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Abstract
Many large-scale stochastic systems, such as telecommunications networks,

can be modelled using a continuous-time Markov chain. However, it is fre-
quently the case that a satisfactory analysis of their time dependent, or even
equilibrium behaviour, is impossible. In this paper we propose a new method
of analyzing Markovian models, whereby the existing transition structure is
replaced by a more amenable one. Using rates of transition given by the equi-
librium expected rates of the corresponding transitions of the original chain,
we are able to approximate its behaviour. We shall illustrate our approach
with reference to a variety of models, giving particular attention to queueing
and loss networks.

1 Introduction

In order to understand the rationale of expected rates, consider any large-scale
stochastic system whose natural state description is Markovian, yet its equilibrium
or time dependent behaviour is difficult to analyze. The system in question might be
a communications network, whose state records the numbers of calls on the various
routes through the network (each call using resources at several communications
links). The idea is to find an alternative state description, together with an approx-
imating transition structure, which can be analyzed more simply. An alternative
description for the communications network might focus on the links , say recording
the resource usage on those links. Since each link will usually service several differ-
ent routes, this description is unlikely to be Markovian. However, we might usefully
approximate the behaviour of the network by considering the links in isolation, and
model the resource usage on any given link by a Markov chain whose rates of tran-
sition are given by the equilibrium expected rates of the corresponding transitions
of the original chain.

We begin by proposing the basic idea and illustrate how it can be used to study
the time-dependent behaviour of Markovian queueing networks. We then describe
a variant of the basic method, which encapsulates several recent approaches to
analyzing the equilibrium behaviour of loss networks.
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2 Expected rates

Let (X(t), t ≥ 0) be a continuous-time Markov chain over a denumerable state
space S with transition rates Q = (q(x, y), x, y ∈ S), where for simplicity q(x, x) =
0, and set q(x) =

∑
y∈S q(x, y). Suppose that S is irreducible (and hence q(x) > 0

for all x ∈ S) and positive recurrent, and let π = (π(x), x ∈ S) be the unique
equilibrium distribution of the chain. Thus,∑

x∈S

π(x)q(x, y) = π(y)q(y), y ∈ S.

Now let (Xn, n = 0, 1, . . . ) be the jump chain, that is, the discrete-time Markov
chain over S, with X0 = X(0), that records the sequence of states visited. Note
that S is also irreducible for the jump chain because its transition probabilities
P = (p(x, y), x, y ∈ S) are given by p(x, y) = q(x, y)/q(x). We shall assume that∑

x∈S π(x)q(x) <∞, so that the jump chain admits an equilibrium distribution m =
(m(x), x ∈ S) given by m(x) = π(x)q(x)/

∑
y∈S π(y)q(y), x ∈ S; see Exercise 1.1.5

of Kelly [7]. Notice that m coincides with π only when q(x) is the same for all x,
and so only in this exceptional case can the two chains be stationary together.

Now identify a set of transitions A ⊆ S̃, where S̃ = S × S, and define r(A) by

r(A) = Em (q(Xn, Xn+1)|(Xn, Xn+1) ∈ A) , (1)

where Em(·) denotes expectation with respect to the distribution m. Thus, r(A) is
the equilibrium expected rate of transition, given that the transition is in A. Notice
that r(A) does not depend on n because, under m, (Xn, Xn+1) forms a stationary
sequence. Indeed, this sequence is a Markov chain with transition probabilities
p((u, x); (x, y)) = p(x, y) and equilibrium distribution m(x, y) = m(x)p(x, y); see
Proposition 2.1 of Kelly and Pollett [8]. We can evaluate r(A) as follows:

r(A) =
∑

(x,y)∈A

q(x, y)
Pr(Xn = x,Xn+1 = y)∑

(u,v)∈A Pr(Xn = u,Xn+1 = v)

=
∑

(x,y)∈A

q(x)p(x, y)
m(x)p(x, y)∑

(u,v)∈Am(u)p(u, v)

=

∑
(x,y)∈A q(x)m(x)p(x, y)2∑

(x,y)∈Am(x)p(x, y)
=

∑
(x,y)∈A π(x)q(x, y)2∑
(x,y)∈A π(x)q(x, y)

. (2)

Remark It is natural for the expectation in (1) to be taken with respect to the
equilibrium distribution of the jump chain. However, if it had been taken with
respect to π, thus giving a quantity rn(A) which generally depends on n, we would
have rn(A) → r(A) as n → ∞, at least formally, since because the jump chain is
aperiodic, Pr(Xn = x)→ m(x).

Example 1 To illustrate how expected rates can be evaluated, consider the simple
(M/M/1) queue, with Poisson arrivals at rate α > 0, independent exponentially
distributed service times with unit mean, and a single server operating at rate φ > 0,
serving customers one at a time in the order in which they arrive. With the state



X(t) representing the number of customers in the system at time t, we have S =
{0, 1, . . . }, q(x, x+1) = α and q(x, x−1) = φ for x ≥ 1, with all other transition rates
equal to 0. Define transitions A = {(x, x+1), x = 0, 1, . . . } and D = {(x, x−1), x =
1, 2, . . . }, corresponding to arrivals and departures, respectively. Assuming that the
traffic intensity ρ = α/φ is strictly less than 1, an equilibrium distribution exists for
both X(t) and its jump chain, and, π(x) = (1−ρ)ρx. Using (2) we find, perhaps not
unexpectedly, that r(A) = α (notice that, more generally, if q(x, y) = α for x, y ∈ A,
so that transitions in A form a Poisson process with rate α, then r(A) = α). We
also find that r(D) = φ, but note that the equilibrium expected departure rate is
Eπ(φ1{X(t)>0}) = φPr(X(t) > 0) = α, which is different from r(D).

3 Markovian queueing networks

In this section we shall study a network of queues, with the queues labelled 1, . . . , J .
If customers can enter or leave the network, it is said to be open. In this case
customers arrive at queue i from outside the network as a Poisson stream with
rate νi (if νi = 0 there is no exogenous arrival process at that queue). Otherwise,
a fixed number N of customers circulate, and the network is said to be closed .
After completing service at queue i, a customer either leaves the network, with
probability λi0, or proceeds to another queue j, with probability λij (in the closed
case we take λi0 = 0). For simplicity, we shall assume that λii = 0. Clearly∑

j λij = 1. We shall assume that these parameters are chosen so that a customer can
reach any queue from anywhere in the network. In the open case we shall also assume
that a customer can reach any queue from outside the network and eventually leave
the network starting from anywhere. In the closed case these conditions ensure that
the routing matrix (λij) is irreducible and, hence, that there is a unique collection
(α1, α2, . . . , αJ) of strictly positive numbers which satisfy the traffic equations αj =∑

i αiλij, j = 1, 2, . . . , J . Here we may assume without loss of generality that∑
j αj = 1. In the open case these conditions ensure that there is a unique positive

solution (α1, α2, . . . , αJ) to the equations αj = νj +
∑

i αiλij, j = 1, 2, . . . , J . In
this case αj is the arrival rate at queue j, while in the closed case αj is proportional
to the arrival rate at queue j. Service times of customers at the various queues
in the network are assumed to be independent exponentially distributed random
variables with unit mean, and independent of the arrival and routing processes.
When there are n customers at a given queue j, a service effort of φj(n) is offered.
We shall assume that φj(0) = 0 and φj(n) > 0 whenever n ≥ 1. For example,
when φj(n) = φjn, every customer at queue j gets the same service effort φj (the
infinite-server queue), while if φj(n) = φj min{n, sj}, for n ≥ 1, then at most sj
customers receive service, each at the same rate φj (the sj-server queue). In this
latter case ρj = αj/(φjsj) is called the traffic intensity at queue j.

We have described the basic migration process of Whittle [16] (see also Whit-
tle [17]), a special case of which was considered first by Jackson [6]; for further
details see Chapter 2 of Kelly [7]. The equilibrium behaviour of these networks is
well understood, and summarized in Theorems 2.3 and 2.4 of Kelly [7]. The network
can be described by a continuous-time Markov chain with state n = (n1, n2, . . . , nJ),
where nj is the number of customers at queue j (including those in service). In the



open case S = ZJ
+ and the transition rates are given by

q(n,n+ ej) = νj (external arrival at queue j)

q(n,n− ei) = λi0φi(ni) (external departure at queue i)

q(n,n− ei + ej) = λijφi(ni) (movement from queue i to queue j) ,

where ej is the unit vector in ZJ
+ with a 1 as its j-th entry. An equilibrium distri-

bution exists if b−1
j := 1 +

∑∞
n=1(αnj /

∏n
r=1 φj(r)) <∞ for all j, in which case

π(n) =
J∏
j=1

πj(nj), where πj(n) = bj
αnj∏n

r=1 φj(r)
. (3)

Thus, in equilibrium, n1, n2, . . . , nJ are independent and each queue j behaves as if
it were isolated with Poisson input at rate αj.

In the closed case S (= SN) is the finite subset of ZJ
+ with

∑
j nj = N , where

recall that N is the total number of customers in the network. The transition rates
are now simply

q(n,n− ei + ej) = λijφi(ni) (movement from queue i to queue j) .

An equilibrium distribution always exists and is given by

π(n) (= πN(n)) = BN

J∏
j=1

α
nj
j∏nj

r=1 φj(r)
,

where BN is a normalizing constant chosen so that π sums to 1 over SN .
There are very few explicit results concerning the time dependent behaviour

of these networks, and a product form such as (3) is exhibited rather rarely by
the transient distribution. Indeed, Boucherie and Taylor [2] have shown that the
networks with all queues being ·/M/∞ are the only ones with a transient product-
form distribution (among a much larger class of Markovian networks than the ones
considered here). We propose the following approximation using expected rates.
Define

Ak(m) = {(m,n) ∈ S̃ : mk = m,nk = m+ 1}, m ≥ 0,

Dk(m) = {(m,n) ∈ S̃ : mk = m,nk = m− 1}, m ≥ 1,
(4)

where recall that S̃ = S×S. These represent, respectively, an arrival and a departure
transition at queue k when there are m individuals at that queue, and so ak(m) =
r(Ak(m)) and dk(m) = r(Dk(m)) will give the expected (state-dependent) arrival
and departure rates for queue k under the equilibrium distribution of the jump
chain. We propose to approximate the behaviour of the network by a system of
isolated queues, with each queue k modelled as a birth-death process with birth
rates qk(m,m+ 1) = ak(m), m ≥ 0, and death rates qk(m,m− 1) = dk(m), m ≥ 1.

On summing m(m)q(m,n) and m(m)q(m,n)2 over (m,n) in Ak(m) and in
Dk(m), we find that the expected rates can be expressed in terms of π. In the open
case ak(m) = ak is the same for all m and given by

ak =
1

αk

(
ν2
k +

∑
j

αjλ
2
jk

∞∑
n=0

πj(n)φj(n+ 1)

)
,



while dk(m) = dkφk(m), where dk = λ2
k0 +

∑
j λ

2
kj. In the closed case

ak(m) =

∑
j αjλ

2
jkEπN−1

(
φj(nj + 1)1{nk=m}

)
αkPrπN−1

(nk = m)
,

where PrπN−1
(nk = m) is the equilibrium probability that there are m customers at

queue k in a network with N − 1 customers circulating, while dk(m) = dkφk(m),
where dk =

∑
j λ

2
kj. For both the open and closed cases dk(m) is given explicitly.

The expected arrival rates can be evaluated explicitly only in special cases. For the
open network, if φj(n) = φj for n ≥ 1 (φj(0) = 0), then

∑
n πj(n)φj(n + 1) = φj,

while if φj(n) = φjn, then
∑

n πj(n)φj(n + 1) = αj + φj. Thus if φj(n) = φj
for every j, ak = (ν2

k +
∑

j φjαjλ
2
jk)/αk, while if φj(n) = φjn for every j, then

ak = (ν2
k +
∑

j αj(αj +φj)λ
2
jk)/αk. For the closed network, if φj(n) = φj for every j,

then ak(m) = (
∑

j φjαjλ
2
jk)/αk, while if φj(n) = φjn for every j, then

ak(m) =
1

αk

(∑
j

φjαjλ
2
jk +

φkC(N − 1−m)

φk − Cαk

∑
j

α2
jλ

2
jk

)
,

where C−1 =
∑

j(αj/φj).

Example 2 In order to assess the accuracy of our method, we shall examine a
network for which there are explicit time dependent results. The network we shall
consider has φj(n) = φjn for every j, so that each queue has infinitely many servers,
with the servers at queue j operating at rate φj. Explicit results exist, provided we
assume that the network is completely empty at time 0. Kingman [12] showed that
if nj(0) = 0 for all j, then, for every t > 0, n1(t), n2(t), . . . , nJ(t) are independent
Poisson random variables with nj(t) having mean µβj(t), where µ =

∑
j νj is the

total exogenous arrival rate, and βj(t) =
∫ t

0
pj(t)dt, where pj(t) is the probability

that an individual, entering the network at time 0, is in queue j after time t. For
details, see Theorem 4.2 of Kelly [7]. (Note that, by Fubini’s theorem, βj(t) is the
expected total time the single individual spends in queue j up to time t.) Kingman’s
result holds in much greater generality than might be indicated by the present
context. For the particular Markovian network in question, pj(t) can be evaluated
further.

If an individual arrives at the network at time t = 0, then he will enter queue j
with probability pj(0) = νj/µ. Define p0(t) = 1 −

∑
j pj(t) to be the probability

that the individual has left the network by time t, and note that p0(0) = 0. The
movement of the individual through the network can be thought of as a random
walk in continuous time on the set of indices {0, 1, 2, . . . , J}, recording his present
location, with 0 (an absorbing state) indicating that he has left the network. Note
that, under the conditions we have imposed, {1, 2, . . . , J} is an irreducible class for
the random walk. Since service times are exponentially distributed with mean 1
and the service rate at queue j is φj, the rate at which the individual moves from
queue i to queue j is rij = φiλij, and, from queue i to the outside, the rate is
ri0 = φiλi0. Therefore pj(t), j = 0, 1, . . . , J , satisfies a set of forward equations

pj
′(t) =

∑J
i=0 pi(t)rij, j = 0, 1, . . . , J , where, for j = 1, 2, . . . , J , rjj = −φj and



r0j = r00 = 0. These integrate to give

µpj(t) = νje
−φjt +

J∑
i=1

∫ t

0

µpi(u)e−φj(t−u)du φiλij, j = 1, . . . , J,

remembering that λjj = 0, and p0(t) =
∑J

i=1

∫ t
0
pi(u)du φiλi0. Recall that nj(t), j =

1, 2, . . . , J , are independent Poisson random variables with E(nj(t)) =
∫ t

0
µpj(t)dt.

The expected rates approximation has each queue isolated, with queue k being
an infinite server queue having arrival rate ak = (ν2

k +
∑

j αj(αj + φj)λ
2
jk)/αk, and

each of its servers operating at rate bk = dkφk, where dk = λ2
k0 +

∑
j λ

2
kj. Thus nk(t)

is a Poisson random variable with mean (ak/bk)(1− exp(−bkt)). The expected rates
approximation is given explicitly, but how accurate is it?

We shall specialize to the case of a symmetric network, for which the mean of
nj(t) can be evaluated explicitly. Suppose that νj = ν and λj0 = λ0 for each j, and
that λij = (1 − λ0)/(J − 1) for j 6= i, so that traffic equations have the solution
αj = ν/λ0 (which does not depend on J). Suppose that φj = φ is also the same for
all j. Then, p0(t) = 1− e−φλ0t and, for j = 1, 2, . . . , J , pj(t) = (1/J)e−φλ0t, so that
nj(t) is a Poisson random variable with E(nj(t)) = (ν/φλ0)(1 − exp(−φλ0t)). The
expected rates approximation gives

E(nj(t)) =

(
ν

φλ0

+
(1− λ0)2

(J − 1)λ2
0 + (1− λ0)2

)(
1− exp

(
−φ
(
λ2

0 +
(1− λ0)2

J − 1

)
t

))
.

Thus, the approximation is accurate for large t when the network is large, and
accurate for small t when λ0 is close to 1.

4 An alternative approach

One of the drawbacks of defining expected rates in terms of transitions (ordered
pairs of states) is that the expectation is evaluated with respect to the equilibrium
distribution of the jump chain. We now describe an alternative approach, based
on the equilibrium distribution π. Returning to the notation of Section 2, define
A(x) = {y ∈ S : (x, y) ∈ A}, x ∈ S, for any given set A ⊆ S̃ of transitions, and in
place of (1) let

r(A) = Eπ

(
q
(
X(t), A(X(t))

))
, (5)

where, for B ⊆ S, q(x,B) =
∑

y∈B q(x, y). Note that the expectation here is taken
with respect to π.

For the Markovian networks studied in the previous section, this approach does
not add anything new. For example, using the transitions defined by (4), and the
notation ak(m) = r(Ak(m)) and dk(m) = r(Dk(m)), we find that

ak(m) = Eπ

(
νk +

∑
i

φi(ni(t))λik

)
= νk +

∑
i

αiλik = αk



and dk(m) = φk(m). Hence, a proposal to approximate the behaviour of the network
by a system of isolated queues, with each queue j modelled as a birth-death process
with birth rates αj and death rates φj(n), would result in a system whose equilibrium
behaviour is the same as the original model; only in exceptional circumstances
(Example 2) would the transient behaviour be the same. This is a natural approach
to analyzing queueing networks; see Kühn [13] for an extension to networks with
general service time distributions, which involves the additional matching of higher
order moments of the arrival and service processes.

Using a slight variation of this new rationale, we can apply the technique to
cases where there is no appropriate product form. The idea is to impose a product
form π for the equilibrium distribution (or some set of marginal distributions), to
evaluate the expected rates using this distribution, and then to use these rates to
update π. By doing this repeatedly, we would hope to find the product form which
best approximates the behaviour of the original model (or some particular quantity
of interest, such as a performance measure). We shall illustrate this by looking at
an important class of models called loss networks .

The basic model describes a circuit-switching network with fixed routing, such
as a telephone network, but it also arises in the study of local area networks, multi-
processing architectures, data-base management systems, mobile/cellular radio and
broadband packet networks (see Kelly [11] for an excellent review).

The network is composed of communications links, and any route in the network
can be expressed as a subset of {1, 2, . . . , J}, where J is the number of links. LetR be
the set of all routes. Calls using route r are offered at rate νr as a Poisson stream, and
use λjr(≥ 0) circuits from link j, the total number of circuits on link j being Cj. We
assume that R indexes independent Poisson processes. Calls requesting route r are
blocked and lost if, on any link j, there are fewer than λjr free circuits. Otherwise,
the call is connected and simultaneously holds λjr circuits on each link j for the
duration of the call. For simplicity, we shall take λjr ∈ {0, 1}. Call durations
are independent and identically distributed exponential random variables with unit
mean, and are independent of the arrival processes.

Let n = (nr, r ∈ R), where nr is the number of calls in progress using route r,
let C = (Cj, j = 1, . . . , J), and let Λ = (λjr, r ∈ R, j = 1, . . . , J). Then,
(n(t), t ≥ 0) is a continuous-time Markov chain taking values in S = S(C) ={
n ∈ ZR+ : Λn ≤ C

}
, with transition rates given by

q(n,n+ er) = νr, if n,n+ er ∈ S, (call connected on route r)

q(n,n− er) = nr, if n,n− er ∈ S, (call cleared on route r)

and equal to 0 otherwise; here er is the unit vector indicating just one call in progress
on route r. It can be shown (see for example Kelly [11]) that the equilibrium dis-
tribution is given by π(n) = B

∏
r∈R(νnrr /nr!), where B = B(C) is a normalizing

constant chosen so that π sums to 1 over S(C). Most of the usual measures of
performance of the network can be evaluated in terms of π. For example, the equi-
librium probability that a route-r call is blocked is given by 1−B(C)/B(C −Λer).
However, although one has an explicit expression for the blocking probability in
terms of B, the latter can’t (usually) be computed in polynomial time (see for ex-
ample Kelly [10]). Thus, for networks with even moderate capacity, one is forced to



use approximation methods.
Define, for each k ∈ {1, 2, . . . , J}, the following sets of transitions:

Ak(u) = {(m,n) ∈ S̃ : (Λm)k = u, (Λn)k = u+ 1}, u = 0, 1, . . . , Ck − 1,

Dk(u) = {(m,n) ∈ S̃ : (Λm)k = u, (Λn)k = u− 1}, u = 1, 2, . . . , Ck.

These comprise all transitions corresponding to an increase, respectively decrease,
in the usage on link k when there are u circuits in use on that link. Now, for each
m ∈ S such that (Λm)k = u, define Ak(m) = {n ∈ S : (m,n) ∈ Ak(u)}, and
Dk(m) similarly in terms of Dk(u). Then,

q(m, Ak(m)) =
∑

r∈R:k∈r

νr
∏

i∈r−{k}

1{ui<Ci} =
∑
r∈R

λkrνr
∏

i∈r−{k}

1{ui<Ci}

and q(m, Dk(m)) =
∑

r∈R:k∈r nr =
∑

r∈R λkrnr = uk = u, where here we have
used the notation ui = (Λm)i for the number of circuits in use on link j when
the state is m. Since q(m, D(m)) = u is constant, we shall always have dk(u) :=
r(Dk(u)) = u. In order to evaluate ak(u) := r(Ak(u)), we shall impose a product
form distribution for u = (u1, u2, . . . , uJ):

π(u) =
J∏
j=1

πj(uj), where πj(u) =
auj
u!

 Cj∑
v=0

avj
v!

−1

, u = 0, 1, . . . , Cj. (6)

This would be the equilibrium distribution for u if the individual links were isolated
from one another, with calls offered to link j as a Poisson stream with rate aj,
and blocked if they arrive to find Cj circuits in use. (However, this will not be true,
except in trivial cases; indeed, under the inherited transition structure u→ u±Λer,
r ∈ R, the process u(t) taking values in {u ∈ ZJ+ : u ≤ C} will not generally be
Markovian.) Using (6), we find that

ak(u) =
∑
r∈R

λkrνr
∏

i∈r−{k}

Prπ(ni < Ci) =
∑
r∈R

λkrνr
∏

i∈r−{k}

(1− Li), (7)

where Li = πi(Ci) is the probability that a call is blocked on link i, and is given
by Li = E(ai, Ci), where E(a, C) = baC/C! with b−1 =

∑C
v=0(av/v!) (Erlang’s

formula). Notice that ak(u) does not depend on u, and so both of our expected
rates are consistent with (6). The idea now is to update (6) replacing ak by (7) in
the hope that (6) better approximates the marginal distribution of u for the original
model. If the sequence of iterates for ak converges for each k, then the corresponding
limiting values, L1, L2, . . . , LJ , for the link blocking probabilities will satisfy

Lj = E

∑
r∈R

λjrνr
∏

i∈r−{j}

(1− Li) , Cj

 .

These equations do have a fixed point (called the Erlang fixed point); this follows
from the Brouwer fixed point theorem, for they define a continuous mapping from a



compact convex set [0, 1]J into itself. The uniqueness of the Erlang fixed point, as
well as the required convergence, was established by Kelly [9].

This approximation for the blocking probabilities, which is widely known as the
Erlang fixed point approximation, is one of a wider class of reduced load approxi-
mations, named as such, because in using (6) one is effectively thinning the offered
traffic at link j by an amount determined by the level of blocking at other links.
There are several limiting regimes under which the Erlang fixed point approxima-
tion is asymptotically exact . The first is one in which the topology of the network
is held fixed, while capacities and arrival rates at the links become large (Kelly [9]);
this has become known as the Kelly limiting regime, or (somewhat misleadingly)
as the heavy traffic limit . Under the second limiting regime, called diverse routing ,
the number of links, and the number of routes which use those links, become large,
while the capacities are held fixed and the arrival rates on multi-link routes become
small (see for example Hunt [5], Whitt [15], and Ziedins and Kelly [18]).

If we were to suppose that pairs of links or, more generally, subnetworks of
links behave independently, then we could evaluate expected rates for these sub-
networks, based on a product-form distribution π similar to (6) with u partitioned
appropriately, and thus produce an iterative scheme for determining π. Several
other reduced-load methods can be viewed in this way, for example the methods of
Bebbington et al. [1], Ciardo and Trivedi [3], Coyle et al. [4] and Pallant [14].

5 Concluding remarks

We have presented two approaches to the basic idea of using expected rates in ap-
proximating the behaviour of complex Markovian systems. The first allows one to
estimate time-dependent behaviour, and is useful in analysing queueing networks.
The second approach, which is useful in estimating equilibrium behaviour, encapsu-
lates several approximations for loss networks which are known to be asymptotically
exact. This approach warrants further investigation. We are presently looking at
some general formulations, as well methods for specific models, including loss net-
works with admission controls and queueing networks with blocking.
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