — z)c(z)).

Evanescence: 1+ ¢'(0) < 1/s. 01 the unigue thxed pomtin
0, 1]. It Is stable.
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CE Model simulation (n =100, s =0.56, ¢(z) = cx with ¢ =0.7)
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CE Model simulation (n =100, s =0.8, ¢(x) = cz with ¢ =0.7)
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Return now to the general case, where patch survival
probabilities evolve in time, and we keep track of which
patches are occupied . ..

Pr( Xy =11X,"st) =i X} +siic ( niy 1X(n))( - Xi7)-




Treat the collection of patch survival probabilities and those
of occupied patches at time ¢ as point processes on [0, 1].
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Treat the collection of patch survival probabilities and those
of occupied patches at time ¢ as point processes on [0, 1].

Define sequences (o, ) and (u,:) of random measures by
ont(B) = ##{siy € B}/n, B e B([0,1]),
pnt(B) = #{siy € B: X,) = 1}/n, B < B([0,1]).

We are going to suppose that o, ¢ A oo for some
non-random (probability) measure oy.

Think of oy as being the initial distribution of survival
probabillities.




Equivalently, we may define (o,;) and (u,+) by

/ Unt dS Zh S@t
/ ,unt dS ZX(H)

for h in C* ([0, 1]), the class of continuous functions that map
0,1] to [0, c0).




Equivalently, we may define (o,;) and (u,+) by

/ Unt dS Zh S@t
/ ,unt dS ZX(H)

for h in C* ([0, 1]), the class of continuous functions that map
0,1] to [0, c0). For example (h = 1),

/unt (ds) ZX“” (proportion occupied).




Suppose that o, g LN oo for some non-random (probability)

measure . Although this assumption concerns only the
Initial variation in the survival probabillities, it implies a
similar ‘law of large numbers’ for them at all subsequent
times.

d : : :
Lemma o, — o, Where o, is defined by the recursion

/ h(s)oe(ds) = / h(s) / P(r, ds)oy(dr),

for all h € C*([0,1]).




Theorem Suppose that A 1o for some non-random

measure po. Then, p, L\ us forallt =1,2,..., where u; IS
defined by the following recursion: for » € C* (|0, 1]),

/h $) 41 (ds) —ct/ / P(s,dr)oi(ds)
l—ct/ / P(s,dr)u(ds),

where ¢; = ¢ (u([0,1])) = ¢ (f p ( ds




Suppose lim; ., o = o, for some (necessarily invariant)
measure o. It Is easy to show that ., Is absolutely
continuous with respect to o, and so one might hope to
obtain a recursion for the Radon-Nikodym derivative of ;i
with respect to o.
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CE Model simulation (n =100, p =0.62, ¢(z) = cx with ¢ =0.7)
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CE Model simulation (n =100, p =0.62, ¢(x) = cx with ¢ =0.7)
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CE Model simulation
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(n =100, p =0.56, c¢(z) = cx with ¢ =0.7)
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