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Abstract. There are many stochastic systems arising in areas as diverse as wildlife
management, chemical kinetics and reliability theory, which eventually “die out”, yet
appear to be stationary over any reasonable time scale. The notion of a quasistationary
distribution has proved to be a potent tool in modelling this behaviour. In finite-state
systems the existence of a quasistationary distribution is guaranteed. However, in the
infinite-state case this may not always be so, and the question of whether or not qua-
sistationary distributions exist requires delicate mathematical analysis. The purpose of
this paper is to present simple conditions for the existence of quasistationary distribu-
tions for continuous-time Markov chains and to demonstrate how these can be applied
in practice.

1. Introduction

Quasistationary distributions have been used in a variety of diverse contexts for
modelling the long-term behaviour of stochastic systems which, in some sense, ter-
minate, but appear to be stationary over any reasonable time scale. For example,
in the context of modelling chemical reaction kinetics, there are a number of reac-
tions in which one or more species can become depleted, yet these reactions settle
down quickly to a stable equilibrium; quasistationary distributions have been used
here to model the concentration of the catalyst in reactions in which the catalyst can
become exhausted (see, for example, Oppenheim et al. (1977), Turner and Malek-
Mansour (1978), Dambrine and Moreau (1981a, 1981b), Parsons and Pollett (1987)
and Pollett (1988b)). In the context of reliability theory, one might wish to deter-
mine the distribution of the residual lifetime of a system at some arbitrary time t,
conditional on the system being functional (see, for example, Kalpakam and Shahul
Hameed (1983), Pijnenburg and Ravichandran (1990) and Pijnenburg et al. (1990));
in the case of a two-unit warm-standby redundant system, the limiting form of this
conditional distribution, as t becomes large, is always exponential, no matter what the
distribution of lifetimes and repair times (Kalpakam and Shahul Hameed (1983)). Yet
another example of the use of quasistationary distributions is in the area of wildlife
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management, where these have proved to be a potent tool in predicting persistence
times, and the distribution of the number of individuals, in animal populations which
are subject to large-scale mortality or emigration; in spite of the fact that the usual
stochastic models predict eventual extinction, these populations can be surprisingly
resilient (see, for example, Scheffer (1951), Mech (1966), Klein (1968), Holling (1973),
Pakes (1987), Pollett (1987), and Pakes and Pollett (1989)).

The idea of a quasistationary distribution can be traced back to the work of the
Russian Mathematician A.M. Yaglom, who showed that the limiting conditional dis-
tribution of the number in the nth generation of the Galton Watson branching process
always exists in the subcritical case (see Yaglom (1947)). But, it was not until the
early sixties, and largely stimulated by the remarkable work of Vere-Jones (1962),
and later Kingman (1963), that a general theory was annunciated. Since then, there
have been a number of significant advances on questions concerned with the existence
of quasistationary distributions; in the present context of continuous-time Markov
chains, see, for example, Darroch and Seneta (1967), Good (1968), Vere-Jones (1969),
Flaspohler (1974), Tweedie (1974), Cavender (1978), van Doorn (1991), Kijima and
Seneta (1991), Kijima (1992) and van Doorn and Kijima (1992) (a spectacularly clear
account of much of this work is also given in the recent text by Anderson (1991)).

In this paper I shall give a unified account of the theory of quasistationary distribu-
tions for continuous-time Markov chains. Simple conditions will be established for the
existence of quasistationary distributions and these will be illustrated with reference to
finite-state systems, birth and death processes, and the birth, death and catastrophe
process.

2. The existence of quasistationary distributions

We shall suppose that the system in question can be modelled as a time-
homogeneous Markov chain, (X(t), t ≥ 0), taking values in a discrete set S. Let
Q = (qij , i, j ∈ S) be the q-matrix of the chain (assumed to be stable and conserva-
tive), so that qij (≥ 0), for j 6= i, represents the transition rate from state i to state j
and qii = −qi, where qi =

∑
j 6=i qij (< ∞) represents the transition rate out of state i.

In addition, we shall suppose that Q is regular, so that X(·) is the unique chain with
these rates. Checking for regularity should be, though apparently seldom is, a part
of the routine of modelling. Simple sufficient conditions for the regularity of Q are
contained in Pollett and Taylor (1993). The condition supj qj < ∞, which is predom-
inant in the engineering literature, is certainly too strong for practical purposes; for
example, it rules out branching and catastrophe processes and random delay systems.

We shall be concerned with evanescent chains, so, for simplicity, let us take 0 to
be the sole absorbing state, that is, q0 = 0, and suppose that S = {0} ∪ C, where
C = {1, 2, . . . } is an irreducible transient class. In order that there be a positive
probability of reaching 0, given that the chain starts in C, we shall suppose that
qi0 > 0 for at least one i ∈ C.

The definition of a quasistationary distribution, which I shall use here, is the one
introduced by van Doorn (1991). Let P (·) = (pij(·), i, j ∈ S) be the transition function
of the chain, so that pij(t) = Pr(X(t) = j|X(0) = i), for t ≥ 0.

Definition. Let m = (mj , j ∈ C) be a probability distribution over C and let pj(t) =
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∑
i∈C mipij(t), for j ∈ S and t ≥ 0. Then, m is a quasistationary distribution if, for

all t > 0 and j ∈ C, pj(t)/(
∑

i∈C pi(t)) = mj. That is, if the chain has m as its initial
distribution, then m is a quasistationary distribution if the state probabilities at time
t, conditional on the chain being in C at t, are the same for all t.

The relationship between quasistationary distributions and the transition probabil-
ities of the chain is made more precise in the following proposition:

Proposition 1 (Nair and Pollett (1993)). Let m = (mj , j ∈ C) be a probability
distribution over C. Then, m is a quasistationary distribution if and only if, for some
µ > 0, m is µ-invariant on C for P , that is

(1)
∑

i∈C

mipij(t) = e−µtmj , j ∈ C, t ≥ 0.

Thus, in a way which mirrors the theory of stationary distributions, one can interpret
quasistationary distributions as eigenvectors of the transition function. However, the
transition function is available explicitly in only a few simple cases, and so one requires
a means of determining quasistationary distributions directly from transition rates of
the chain. Since qij is the right-hand derivative of pij(·) near 0, an obvious first step
is to rewrite (1) as

∑

i∈C: i 6=j

mipij(t) =
(
(1− pjj(t))− (1− e−µt)

)
mj , j ∈ C, t ≥ 0,

and then divide by t and let t ↓ 0. Proceeding formally, we get

(2)
∑

i∈C: i 6=j

miqij = (qj − µ)mj , j ∈ C,

or, equivalently,

(3)
∑

i∈C

miqij = −µmj , j ∈ C.

Accordingly, we shall say that m is µ-invariant on C for Q whenever (3) holds. The
above argument can be justified rigorously (see Proposition 2 of Tweedie (1974)), and
so, in view of Proposition 1, we have the following result:

Proposition 2. If m is a quasistationary distribution then, for some µ > 0, m is
µ-invariant on C for Q.

The more interesting question of when a positive solution, m, to (3) is also a solution
to (1) was answered in Pollett (1986, 1988a). However, the necessary and sufficient
conditions obtained are usually difficult to verify in practice. If we take into account the
fact that, for m to be a quasistationary distribution, one requires

∑
j∈C mj = 1, then

much simpler conditions obtain, as our next result demonstrates. It can be deduced
from Theorems 3.2, 3.4 and 4.1 of Nair and Pollett (1993); the assumption made here,
that Q be regular, facilitates the simpler and more direct proof given below.
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Proposition 3. Let m = (mj , j ∈ C) be a probability distribution over C and suppose
that m is µ-invariant on C for Q. Then,

(4) µ ≤
∑

j∈C

mjqj0,

with equality if and only if m is a quasistationary distribution.

Proof. First observe that, since m is a probability distribution, there exists a j ∈ C
such that mj > 0. Hence, because m is µ-invariant on C for Q and C is irreducible,
we have, from (2), that µ ≤ infj∈C qj and that mj > 0 for all j ∈ C.

Define Q∗ = (q∗ij , i, j ∈ C) by q∗ij = mjqji/mi, for j 6= i, and q∗ii = −q∗i , where
q∗i = qi − µ. Clearly q∗ij ≥ 0 for all j 6= i and 0 ≤ q∗i < ∞. And, since m is µ-invariant
on C for Q, we have that

∑
j∈C q∗ij = 0. Thus, Q∗ is a stable and conservative q-matrix

over C (Q∗ is called the µ-reverse of Q with respect to m). Let P ∗(·) = (p∗ij(·), i, j ∈ C)
be the transition function of the minimal process associated with Q∗. Then, by Lemma
3.3 of Pollett (1988a), we have that

(5) mipij(t) = e−µtmjp
∗
ji(t), i, j ∈ C.

Summing this equation over j ∈ C, and remembering that, because Q is regular,∑
j∈S pij(t) = 1, we get

mi(1− pi0(t)) = e−µt
∑

j∈C

mjp
∗
ji(t), i ∈ C.

On summing this equation over i, and using Fubini’s theorem, we find that
∑

i∈C

mipi0(t) = 1− e−µt
∑

j∈C

mj

∑

i∈C

p∗ji(t),

or, equivalently,

(6)
∑

i∈C

mipi0(t) = 1− e−µt + e−µt
∑

j∈C

mjd
∗
j (t),

where d∗i (t) = 1−∑
j∈C p∗ij(t). Notice that d∗i (t) ≥ 0, since, because P ∗ is a transition

function, we have that
∑

j∈C p∗ij(t) ≤ 1, for all i ∈ C and t ≥ 0.
Now, since P satisfies the forward differential equations, we have, in particular, that

p′i0(t) =
∑

j∈C

pij(t)qj0, i ∈ C, t > 0,

or, equivalently,

pi0(t) =
∑

j∈C

∫ t

0

pij(s)qj0 ds, i ∈ C, t > 0.
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Multiplying by mi and summing over i ∈ C, and then using (5) once again, we get
∑

i∈C

mipi0(t) =
∫ t

0

∑

j∈C

∑

i∈C

mipij(s)qj0 ds

=
∫ t

0

e−µs
∑

j∈C

mj

∑

i∈C

p∗ji(s)qj0 ds

=
∫ t

0

e−µs
∑

j∈C

mj(1− d∗j (s))qj0 ds

=
∫ t

0

e−µs


∑

j∈C

mjqj0 −
∑

j∈C

mjd
∗
j (s)qj0


 ds

=
1
µ

(1− e−µt)
∑

j∈C

mjqj0 −
∫ t

0

e−µs
∑

j∈C

mjd
∗
j (s)qj0 ds.

On combining this equation with (6) we find that

µe−µt
∑

j∈C

mjd
∗
j (t) +

∫ t

0

µe−µs
∑

j∈C

mjd
∗
j (s)qj0 ds = (1− e−µt)


∑

j∈C

mjqj0 − µ


 .

The left-hand side of this equation is always non-negative, and so we deduce that
(4) must hold. It is also clear that d∗i is identically 0 for each i if and only if µ =∑

j∈C mjqj0. But, from (5), we have that
∑

i∈C

mipij(t) = e−µtmj(1− d∗j (t)), j ∈ C,

and so a necessary and sufficient condition for m to be µ-invariant on C for P is that
d∗i (t) = 0, for all i ∈ C and t ≥ 0. Thus, in view of Proposition 1, we have proved that
m is a quasistationary distribution if and only if equality holds in (4).

Proposition 3 corrects Theorem 6 of Vere-Jones (1969) and the first part of Corol-
lary 1 of Pollett (1986), both of which assert falsely that a µ-invariant probability
distribution on C for Q is always µ-invariant of C for P . The error was pointed out
by van Doorn (1991) and the counter example which he presented provides the basis
for the arguments used above. In determining where the error occurred in the original
proof, Vere-Jones and I were able to identify a simple sufficient condition (see Corol-
lary 2 of Pollett and Vere-Jones (1992)). It is instructive to see how this condition
arises in the context of Proposition 3. Consider the following formal argument, based
on summing (3) over j ∈ C:

(7)
∑

i∈C

miqi0 = −
∑

i∈C

mi

∑

j∈C

qij = −
∑

j∈C

∑

i∈C

miqij = µ
∑

j∈C

mj = µ.

The interchange of summation is not permitted in general, but can be justified under
various conditions (see Section 3.7 of Knopp (1956)). For example, the interchange
is permitted if the double sum in (7) is absolutely convergent, and a necessary and
sufficient condition for this is

∑
j∈C mjqj < ∞. Thus, we have the following result:
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Corollary 1. Let m = (mj , j ∈ C) be a probability distribution over C and suppose
that m is µ-invariant on C for Q. Then, if

∑
j∈C mjqj < ∞, m is a quasistationary

distribution and µ =
∑

j∈C mjqj0.

3. Applications

Finite-state systems. If S is a finite set, then clearly
∑

j∈C mjqj < ∞ and so ev-
ery µ-invariant probability distribution on C for Q is a quasistationary distribution.
Indeed, classical matrix theory can be used to show that the q-matrix restricted to
C has eigenvalues with negative real parts, that −µ is the dominant eigenvalue (it
has maximal real part), that this eigenvalue always has multiplicity 1, and, that both
the corresponding left and right eigenvectors have positive entries (see Mandl (1960),
and Darroch and Seneta (1967)); the left eigenvector is, of course, the quasistationary
distribution. Thus, for example, in Markovian reliability models, the stationary con-
ditional distribution of the number of functioning units (conditional on the system not
having failed) can be obtained as the dominant left eigenvector of the transition-rate
matrix restricted to the transient states. In most cases one is forced to evaluate the
dominant eigenvector numerically. If the number of states is reasonably small, say 100,
then one can use any of the standard methods (inverse iteration, for example) which
are widely available as part of matrix packages, such as MATLAB. If the number of
states is even moderately large, these methods are ineffective, both in respect of storage
and CPU time. For example, if there are 104 states, Q requires 400 Mbytes of storage.
If Q is sparse, or if it possesses a banded structure that can be usefully exploited, then
moderately large systems can be handled without difficulty. Pollett and Stewart (1994)
have developed an iterative version of Arnoldi’s algorithm (see, for example, Golub and
van Loan (1989)) for dealing with sparse q-matrices, and this has been used to evaluate
the quasistationary distribution, to within a tolerance of 10−6, for a variety of systems,
with of the order of 104 states, in times ranging from 15 to 30 CPU minutes on a Sun
SPARC 2. If the number of states is very large, say 108, then it is frequently the case
that deterministic approximations (see, for example, Pollett and Roberts (1990)) or
diffusion approximations (see, for example, Parsons and Pollett (1987), Pollett (1990,
1992), Pollett and Vassallo (1992), and Pollett and Stewart (1994)) can be used to
provide accurate estimates of the quasistationary distribution.

Birth and death processes. These are widely used in modelling stochastic systems
which arise in engineering, the information sciences and biology. Van Doorn (1991) has
given a complete treatment of questions concerning the existence of quasistationary
distributions for absorbing birth and death processes in cases when the probability of
absorption is 1. I shall explain how his conditions for the existence of quasistationary
distributions arise in the context of Proposition 3. The q-matrix of an absorbing birth
and death process is of the form

qij =





λi, if j = i + 1,

−(λi + µi), if j = i,

µi, if j = i− 1,

0, otherwise,
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where the birth rates, (λi, i ≥ 0), and the death rates, (µi, i ≥ 0), satisfy λi, µi > 0,
for i ≥ 1, and λ0 = µ0 = 0. Thus, 0 is an absorbing state and C = {1, 2, . . . } is an
irreducible class.

The classical Karlin and McGregor theory of birth and death processes involves the
recursive construction of a sequence of orthogonal polynomials (see van Doorn (1991)).
Define (φi(·), i ≥ 1), where φi : R → R, by φ1(x) = 1,

λ1φ2(x) = λ1 + µ1 − x,

λiφi+1(x)− (λi + µi)φi(x) + µiφi−1(x) = −xφi(x), i ≥ 2.

Now define π = (πi, i ≥ 1) by π1 = 1 and πi =
∏i

j=2 λj−1/µj , for i ≥ 2, and let
mi = πiφi(x). It can be shown (van Doorn (1991)) that φi(x) > 0 for x in the range
0 ≤ x ≤ λ, where λ (≥ 0) is the decay parameter of C (see Kingman (1963)). Since π is
a subinvariant measure for Q, that is

∑
i∈S πiqij ≤ 0, it follows, from Theorem 4.1 b(ii)

of Pollett (1988), that, for each fixed x in the above range, m = (mi, i ≥ 1) is an
x-invariant measure on C for Q, that is, m satisfies (3) with µ = x. Indeed, m is
uniquely determined up to constant multiples. Proposition 3 tells us that if m can be
normalized to produce a proper distribution on C, that is, if

∑∞
i=1 πiφi(x) < ∞, then

the normalized m will be a quasistationary distribution if and only if

(8)
∞∑

i=1

ri(x) = 1,

where ri(x) = µ−1
1 πixφi(x), a conclusion reached by van Doorn using direct methods.

Van Doorn’s Theorem 3.2 can then be used to determine all the values of x for which
(8) holds, at least under the condition

(9)
∞∑

i=1

1
λiπi

= ∞,

which ensures, not only that Q is regular, but that absorption occurs with probability 1.
If, in addition, the series

(10)
∞∑

i=1

1
λiπi

∞∑

j=i+1

πj

diverges then (8) holds for all x in (0, λ], while if it converges then (8) holds if and
only if x = λ. Proposition 3 then tells us that, in either case, r(x) = (ri(x), i ≥ 1) is a
quasistationary distribution. Indeed, because m is uniquely determined for each x, all
quasistationary distributions have been obtained under (9); if the series (10) converges,
then there is only one, namely r(λ), while if (10) diverges, (r(x), 0 < x ≤ λ) comprises
a one-parameter family of quasistationary distributions.
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The birth, death and catastrophe process. The introduction of a catastrophe
component allows greater flexibility in modelling. The q-matrix of the birth, death
and catastrophe process is given by

qi,i+1 = aqi, i ≥ 0,

qi,i = −qi, i ≥ 0,

qi,i−k = qibk, i ≥ 2, k = 1, 2 . . . i− 1,

qi,0 = qi

∞∑

k=i

bk, i ≥ 1,

where q0 = 0, qi > 0, for i ≥ 1, a > 0, bi > 0 for at least one value of i ≥ 1 and
a+

∑∞
i=1 bi = 1. Thus, at a jump time, a birth occurs with probability a, or otherwise

a catastrophe occurs, the size of which is determined by the probabilities bi, i ≥ 1.
Clearly, 0 is an absorbing state and C = {1, 2, . . . } is an irreducible class. It is usual to
set qi = ρi, where ρ > 0, so that jumps occur at a constant “per capita” rate ρ. Notice
that if, of the bi’s, only b1 is positive, then we recover the simple linear birth and death
process. It is well known, and easy to prove (see, for example, Pakes (1987)), that the
probability of absorption, starting in state i, is 1 if and only if D, given by

D = a−
∑

i∈C

ibi = 1−
∑

i∈C

(i + 1)bi,

is less than or equal to 0. D can be thought of as the drift, and, accordingly, the process
is said to be subcritical, critical or supercritical according as D is negative, zero or
positive. In a way that is analogous to the theory of Markov branching processes (see
for example, Athreya and Ney (1972)), an important role is played by the probability
generating function, f , given by

f(s) = a +
∑

i∈C

bis
i+1, |s| < 1,

and the related function, b, given by b(s) = f(s)−s. In identifying the quasistationary
distribution, we shall need the following facts from branching process theory: that b
is convex on [0, 1], that b(s) = 0 has a unique solution, σ, on this interval, that σ = 1
or 0 < σ < 1 according as D ≥ 0 or D < 0, and, that b(s) ≥ 0 on [0, σ].

On substituting the transition rates in equation (3), we get

−(ρ− µ)m1 +
∞∑

k=2

kρbk−1mk = 0,

(j − 1)ρamj−1 − (jρ− µ)mj +
∞∑

k=j+1

kρbk−jmk = 0, j ≥ 2.

If we try a solution of the form mj = tj , the first equation tells us that µ = −ρb′(t),
of necessity, and, on substituting both of these quantities in the second equation, we
find that b(t) = 0. Hence, we may set t = σ, thus providing a positive solution,
m = (mj , j ∈ C), to (3), such that

∑
j∈C mj < ∞ whenever σ < 1. Under this latter

condition, we also have
∑

j∈C mjqj =
∑

j∈C σjjρ < ∞. Thus, by Corollary 1, we have
the following result, which is implicit in the proof of Theorem 5.1 of Pakes (1987):
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Proposition 4. The subcritical linear birth, death and catastrophe process has a geo-
metric quasistationary distribution, m = (mj , j ∈ C), given by

mj = (1− σ)σj−1, j ∈ C,

where σ is the unique solution to b(s) = 0 on the interval [0, 1].

Computational methods for infinite-state systems. If the quasistationary dis-
tribution cannot be exhibited explicitly, or if the form of the quasistationary distribu-
tion is not amenable to numerical evaluation, one is forced to use a direct computational
approach. One widely used method is to truncate the restricted q-matrix to an n× n
matrix, Q(n), and construct a sequence, {m(n)}, such that m(n) is the left-eigenvector
of Q(n) associated with the eigenvalue with maximum real part. Then, one estimates
the quasistationary distribution by taking successively larger truncations until the dif-
ference in the normalized eigenvectors is as small as desired. For a detailed account of
these procedures, see Seneta (1973) and Tweedie (1973). When this approach is used,
the iterative Arnoldi method, referred to above, often provides an efficient means of
determining the sequence {m(n)}.
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