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A stochastic patch occupancy model (SPOM)

Suppose that there are n patches.

Let X,” = (X{"),..., X)), where X" is a binary variable
Indicating whether or not patch i is occupied at time ¢.

(X" t=0,1,...) is assumed to be a Markov chain.

Colonization and extinction happen in distinct, successive
phases.




For many species the propensity for colonization and local
extinction is markedly different in different phases of their
life cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and
the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot
butterfly (Euphydryas editha bayensis), now extinct




Colonization and extinction happen in distinct, successive
phases.

t—1 t t+1 t+ 2

We will we assume that the population is observed after
successive extinction phases (CE Model).




Colonization: unoccupied patch i becomes occupied with

probabllity
1 0
C (E g X;,t)d(zi,zj)aj> ,

j=1

where d(z, Z) > 0 measures the ease of movement between
patches located at » and z, «; IS a weight related to the size
of the patch j and ¢: [0,00) — [0, 1] (called the colonisation
function) Is increasing and Lipschitz continuous, with

c(0) =0 and ¢’(0) > 0.
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For simplicity, take d=1anda = 1. So, ...

Colonization: unoccupied patch i becomes occupied with
probability ¢(n~" 37" X77), where ¢ : [0,1] — [0, 1] (called
the colonisation function) is increasing and Lipschitz
continuous, with ¢(0) = 0 and ¢’(0) > 0.




Colonization: unoccupied patch i becomes occupied with
probability ¢(n~" 37" X77), where ¢ : [0,1] — [0,1] (called

the colonisation functlon) IS Increasing and Lipschitz
continuous, with ¢(0) = 0 and ¢’(0) > 0.

Extinction: occupied patch : remains occupied
iIndependently with probability s; (fixed or random).




n = 30 patches
000010110101000011101010001000

(11 patches occupied)




n =30, c¢(x) =0.7Tx

000010110101000011101010001000

—_

5) = 0.7 x 0.36 = 0.256

c(z) = ¢

W
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n =30, c¢(x) =0.7Tx
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n =30, ¢(x) = 0.7x and s; ~ Beta(25.2, 19.8) (Es; = 0.56)

0000101100010000111010100012000
C10001111010100001111211110001010

0.60 0.56 0.63 0.62 0.52 0.61 0.68 0.49 0.49 0.49 0.50
0.41 0.59 0.63 0.60 0.61

[Survival probabilities listed for occupied patches only]
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c(r) = (3

C’°|<:

0) = 0.7 x 0.3 =0.23
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n =30, ¢(x) = 0.7x and s; ~ Beta(25.2, 19.8) (Es; = 0.56)
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The evolution of the process can be summarized by

(n) (n) (n) (n)
X 1_Bln(X +B|n(1—th, (+ Z] 1 X5 ))sz)

a “Chain Bernoulli” structure.




In the homogeneous case, where s; = s Is the same for
each i, the number N, of occupied patches at time ¢ is

Markovian, and, letting the initial number N of occupied
patches grow at the same rate as n we arrive at:

Theorem If N\ /n 5 zq (a constant), then
N™ n 5 oay, forallt>1,

with (z;) determined by x;,1 = f(2¢), Where

f%s(az + (1 — x)c&c))
@vival probab@ @onizaﬂon probab@




Number of occupied patches

CE Model simulation (n =100, s =0.56, ¢(z) = cx with ¢ =0.7)

1008

80

70

50

40t

30

?,?,?oo.oo.° °

35

40

45

50




([ ]
[
100

Y .
[ ] .
&
LA
.U. 5
b $ 4
I °
o+ * 18
= .
E Lo
n.'
Sr : QV 1R
Il *
= o0 *
o L ..n ] o
- ™y . ©
o0 [ A
o .. .
I °e ,
w | ' [ J |%t
g %o
— ..~m
Il ..m
Er e, 19
e
5 o °
e $
= L e 1o
= % ®
£ ®:
-2 ...
5 :
< | ..... 1o
= * W )
° D
@ S .- °
I F A 19
[ ] .
[ ) PY .
[ ]
o .
[ ]
[ J
| | | | | | | | _... o
o o o o o o o o o o o
S o} © ~ © s} < ™ I3 —

sotpyed pardnooo jo requuny




ver1 = flxe), Where f(z) = s(x + (1 — z)c(z)).

Evanescence: 1+ ¢’(0) < 1/s. 0 Is the unique fixed point in
0, 1]. It Is stable.

Quasi stationarity: 1+ ¢’(0) > 1/s. There are two fixed
points in [0, 1]: 0 (unstable) and z* € (0, 1) (stable).




i1 = fxe), where f(z) = s(z + (1 — z)c(z)).

Evanescence: 1+ ¢'(0) < 1/s. 01 the unigue thxed pomtin
0, 1]. It Is stable.

Quasi stationarity: 14 ¢'(0) > 1/s. [here are two fixed
points in [0, 1]: 0 (unstable) and z* € (0,1) (stable).




CE Model simulation (n =100, s =0.56, ¢(z) = cx with ¢ =0.7)
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Returning to the general case, where patch survival
orobabilities (s;) are random and patch dependent, and we
Keep track of which patches are occupied ...

(n) (n) (n) (n)
X = BIH(X + Bln(l - XY (5 Z?:lXj,t))7S’i)‘




Treat the collection of patch survival probabilities and those
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Treat the collection of patch survival probabilities and those
of occupied patches at time ¢ as point processes on [0, 1].

Define sequences (o,,) and (u, ) of random measures by
on(B) = #{s;i € B}/n, B e B([0,1]),
pnt(B) = #{si € B: X;) = 1}/n, B < B([0,1]).

We are going to suppose that o, 4% & for some non-random
(probability) measure o.

Think of & as being the distribution of survival probabillities.
In the earlier simulation o« was a Beta(25.2, 19.8) distribution.




Equivalently, we may define (o,,) and (u,+) by

/ 5)on(ds) Zh 5;)
[ 1s)nstas) - %ZXES? h(s),

1=1

for h in C* ([0, 1]), the class of continuous functions that map
0,1] to [0, c0).




Equivalently, we may define (o,,) and (u,+) by

/ s)on(ds) Zh Si)
/ ,unt dS ZX(R)

for h in C* ([0, 1]), the class of continuous functions that map
0,1] to [0, c0). For example (h = 1),

/unt (ds) ZX“” (proportion occupied).




Theorem Suppose that o, 4 & and L4.0 L\ uo for some

non-random measures o and pg. Then, p, L\ u for all
t=1,2,..., where u; is defined by the following recursion:
for h € C*([0,1]),

[ 16 nesrtas) = (1= [ shis)uutas) + e [ shis)atas)

where ¢; = ¢ (u([0,1])) = ¢ (f ,ut(ds)).
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CE Model simulation (n =100, ") =0.56, c¢(x) = cx with ¢ =0.7)
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CE Model simulation (n =100, ") =0.56, c¢(x) = cx with ¢ =0.7)
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CE Model simulation (n =100, ") =0.56, c¢(x) = cx with ¢ =0.7)
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Number of occupied patches

CE Model simulation (n =100, ") =0.56, c¢(x) = cx with ¢ =0.7)
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CE Model simulation (n =100, ") =0.6, c(x) = cx with ¢ =0.7)
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Our recursion is

/ h(s) s (ds) = (1 — ) / sh(s)u(ds) + e / sh(s)o(ds).




Our recursion is
/h(s)utﬂ(ds) = (1— ct)/sh(s),ut(ds) + ¢ / sh(s)o(ds).

Let M be the set of measures that are absolutely
continuous with respect to o and whose Radon-Nikodym
derivative is bounded by 1, o — a.e.

We shall be interested in the behaviour of solutions to our
recursion starting with g € M.




"Differentiating" with respect to o, we see that our recursion
can be written

=Ss— +sc |1 ———

Ofit+1 Ot Opiy
Oo Do do |




"Differentiating" with respect to o, we see that our recursion
can be written

=Ss— +sc |1 ———

Ofit+1 Ot Opiy
Do Do do |

It will be clear that g € M Implies that ;; € M for all ¢.




"Differentiating" with respect to o, we see that our recursion
can be written

=Ss— +sc |1 ———

Ofit+1 Ot Opiy
Do Do do |

It will be clear that g € M Implies that ;; € M for all ¢.

Furthermore, a measure ., € M will be an equilibrium
point of our recursion If it satisfies

Olloc  Olioo Oloo
do o +SCOO<1_ 80)’

where cs = ¢ (so([0, 1])).




Theorem Suppose that ¢(0) =0 and ¢’(0) < oc. Let ¢* be a
solution to the equation

) = Ra(w) . 1_23_(;@(@(7(615)' (1)

The fixed points of our recursion are given by

foo(ds) = 1 _ zcj_w:c)(w*)a(ds)'

Equation (1) has the unique solution ¢* = 0 if and only if
c'(0) | t20o(ds) < 1.
Otherwise, there are two solutions, one of which Is ¢* = 0.




Theorem If ©* = 0 is the only solution to Equation (1)),
then, for all 4o € M, u; — 0. If Equation (1) has a non-zero
solution, then, for all 4y € M such that [ g ;(ds) > 0 for
some j, (i — fhoo-
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