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Abstract For evanescent Markov processes with a single transient communicating class,
it is often of interest to examine the stationary probabilities that the process resides in the
various transient states, conditional on absorption not having taken place. Such distribu-
tions are known as quasistationary distributions. In this paper we consider the determina-
tion of a family of quasistationary distributions of a general level-independent quasi-birth-
and-death process (QBD). These distributions are shown to have a form analogous to the
quasistationary distributions exhibited by birth-and-death processes. We briefly discuss

methods for the computation of these quasistationary distributions.



1 INTRODUCTION

Consider a discrete-time Markov chain (X,;n € Z,) on a countable state space S =
{0,1,...} with transition matrix P. Assume (X,) has an absorbing state 0 and an irre-
ducible and aperiodic communicating class C = S\ {0}. We assume that the expected time
to absorption is finite from one (and then all) states i € C. Let T denote the time until

absorption of the process.

For many evanescent Markov chains, T' can be very large, and over any reasonable period
of time the chain appears to exist in an equilibrium. This leads us to consider quasista-
tionary distributions. A quasistationary distribution, 7r, is a stationary distribution of the

process conditioned to stay in the transient class; that is, if P(X, = j) =7, j € C, then
P(X, =j|T > n) =, jec,
for all n > 1. In other words, conditional on the chain being in C the state probabilities do

not vary with time.

A nontrivial, nonnegative row vector m(3) that satisfies

m(3) = fm(B)P (1.1)

is called a [-invariant measure. Here, and throughout, P denotes the restriction of P to
C. It is elementary to show that 7 is a quasistationary distribution if and only if, for some

B > 1, it is a fB-invariant measure, in which case
pl=1- Zﬂ'ipiOa
ieC
represents the probability (under the quasistationary distribution) that the process remains

within the transient class at the next time step.

For each Markov process there is a maximum value of 3 for which a quasistationary dis-
tribution can exist. This critical parameter is called the convergence radius and is denoted
by a. In certain circumstances an a-invariant measure may also have a limiting-conditional
interpretation: that is,

lim P(X, =j|Xo=i,T >n)=m;, jeC,

n—oo
no matter what the initial state <.

The convergence radius can be rigorously characterized as follows. For z € R, let N;;(2)
be defined by

Nij(z) = > "B, (1.2)



where f’i(f) is the (i, 7)th entry of P(™. Theorem 6.1 of Seneta [12] states that, for a given
value of z, either N;;(z) is finite for all (7, j) or N;;(z) is infinite for all (4, j). The convergence

radius associated with P is defined as

a =sup{z: N;;(z) is finite} .

There are very few substochastic chains for which a full quasistationary analysis is avail-
able. Historical exceptions have been finite-state processes, the Galton-Watson branching
process, simple birth-and-death chains and the work of Kyprianou [6] on GI/M/1 queues

(see also Kyprianou [7] for an analysis under conditions of heavy traffic).

Recently, a notable advance was made by Kijima [3] who gave an algebraic equation for
the convergence radius of PH/PH/1 queues (in fact, more generally, for processes of M/G/1
and GI/M/1 type). In the queueing context considered in [3], this equation can be solved
by use of the Laplace-Stieltjes transform of the interarrival and service time distributions.
Kijima also gave the form of the limiting-conditional distribution for the special cases of
the M/PH/1 and PH/M/1 queues. This work was extended by Makimoto [9] who gave
an explicit representation of the limiting-conditional distribution for PH/PH/c queues in
terms of solutions to a matrix equation. Makimoto did not, however, discuss methods of
solution for this equation in the general case. For a nice survey of this area see Kijima and
Makimoto [4].

In Bean et al. [1] the results of Kijima [3] and Makimoto [9] were extended by examining
the limiting-conditional behaviour of general level-independent quasi-birth-and-death pro-
cesses (QBDs), which includes the PH/PH/c queues as a subclass. An algorithm for the
explicit numerical computation of the convergence radius, o, and the limiting-conditional

distribution was also presented.

In this paper we extend the results of Bean et al. [1] by finding quasistationary distribu-
tions of a level-independent QBD for all # < «, not just the limiting-conditional distribu-
tion. In Bean et al. [1] the limiting-conditional distribution is written in such a way that
it is not an obvious generalization of the limiting-conditional distribution for a birth-and-
death process. In contrast, here we present all the quasistationary distributions as natural
extensions of the quasistationary distributions for ordinary birth-and-death processes. We

also discuss methods for their computation.

The results of this paper can also be applied to continuous-time QBDs. For details, see
Bean et al. [1].



2 ABSORBING QBDs AND THE CONVERGENCE
RADIUS

In this section we summarise the results of Sections 2, 3 and 4 of Bean et al. [1] in order to
define the convergence radius « and establish some fundamental concepts. These sections
extend the matrix geometric theory of QBDs, as developed by Neuts [10], to absorbing

QBDs. Throughout, a matrix is termed finite if all its entries are finite.

Assume that (X,,) is a level-independent quasi-birth-and-death process. This can be
regarded as a two-dimensional Markov chain with C = {(k,7) : k > 1,1 < j < M} and

whose transition matrix is of the block-partitioned form

1 0o 0 0 0
Ase A1 Ay O O
0 A A A O
0 0 Ay A A
0 0 0 Ay A

and so
A A O 0

A, A Ay O
ﬁ == 0 A2 A1 AO
0 0 Ay A

Here the partitioning corresponds to distinguishing subsets of states called levels. Level k
is defined by (k) = {(k,j) : 1 < j < M} for k > 1 and level 0 is the absorbing state 0.

Throughout, e denotes a column vector of ones.

The assumption that (X,,) is irreducible on C implies that the matrix A = Ay + A; + A,

is irreducible and that the matrices Ay and A, are nonzero (the converse is not true).

The equations (1.1) which define the S-invariant measures can now be written

mi(3) = B[mi(B)Ar +ma(8)As], (2.1)
my(3) = Blmp_1(8)Ag +my(B)AL + myi(B)As], k> 2, (2.2)

where the M-vector my(f3) is the restriction of m(53) to level k.

Let Nyi(3) denote the M x M matrix whose (i,7)th entry is Ny ;a,)(6) as defined
in (1.2). Define

R(B) = BAN1(B). (2.3)
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Since the process is level-independent, the transition structure above level 2 is the same
as that above level 1 and so, the entry R;;() can be interpreted as the expected total
discounted reward for visits to state (2, j) before returning to level 1, conditional on starting
in state (1,7) with a discount factor 3. In the rest of this paper, we shall consider only the
situation where 3 is greater than or equal to one. The interpretation given above also holds

when levels 1 and 2 are replaced by levels k£ and k + 1, respectively.

The following lemma follows from Theorem 2 of Bean et al. [1].

Lemma 1 The matriz R(() is finite if and only if there exists a nonnegative solution to

the matriz-quadratic equation
S =040+ SA; + 5?4, (2.4)

in which case R([3) is the minimal nonnegative solution. Here, and throughout, a minimal

solution is elementwise minimal.

A slight modification of the argument in the proof of Lemma 1.3.2 of Neuts [10] shows
that the maximal eigenvalue 7(f) of R(f3) is positive and has geometric multiplicity one. In
fact, it is possible to conclude that the maximal eigenvalue n(3) of R(/3) also has algebraic
multiplicity one. This follows from a modified version of the proof of Theorem 2.1 in
Latouche and Taylor [8].

For 0 < z <1, let x(2) be the maximal eigenvalue of the irreducible matrix
A(Z) = AU + ZAl + ZzAZ (25)

and u(z) and v(z) the corresponding left and right eigenvectors normalized so that u(z)e =
1 = u(z)v(z). Theorem 4(ii) of Bean et al. [1] shows that if § < « then the vector u(n(f3)) is
also the left eigenvector of R(/3) with eigenvalue n(3) € (0, 1]. Premultiplying equation (2.4)
by u(n(3)) we find that

n(B) = Bx(n(B))- (2.6)

The function y(z) plays a crucial role in the following analysis. Its fundamental properties
are (Neuts [10], Kingman [5]):

1 x(z) is analytic on (0,1), continuous at z = 1 and may be defined by continuity at
z =0,
2 x(0) >0, x(1) =1 and x(z) is strictly increasing, and

3 log x(e~*) is convex for s > 0.



Under the assumptions that the expected time to absorption is finite and that the class C

is irreducible and aperiodic, we have
4 x'(1-) > 1, and
5 there exists z* € (0,1) such that

X'(2)z < x(z), forall ze€(0,z"). (2.7)
It was shown in Bean et al. [1] that consequences of these properties are,

6 there exists a minimal solution, zp, in (0,1) to the equation

7 the equation
2 = Bx(2)
has two solutions z € (0,1] if 1 < # < «, one solution if § = a and no solutions if

8> a.

In Kijima [3] (see also Bean et al. [1]) the following theorem was established.

Theorem 2 The convergence radius « associated with (X,,) is given by

-1

o = U(Zo) [Al + 2ZOA2] ’U(ZO) s (28)
where zy 1s the minimal solution to
X' (2)z = x(2) (2.9)

in the interval (0,1). Moreover, zy = n(c).

Now consider the one-dimensional manifold of solutions to

2 = Bx(2), (2.10)

which is equation (2.6) with z = n(3). From the properties above it can be deduced that

this manifold has the general form given in Figure 1.

For # < «, label the two points of solution as z;(f) and z2(f3) with the understanding
that z1(8) < 29(8). For f = a we have z;(«a) = z3(a) = zp. For z € [2(1),1] let 3(z) be
the unique value of § for which equation (2.10) is obeyed.
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Figure 1: Graph of the one-dimensional manifold of solutions to equation (2.10).
Thus for z € [21(1), 1], B(2) is defined by the function

B(z) = : (2.11)

For z € [21(1), 29] write R;(2) for R(#(z)). Note that R;(z) is the minimal nonnegative
solution to equation (2.4) for § = ((z) and has maximal eigenvalue z. We have seen before
that the left eigenvector of R;(z) corresponding to the eigenvalue z is u(z). Denote by

w(z) the right eigenvector of R;(z) corresponding to the eigenvalue z.

In the next section we show that for y € (2o, 1] there is a nonnegative solution Rs(y) to

equation (2.4) for = ((y) with maximal eigenvalue .

It is very important to note that R;(2) is the matrix that arises probabilistically as defined
in equation (2.3), due to the minimality requirement. In contrast, it seems difficult to find

a physical interpretation for Ry (z).

3 THE QUASISTATIONARY DISTRIBUTIONS

In this section we show that the distribution m(3) = (m(f),...) given by
m; () = cx [Ra(22(8)) — Ri(21(8))] (3.1)
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with & a suitable nonnegative vector and ¢ a normalising constant, is a f-invariant measure,
and hence quasistationary distribution, for (X,) when # < a. We also show that m(«) =
(my(«),...) given by

m;(a) = deii [Ri(2)']

is the a-invariant measure, and hence quasistationary and limiting-conditional distribution,

for (X,).

, (3.2)

z=20

The major contribution of this paper is that this is the first presentation of a set of (-
invariant measures for all # < a. Furthermore, these distributions are the obvious matrix
analogues of the well-known scalar results for the ordinary birth-and-death process. This is

in contrast to the form of the a-invariant measure presented in Makimoto [9] and Bean et
al. [1].

3.1 CALCULATION OF THE MATRIX Ry(y)

For = € [21(1), o] define y(x) = 22(5(z)) and for x € [z, 1] define z(z) = z,(F(r)). Where
there can be no confusion, we usually write y instead of y(x) and z instead of z(z). Thus
z and y are z1(3) and z(f3), respectively, where 3 = (3(z) = ((y) and we will freely

interchange the notation when convenient.

Throughout this section, we assume that z € [2(1), 2p) and hence y = y(2) € (20, 1]

Lemma 1 The matriz

S(y) = Ri(2) + w(2)u(y) [yl — R,(2)], (3.3)

where u(y) is normalised so that

has the following spectral properties:

1. The mazimal eigenvalue of S(y) is y.

2. The left and right eigenvectors of S(y) associated with the eigenvalue y are given by

u(y) and w(z), respectively.

3. The eigenvalues of S(y) that are not equal to y and the eigenvalues of Ri(z) that
are not equal to z are identical. Moreover, the Jordan blocks associated with these

eigenvalues are also identical.

4. For eigenvalues of S(y) not equal to y, the associated left eigenvectors (and general-
ized left eigenvectors) of S(y) and Ryi(2) are identical. The right eigenvectors (and

generalized right eigenvectors) are, in general, different from those of Ri(z).
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Proof: Throughout this proof we shall rely on the definition of u(y), w(z) and S(y) and
the normalization condition for u(y) given in equation (3.4). We shall first prove the result
in the case where R;(z) is diagonalisable and then proceed to the case where R;(z) is not

diagonalisable as a little more care is required.

Consider the diagonalisable matrix R;(z). Let the M linearly independent left and right
eigenvectors be denoted by £; and r; and associated with the eigenvalues \;, 1 =1,2,..., M.

In particular, order the indices such that Ay = 2, £y = u(z) and 7y = w(z2).

The following equations are basic consequences of the definition of eigenvalues and eigen-

vectors.
LRi(z) = Nk, i=1,2,...,M, (3.5)
Ri(2)w(z) = z2w(z), (3.6)
Lw(z) = 0, i=1,2,...,M—1. (3.7)

It is now simple to show that

u(y)S(y) = w(y)Ri(z) +uy)w(=)uly) [y - Ri(2)]

by equation (3.4) and
Sw(z) = Ri(z)w(z) +w(2)uly) [yl — R(2)] w(2),
= 2w(z) +yw(z) — 2w(2),
= yw(z),

by equations (3.4) and (3.6). Hence y is an eigenvalue of S and its associated eigenvectors

are u(y) and w(z) and so part 2 is proved.

For each : =1,2,..., M — 1 it is easy to see that
6S(y) = CRi(z) + Lw(2)u(y) [yl - Ry(2)],
= LR\(2), (3.9)
= N4, (3.10)

by equations (3.7) and (3.5), respectively. Hence for each i = 1,2,.... M — 1, )\; is an
eigenvalue of S(y) and has associated left eigenvector £; and so parts 3 and 4 are proved.

Finally, the fact that y > z > ); is sufficient to show that y is the maximal eigenvalue of
S(y) and hence part 1 is proved.



Now let’s consider the non-diagonalisable case. Here there is not a full set of eigenvectors
and so we have to consider generalized eigenvectors. The major effect this has on the above
is that a generalized eigenvector may not obey equation (3.5). Part 2 follows as before, but
in the proof of part 3 the argument must stop at equation (3.9) as equation (3.10) may not
apply.

Define the M —1 x M matrix L whose rows consist of the left eigenvectors (and generalized
eigenvectors) of R;(z) corresponding to the (not necessarily distinct) eigenvalues \;, i =
1,2,...,M — 1. General theory (see for example Gantmacher [2] or Noble [11]) tells us,

subject to a permutation of rows, that

-1
L L J' 0
Ry (2) = , (3.11)
u(2) u(z) 0 =z
: J0 . :
where the matrix J = 0 is known as the Jordon-canonical form. (Recall that
z

this matrix has the eigenvalues listed on the diagonal, the super-diagonal may have some

elements that are one and all other entries are zero.)

Equations (3.8), (3.9) and (3.11) imply that

J 0
S(y) = [

0 y
L

u(y)
to directly conclude parts 3 and 4 and then also part 1.

L
. 3.12
[ u(y) ] (3:12)

is non-singular then this is sufficient

u(y)

Therefore, if we can show that the matrix

To show that [ ] is non-singular it is easiest to show that all the rows are linearly

u(y)
independent. Since L is part of a Jordan decomposition of the matrix R;(z) we know that

its rows are linearly independent. Therefore,
cL=0 iff ¢=0. (3.13)

Consequently, it just remains to show that the vector u(y) is linearly independent of the

rows of the matrix L.

Recall that y > \; for all i =1,2,..., M — 1. Consider the equation
0 = dLS(y) —ydL,

= dJ'L - ydL,

M-1

= Z dz)\l& + dz5z£z+1 - diy£i7
i=1
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M—-1 M-1

— Z dz()\l — y)& + Z di5i£i+17

=1 i=1
M—1

= Z [di(Ni — y) + di—16;-1] ;.
i=1

where £; is the ith row of L and 0; is the (4,7 + 1) entry of the matrix J' and is either 0 or

1. Further, we have d,,_1 = dy = 0.
Now equation (3.13) implies that

di(Ni —y)+d; 16, 1 =0, foreachi=1,2,...,M —1. (3.14)

Since y > \; for alli =1,2,..., M — 1 we can proceed as follows. Consider equation (3.14)
with ¢ = 1. The fact that o = 0 implies that d; = 0, which in turn (when i = 2) implies
that d; = 0. We can continue this argument until we get that dj; ; = 0. Therefore the

only vector d that is a solution to
dLS(y) = ydL, (3.15)

is the vector O.

Now, equation (3.8) says that u(y) is such that

u(y)S(y) = yu(y).
Since u(y) is non-zero, the fact that d = 0 is the only solution to equation (3.15) is sufficient

to conclude that u(y) cannot be of the from dL and hence [ ] is non-singular. This

u(y)
completes the proof. [

Lemma 2 Forall j > 1,

S(y) = Ri(2)) + w(2)u(y) [y'T — Ri(2)]. (3.16)

Proof: The proof follows a simple mathematical induction argument using the fact that
w(z) is the right eigenvector of R;(z) with eigenvalue z and the normalization condition

for u(y). n

Theorem 3 A nonnegative solution to equation (2.4) for 8 = [(y) = [(z) with mazimal

eigenvalue y is given by
Ry(y) = S(y) = Ru(2) + w(z)uly) [yI — R, (2)]. (3.17)
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Proof: First we shall prove that S(y) obeys equation (2.4). Consider the right-hand side
of equation (2.4).

B(z) [Ao + S(y) AL + S(y)* Ay
= B(2) [Ao + Ri(2)A1 + Ri(2)*A,)
+B(2)w(2)uly) [(y — Ry (2)) Ar + (y°] — Ri(2)*) Ao ,
= Ri(z)+
w(2)u(y)B(z) [(Ao +yAL +y*Az) — (Ao + Ra(2) A1 + Ra(2)"Ag)]
= Ri(2) + w(2)uly) [y] — Ri(2)]

= S(y),
since 3(z) = B(y), x(v) = y/B(y) and R;(z) obeys equation (2.4) when 3 = ((z).

Next, we shall prove that w(y)(yl — R;1(2)) is a nonnegative vector. To prove this result
we follow a very similar argument to that presented in the proofs of Theorems 2 and 4 in
Bean et al. [1], as follows. Let Wy(/5(2)) be the zero matrix and define for N > 0

Wi1(8(2)) = B(2) [Ao + Wi (B(2)) A1 + Wi (B(2))* Ae] -

It is easy to show by induction that the sequence {Wyx(3(z))} is nondecreasing. It is also

possible to show, again by induction, that

u(y)Wn(B(2)) < yuly), (3.18)

because 3(z) = ((y) and u(y) is the strictly positive left eigenvector of A(y) with eigenvalue
y/B(y). Since Theorem 2 of Bean et al. [1] shows that the sequence {Wyx(6(2))} converges

monotonically to R;(z), we can conclude that
u(y)Ri(2) < yu(y), (3.19)
and hence that S(y) > Ri(z) > 0 (where all inequalities are treated elementwise).

Therefore, S(y) is a nonnegative solution to equation (2.4) and by Lemma 1 part 1 has

maximal eigenvalue y. We take Ry(y) = S(y). u

3.2 THE QUASISTATIONARY DISTRIBUTION FOR EACH
0 <«

Theorem 4 If § < «, then for any x such that zw(z(5)) # 0, the distribution m(f3) =
(my(f),...) given by

m;(B) = cx [Ry(2(6)) — Ri(=1(8))] , (3.20)
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with ¢ a normalising constant, is a (-invariant measure, and hence quasistationary distri-

bution, for (X,). Moreover, m;((3) has the more compact form

m;(B) = ku(z2(B)) [22(8)'T — Ri(1(B))] (3.21)
with k = cxw(z(0)).

Proof: We first show that m() obeys equations (2.1) and (2.2). Consider the right-hand
side of equation (2.2) for k£ > 2.

B M 1(8) Ao + mu(B) A1 + mi1 (8)As]
= @Ry(2(5))" "6 [Ao + Ra(22(8)) A1 + Ra(2(8))” As]
—z R (21(8)" 718 [Ao + Ri(21(8) A1 + Ri(21(8))" As]
= @ (Ra(2(8))" — Ru(=2:(9))"),
= my(B),

since Rz(29(f)) and Ri(21(5)) obey equation (2.4). Consider now the right-hand side of
equation (2.1).
Bma(8) A1+ mo(B) A
= @8 [Ro(2(8)) A1 + Ra(2(8))*As] — @ [Ru(21(8)) A1 + Ri(21(8))*As]
= @f [Ag + Ra(22(0)) A1 + Ra(22(0))" As]
—a3 [Ag + Ri(21(8)) AL + Ri(21(8))*As] |
= @ (Ry(22(8)) — Ru(=1(9))),

= mu(f),
since Ry(z2(0)) and R;(21(3)) obey equation (2.4).

The only requirement on the choice of the vector « is that m;(5) should be nonnegative
for all j > 1. This raises the question of how many distinct solutions to equations (2.1)

and (2.2) of the form given in equation (3.20) there are for each value of 37

It follows from equation (3.19) that Rg(29)? — Ry(21)’ which can also be written as
w(z1)u(z2) (z%[ - R{(zl)) is nonnegative for all j > 1. It is also a rank one matrix. There-
fore, there is only one solution of the form (3.20) for each value of 3. Any choice of vector
@ such that xw(z(3)) # 0 will realise this S-invariant measure on appropriate normalisa-
tion. Equation (3.20) reduces to equation (3.21) by applying equation (3.16) and letting
k = cxw(z(0)). u
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3.3 CALCULATION OF THE DERIVATIVE OF THE MATRIX
Rl (Z)

When = «a, we cannot use the form of the f-invariant measures that we found earlier

because zi(a) = zy(a) and so Ry(zs) is identical to Ri(z;). In order to determine the

a-invariant measure, proposed in equation (3.2), we need to calculate the derivative of
Rl(Z)

Lemma 5 The derivative of Ri(2) is a solution in T to

#'(2)
p(z)

where §'(z) = X(2) — 2x'(2)

Proof: First, §(z) is defined in equation (2.11) as §(z) = ﬁ Therefore, the form of

3'(z) follows trivially. Also, R;(z) is defined to be the minimal nonnegative solution to
S=p[Ao+ SA + S%A]. (3.23)

Differentiating this equation with respect to z, while remembering the functional depen-

dencies, completes the proof of the lemma. [

Throughout the remainder of this section we assume that z = z5. Recall that 3(z) = «
and that z, is defined as the minimal solution to x(z9) = 20X'(20). Hence 3'(z) = 0.

Therefore, equation (3.22) can be rewritten when z = z, as

a [TAl + (TR (20) + Rl(zo)T)AQ] ~T. (3.24)

Lemma 6 A solution to equation (3.24) is given by
T = w(z) (u(z0) +u'(20) (20 — Ry (20))), (3.25)

where u'(zy) is the unique solution to

1 1
b ZSAQ + Z()(A1 — a]) + A0:| = —’U,(ZO) |:2ZOA2 + (Al - a]) (326)

subject to be = 0.

Proof: The existence of the vector u'(zp) is shown in Lemma 8 of Bean et al. [1]. To show
that 7" obeys equation (3.24) we need to use equations (2.4) and (3.26) and the fact that

u(zp) and w(zg) are the left and right eigenvectors of R;(zp) with eigenvalue z, as follows.
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Consider the left-hand side of equation (3.24) with 7" given by equation (3.25).
a|TA; + (TRy(20) + Ri(20)T) 4

= aw(z) (u(z) +u'(20) (20 — Ry (20))) A1 +
aw(20) (w(20) +u'(20) (20] — Ry (20))) Ri(20)As +
a1 (z0)w(z0) (w(z0) + u'(20) (20l — Ry (20))) As,

= aw(z)u'(2) [ZOAl + 22 A5 — Ry(20) A1 — Rl(ZU)ZAQ] +
aw(zo)u(z) [A1 + 220 As],

= aw(z) {u'(20) [2§As + 20A1 + Ao| + u(z0) 22042 + A1]} +
—ow(z)u'(20) [Ao + Ri(z0) AL + Ri(20)° 4]

= w(z) (u(z) + 20u'(20)) — w(z0)w'(20) 7y (20),

—- T

which is the right-hand side and so the proof is complete. [ ]

The matrix 7" is a solution to the equation that the derivative R (zp) must obey. However,
we have not actually shown that 7' = R/ (zp). Since the fact that T" obeys equation (3.24)

is sufficient for our purposes, we shall abuse notation somewhat and write 7' = R/ (o).

3.4 THE QUASISTATIONARY DISTRIBUTION FOR =«

Theorem 7 For any x such that xR (zy) # 0, the distribution m(a) = (my(«),...) given
by

m;(a) = ca:dii R (2)]

with ¢ a normalising constant, is the a-invariant measure, and hence quasistationary and

: (3.27)

z2=20

limiting-conditional distribution, for (X,). Moreover, m;(«) has the more explicit form
m]'(&) =k (zéu'(zo) + jzg_l’U,(Z()) - ’U,,(Z())Rl(Z())j) s (328)

with k = cxw(zp).

Proof: Note that by the product rule

% [Rl (Z)J] 2=z = ZR1(Zo)e_lRll(ZO)Rl(Zo)j_e. (329)



To prove that m(«) is an a-invariant measure, we simply need to show that it obeys
equation (2.1) and (2.2) when § = « and is nonnegative. Consider the right-hand side of
equation (2.2) for k > 2.

a [my_i(a)Ag + mi(a) A + myi(a) Ay

k—1
= X Z R1 (Zg)e_lRll (Z())R1 (Zg)k_l_ea [A() + R1 (ZO)Al + R1 (20)2A2]

(=1
—CIZRl(ZO)k_ICY [Rll (ZO)Al + RII(Z())RI (ZO)A2 + Rl(Zo)Rll (ZO)AQ] 5

k—1

= @) Ri(2)" "Ri(20)Ri(20)" " + 2 R1(20)" " R) (20),
/=1

k

= X Z R1 (ZO)K_IRII (Z())R1 (Z())k_e,
/=1

= mk(a),

since R;(zp) obeys equation (2.4) and Rf(z) obeys equation (3.24). Consider now the
right-hand side of equation (2.1).

Bma () Ar + () Ao
= @ [R;(20) A1 + Ry (20) Ry (20) Az + Ri(20) Ry (20) 4]
= Ri(=),
= my(a),

again since R} (zy) obeys equation (3.24).

It is easy to show that R (z) is a rank one matrix. Therefore, there is a unique solution
to equations (2.1) and (2.2) of the form given in equation (3.27). This solution will be
realised for all & such that R (z) # 0.

We now show that equation (3.27) reduces to equation (3.28). Simple substitution is
sufficient to complete the proof, on recalling that w(z) and w(zp) are the left and right

eigenvectors of Ry(zp) associated with the eigenvalue 2y, as follows.



= cx ZRI(ZO)E_IUJ(ZO) (u(zo) +u/(2) (ZOI — Rl(zo))) Ri(z)" 7,

J

= cx Z 20w () (u(zo) + ' (20) (20[ - R, (20))) Ri(z) ",

=1
J
= cx Z 257 w ()

(=1

X (U(ZO)R1 (ZU)J'—K + u’(zo)zoRl(zo)j—Z _ ’U:’(ZO)Rl(Zo)j_eH) :

= cxw(z) (ju(zo)zél +u'(20) ) [ Ri(20) " — zglRl(ZU)jH1]> :

(=1

=k (julan)a ()7 — ' (0) Ra(0))

by letting k = cxw(2).

Part (iii) of the proof of Theorem 9 of Bean et al. [1] shows that the expression for m;(«)
given in equation (3.28) is nonnegative for all j > 1. Hence, the expression for m,(«) given

in equation (3.27) must also be nonnegative for all j > 1.

Therefore, the solution to equations (2.1) and (2.2) proposed in equation (3.27) is the
unique a-invariant measure, and hence quasistationary and limiting-conditional distribu-
tion, for (X,,). u

4 COMPUTATION OF THE DISTRIBUTIONS

In this section we briefly indicate the steps involved in the computation of the quasista-
tionary distributions. We assume that « and z; have already been computed according to

Theorem 2, for more computational details see Section 6(i) of Bean et al. [1].

4.1 THE CASE 3 < a

In this situation we need to calculate m;(3) according to equation (3.20). That is, we need
to find R;(21(3)) and Ry(z2(0)). First we need to determine both z; (/) and 29(3). These
can be evaluated by performing bisection searches on the intervals [z;(1), zp] and [z, 1],
respectively, to determine the two solutions to x(z) = % (this is a similar procedure to
that of finding 2y and «). At the same time it is most efficient also to generate w(z2(3)).

Then we must find R;(21(5)). This can be evaluated using the algorithm explained in

17



Theorem 10 of Bean et al. [1]. It is then easy to calculate w(z1(3)) by elementary methods
and Ry(z3(3)) using Theorem 3. Finally, Theorem 4 can be applied to generate the required
quasistationary distribution, where it is computationally easier to use equation (3.21) rather
than equation (3.20).

4.2 THE CASE 8 =«

In this situation we need to calculate m;(«) according to equation (3.27). That is, we
need to find Ry(z9) and R/ (zp). We assume that zy and u(zy) have already been evaluated
at the same time as a. Again, Ri(zp) can be evaluated using the algorithm explained in
Theorem 10 of Bean et al. [1]. It is then simple to calculate u/(2y) as in equation (3.26)
(more details are given in Section 6(ii) of Bean et al. [1]) and R)(zp) using Lemma 6.
Finally, Theorem 7 can be applied to generate the required quasistationary (and in fact
limiting-conditional) distribution. It happens that this is not the best numerical method
for evaluating the limiting-conditional distribution. From a computational point of view, it
is better to use the explicit representation given in equation (3.28) instead of that given in
equation (3.27).
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