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Metapopulations

Colonization
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Metapopulations
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Metapopulations

Local Extinction
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Metapopulations



MCMSS Brisbane July 2015 - Page 8

SPOM

A stochastic patch occupancy model (SPOM)
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SPOM

A stochastic patch occupancy model (SPOM)

Suppose that there are n patches.

Let X (n)

t = (X
(n)

1,t , . . . , X
(n)

n,t), where X
(n)

i,t is a binary variable
indicating whether or not patch i is occupied at time t.
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SPOM

A stochastic patch occupancy model (SPOM)

Suppose that there are n patches.

Let X (n)

t = (X
(n)

1,t , . . . , X
(n)

n,t), where X
(n)

i,t is a binary variable
indicating whether or not patch i is occupied at time t.

(X
(n)

t , t = 0, 1, . . . ) is assumed to be a Markov chain.

Colonization and extinction happen in distinct, successive
phases.
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SPOM - Phase structure

For many species the propensity for colonization and local
extinction is markedly different in different phases of their
life cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and

the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot

butterfly (Euphydryas editha bayensis), now extinct
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SPOM - Phase structure

Colonization and extinction happen in distinct, successive
phases.

t− 1 t t+ 1 t+ 2

We will we assume that the population is observed after
successive extinction phases (CE Model).



MCMSS Brisbane July 2015 - Page 14

SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with
probability

c

(

1

n

n
∑

j=1

X
(n)

j,t d(zi, zj)aj

)

,

where d(z, z̃) ≥ 0 measures the ease of movement between
patches located at z and z̃, aj is a weight related to the size
of the patch j and c : [0,∞) → [0, 1] (called the colonisation
function) is increasing and Lipschitz continuous, with
c(0) = 0 and c ′(0) > 0.
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SPOM - Phase structure

For simplicity, take d ≡ 1 and a ≡ 1. So, . . .

Colonization: unoccupied patch i becomes occupied with
probability c(n−1

∑n

j=1X
(n)

j,t ), where c : [0, 1] → [0, 1] (called
the colonisation function) is increasing and Lipschitz
continuous, with c(0) = 0 and c ′(0) > 0.
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SPOM - Phase structure

For simplicity, take d ≡ 1 and a ≡ 1. So, . . .

Colonization: unoccupied patch i becomes occupied with
probability c(n−1

∑n

j=1X
(n)

j,t ), where c : [0, 1] → [0, 1] (called
the colonisation function) is increasing and Lipschitz
continuous, with c(0) = 0 and c ′(0) > 0.

Proportion of patches occupied
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SPOM - Phase structure

For simplicity, take d ≡ 1 and a ≡ 1. So, . . .
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SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with
probability c(n−1

∑n

j=1X
(n)

j,t ), where c : [0, 1] → [0, 1] (called
the colonisation function) is increasing and Lipschitz
continuous, with c(0) = 0 and c ′(0) > 0.

Extinction: occupied patch i remains occupied
independently with probability si (fixed or random).
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SPOM - example

n = 30 patches

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0

(11 patches occupied)
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SPOM - example

n = 30, c(x) = 0.7x

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0

c(x) = c(1130) = 0.7× 0.36̇ = 0.256̇
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SPOM - example

n = 30, c(x) = 0.7x

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x

0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0

0.60 0.56 0.63 0.62 0.52 0.61 0.68 0.49 0.49 0.49 0.50
0.41 0.59 0.63 0.60 0.61

[Survival probabilities listed for occupied patches only]
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0

c(x) = c(1030) = 0.7× 0.3̇ = 0.23̇
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
C 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
C 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
C 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
C 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
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SPOM - example

n = 30, c(x) = 0.7x and si ∼Beta(25.2, 19.8) (Esi = 0.56)

0 0 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 0
C 1 0 0 0 1 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0
C 0 0 1 0 1 0 0 1 1 1 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 1 0
E 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0
.
.
.
C 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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SPOM

The evolution of the process can be summarized by

X
(n)

i,t+1
d
= Bin

(

X
(n)

i,t + Bin
(

1−X
(n)

i,t , c
(

1
n

∑n

j=1X
(n)

j,t

)

)

, si

)

,

a “Chain Bernoulli” structure.
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SPOM - Homogeneous case

In the homogeneous case, where si = s is the same for
each i, the number N (n)

t of occupied patches at time t is
Markovian, and, letting the initial number N (n)

0 of occupied
patches grow at the same rate as n we arrive at:

Theorem If N (n)

0 /n
p
→ x0 (a constant), then

N
(n)

t /n
p
→ xt, for all t ≥ 1,

with (xt) determined by xt+1 = f(xt), where

f(x) = s(x+ (1− x)c(x)).

Survival probability Colonization probability
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CE Model - Evanescence
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CE Model - Quasi stationarity
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Stability

xt+1 = f(xt), where f(x) = s(x+ (1− x)c(x)).

Evanescence: 1 + c ′(0) ≤ 1/s. 0 is the unique fixed point in
[0, 1]. It is stable.

Quasi stationarity : 1 + c ′(0) > 1/s. There are two fixed
points in [0, 1]: 0 (unstable) and x∗ ∈ (0, 1) (stable).
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xt+1 = f(xt), where f(x) = s(x+ (1− x)c(x)).

Evanescence: 1 + c ′(0) ≤ 1/s. 0 is the unique fixed point in
[0, 1]. It is stable.
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CE Model - Evanescence
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CE Model - Quasi stationarity
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SPOM - general case

Returning to the general case, where patch survival
probabilities (si) are random and patch dependent , and we
keep track of which patches are occupied . . .

X
(n)

i,t+1
d
= Bin

(

X
(n)

i,t + Bin
(

1−X
(n)

i,t , c
(

1
n

∑n

j=1X
(n)

j,t

)

)

, si

)

.
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Our approach - Point Processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].
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Our approach - Point Processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn) and (µn,t) of random measures by

σn(B) = #{si ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).
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Our approach - Point Processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].
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Our approach - Point Processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn) and (µn,t) of random measures by

σn(B) = #{si ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).

We are going to suppose that σn
d
→ σ for some non-random

(probability) measure σ.
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Our approach - Point Processes

Treat the collection of patch survival probabilities and those
of occupied patches at time t as point processes on [0, 1].

Define sequences (σn) and (µn,t) of random measures by

σn(B) = #{si ∈ B}/n, B ∈ B([0, 1]),

µn,t(B) = #{si ∈ B : X
(n)

i,t = 1}/n, B ∈ B([0, 1]).

We are going to suppose that σn
d
→ σ for some non-random

(probability) measure σ.

Think of σ as being the distribution of survival probabilities.
In the earlier simulation σ was a Beta(25.2, 19.8) distribution.
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Our approach - Point Processes

Equivalently, we may define (σn) and (µn,t) by

∫

h(s)σn(ds) =
1

n

n
∑

i=1

h(si)

∫

h(s)µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t h(si),

for h in C+([0, 1]), the class of continuous functions that map
[0, 1] to [0,∞).
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Our approach - Point Processes

Equivalently, we may define (σn) and (µn,t) by

∫

h(s)σn(ds) =
1

n

n
∑

i=1

h(si)

∫

h(s)µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t h(si),

for h in C+([0, 1]), the class of continuous functions that map
[0, 1] to [0,∞). For example (h ≡ 1),

∫

µn,t(ds) =
1

n

n
∑

i=1

X
(n)

i,t (proportion occupied).



MCMSS Brisbane July 2015 - Page 49

A measure-valued difference equation

Theorem Suppose that σn
d
→ σ and µn,0

d
→ µ0 for some

non-random measures σ and µ0. Then, µn,t
d
→ µt for all

t = 1, 2, . . ., where µt is defined by the following recursion:
for h ∈ C+([0, 1]),
∫

h(s)µt+1(ds) = (1− ct)

∫

sh(s)µt(ds) + ct

∫

sh(s)σ(ds),

where ct = c (µt([0, 1])) = c
(∫

µt(ds)
)

.
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CE Model (homogeneous) - Evanescence
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CE Model - Evanescence
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CE Model - Quasi stationarity

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
CE Model simulation (n =100, σ̄(1) =0.56, c(x) = cx with c =0.7)

t

N
u
m
b
er

o
f
o
cc
u
p
ie
d
p
a
tc
h
es

c
′(0)

∫ 1

0
x

1−xσ(dx) =1.2572

0 0.5 1
0

1

2

3
Beta(4.368,3.432)



MCMSS Brisbane July 2015 - Page 53

CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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CE Model - Quasi stationarity
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Extra - equilibria

Our recursion is
∫

h(s)µt+1(ds) = (1− ct)

∫

sh(s)µt(ds) + ct

∫

sh(s)σ(ds).
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Extra - equilibria

Our recursion is
∫

h(s)µt+1(ds) = (1− ct)

∫

sh(s)µt(ds) + ct

∫

sh(s)σ(ds).

Let M be the set of measures that are absolutely
continuous with respect to σ and whose Radon-Nikodym
derivative is bounded by 1, σ − a.e.

We shall be interested in the behaviour of solutions to our
recursion starting with µ0 ∈ M.
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Extra - equilibria

"Differentiating" with respect to σ, we see that our recursion
can be written

∂µt+1

∂σ
= s

∂µt
∂σ

+ sct

(

1−
∂µt
∂σ

)

.
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Extra - equilibria

"Differentiating" with respect to σ, we see that our recursion
can be written

∂µt+1

∂σ
= s

∂µt
∂σ

+ sct

(

1−
∂µt
∂σ

)

.

It will be clear that µ0 ∈ M implies that µt ∈ M for all t.
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Extra - equilibria

"Differentiating" with respect to σ, we see that our recursion
can be written

∂µt+1

∂σ
= s

∂µt
∂σ

+ sct

(

1−
∂µt
∂σ

)

.

It will be clear that µ0 ∈ M implies that µt ∈ M for all t.

Furthermore, a measure µ∞ ∈ M will be an equilibrium
point of our recursion if it satisfies

∂µ∞
∂σ

= s
∂µ∞
∂σ

+ sc∞

(

1−
∂µ∞
∂σ

)

,

where c∞ = c (µ∞([0, 1])).
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Extra - equilibria

Theorem Suppose that c(0) = 0 and c ′(0) <∞. Let ψ∗ be a
solution to the equation

ψ = Rσ(ψ) :=
∫

sc(ψ)
1−s+sc(ψ)

σ(ds). (1)

The fixed points of our recursion are given by

µ∞(ds) =
sc(ψ∗)

1− s+ sc(ψ∗)
σ(ds).

Equation (1) has the unique solution ψ∗ = 0 if and only if

c ′(0)
∫

s
1−sσ(ds) ≤ 1.

Otherwise, there are two solutions, one of which is ψ∗ = 0.
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Extra - stability

Theorem If ψ∗ = 0 is the only solution to Equation (1),
then, for all µ0 ∈ M, µt → 0. If Equation (1) has a non-zero
solution, then, for all µ0 ∈ M such that

∫

µ0,j(ds) > 0 for
some j, µt → µ∞.
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