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ABSTRACT

For evanescent Markov processes with a single transient communicating class, it
is often of interest to examine the stationary probabilities that the process resides
in the various transient states, conditional on absorption not having taken place.
Such distributions are known as quasistationary distributions. In this paper we
consider the determination of all the quasistationary distributions of a general ho-
mogeneous quasi-birth-and-death process (QBD). These distributions are shown to
have a form analogous to the quasistationary distributions exhibited by birth-and-
death processes. We discuss methods for the computation of these quasistationary
distributions.

1 INTRODUCTION

Consider a discrete-time Markov chain (X,;n € Zy) on a countable state space
S = {0,1,...} with transition matrix P. Assume (X, ) has an absorbing state 0
and an irreducible and aperiodic communicating class C = S\ {0}. We shall assume
that absorption is certain from one (and then all) states ¢ € C. Let T denote the
time until absorption of the process.

For many evanescent Markov processes, T' is usually very large. However, over
any reasonable period of time, the process appears to reach an equilibrium. A
quasistationary distribution, #, is a stationary distribution of the process condi-
tioned to stay in the recurrent class; that is, if P(Xy =j) =7, j € C, then

P(X, =J|T >n)=mr, jec,

for all n > 1. In other words, conditional on the chain being in C the state probab-
ilities do not vary with time.
A nontrivial, nonnegative row vector m(/3) that satisfies

m(3) = pm(3)P (1.1)



is called a f-invariant measure. Here, and throughout, P denotes the restriction of
P to C. It is elementary to show that o is a quasistationary distribution if and only
if, for some 3 > 1, it is a J-invariant measure, in which case
BH=1-=> mpio,
1eC
represents the probability (under the quasistationary distribution) that the process
remains within the recurrent class at the next time step.

For each Markov process there is a maximum value of § for which a quasist-
ationary distribution can exist. This critical parameter is called the convergence
radius and is denoted by «. In certain circumstances an a-invariant measure may
also have a limiting-conditional interpretation: that is,

lim P(X, = j|Xo=0.T>n)=m;,  jEC,

no matter what the initial state 2.

The convergence radius can be rigorously characterized as follows. For z € R,

let N;;(z) be defined by
Nij(z) = Zan'(jn) ; (1.2)
n=0

where ]32(]”) is the (¢,7)th entry of P™. Theorem 6.1 of Seneta (1981) states that,
for a given value of z, either N;;(z) is finite for all (¢,7) or N;;(2) is infinite for all

(7,7). The convergence radius associated with P is defined as
a =sup {z : N;;(2) is finite} .

There are very few substochastic chains for which a full quasistationary ana-
lysis is available. Historical exceptions were finite-state processes, the Galton-
Watson branching process, simple birth-and-death chains and the work of Kypri-
anou (1972a) on GI/M/1 queues (see also Kyprianou (1972b) for an analysis under
conditions of heavy traffic).

Recently, a notable advance was made by Kijima (1993) who gave an algebraic
equation for the convergence radius of PH/PH/1 queues (in fact, more generally,
for processes of M/G/1 and GI/M/1 type). In the queueing context considered in
Kijima (1993), this equation can be solved by use of the Laplace-Stieltjes trans-
form of the interarrival and service time distributions. Kijima also gave the form of
the quasistationary distribution for the special cases of the M/PH/1 and PH/M/1
queues. This work was extended by Makimoto (1993) who gave an explicit rep-
resentation of the quasistationary distribution for PH/PH/c queues in terms of
solutions to a matrix equation. Makimoto did not, however, discuss methods of
solution for this equation in the general case. For a nice survey of this area see
Kijima and Makimoto (1995).

In Bean et al. (1995) the results of Kijima (1993) and Makimoto (1993) were
extended by examining the limiting-conditional behaviour of general quasi-birth-

and-death processes (QBDs), which includes the PH/PH/c queues as a subclass.



An algorithm for the explicit numerical computation of the convergence radius, «,
and the limiting-conditional distribution was also presented.

We extend the results of Bean et al. (1995) by finding all the quasistationary dis-
tributions, not just the limiting-conditional distribution. In Bean et al. (1995) the
limiting-conditional distribution is written in such a way that it is not an obvious
generalization of the limiting-conditional distribution for a birth-and-death process.
In contrast, here we present all the quasistationary distributions as natural exten-
sions of the quasistationary distributions for ordinary birth-and-death processes.
We also discuss methods for their computation.

The results of this paper can also be applied to continuous-time QBDs. For
details, see Bean et al. (1995).

2 AssorBiNng QBDs anxDp THE CoNVERGENCE RADIUS

In this section we summarise the results of Sections 3 and 4 of Bean et al. (1995)
in order to define the convergence radius a and establish some fundamental con-
cepts. These sections extend the matrix geometric theory of QBDs, as developed
by Neuts (1981), to absorbing QBDs. Throughout, a matrix is termed finite (re-
spectively infinite) if all its entries are finite (infinite).

Assume that (X,,) is a quasi-birth-and-death process. This can be regarded as
a two-dimensional Markov chain with C = {(k,j): k > 1,1 < j < M} and whose

transition matrices are of the block-partitioned form

1 0 0 0 0
Ay Ag 0 0

A26 Al AO 0 0
Ay A Ay O

0 Ay, A Ay 0 -

P = and P = 0 A2 Al AO
0 0 Ay, Ay Ag 00 A A
0 0 0 A A .

Here the partitioning corresponds to distinguishing subsets of states called levels.
Level k is defined by (k) = {(k,7) : 1 <5 < M} for k > 1 and level 0 is the
absorbing state 0. Throughout, e denotes a column vector of ones.

The equations (1.1) which define the f-invariant measures can now be written

my(3) = Blma(B)Ar +my(B)As], (2.1)
mi(B) = Bme_1(B)Ao + mu(B) A1 + mup(B)Az], k=2, (2.2)

where the M-vector my(3) is the restriction of m(f3) to level k.
Let Ni1(3) denote the M x M matrix whose (¢, 7)th entry is N )q,;)(3) as
defined in (1.2). Define

R(3) = BANu(B). (2.3)
The entry R;;(/) can be interpreted as the expected total discounted reward for
visits to state (2,j) before returning to level 1, conditional on starting in state



(1,4) with a discount factor 3. In the rest of this paper, we shall consider only the
situation where [ is greater than or equal to one. Since (X,,) is homogeneous on all
levels greater than 1, the interpretation given above also holds when levels 1 and 2
are replaced by levels k and k& + 1, respectively.

The following lemma can be shown in a similar way to Lemmas 1.2.2 and 1.2.3

in Neuts (1981).

Lemma 1 [f the matriz R(3) is finite then it is the minimal nonnegative solution

to the matriz-quadratic equation
S =B Ao+ SA + 524, . (2.4)

Consider the solutions of equation (2.4). For 0 < z <1, let x(z) be the maximal

eigenvalue of the matrix

A(Z) = AO + ZAl + 22A2 (25)

and u(z) and v(z) the corresponding left and right eigenvectors normalized so that
u(z)e =1=u(z)v(z).

By Theorem 1.3.2 of Neuts (1981), the condition that absorption is certain is
equivalent to the condition that x'(17) > 1 and x(0) > 0.

Let n(/3) be the maximal eigenvalue of R(/3); note that w(n(/3)) is the associated
left eigenvector and we denote by w(n(/3)) the associated right eigenvector. In
Kijima (1993) (see also Bean et al. (1995)) the following theorem was established.

Theorem 2 The convergence radius  associated with (X,,) is given by

-1

a = |u(z) [A1 + 220A42] v(20)| (2.6)

where n(a) = z is the unique solution to

X'(2)z = x(2) (2.7)

in the interval (0,1), and w(z),v(zo) are the Perron-Frobenius left and right eigen-

vectors of A(zg) respectively.

3 TuaeE ONE-DIMENSIONAL MANIFOLD

In this section we change emphasis from the parameter J to z. In order to do this,

we investigate the one-dimensional manifold of solutions to

z = Bx(z), (3.1)

which is the equation relating equations (2.4) and (2.5). Figure 1 shows the form

of the manifold in the general case.
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Figure 1: Graph of the one-dimensional manifold of solutions to equation (3.1)

For B < a, there are always two points of solution and we label these as z1(/3)
and z2() with the understanding that z;(-) < z2(-). Note that z1(a) = z3(«) = zo.
For any value of z € [z1(1),1] it is possible to define a unique value of /3, say

B(z), for which equation (3.1) is obeyed. Thus 3(z) is defined by the function

(3.2)

Having defined 3(z) we can now define R(/3(z)), via equation (2.3), for all z €
[21(1), z0] and we henceforth write this as Ri(z). Note that R;(z) is the minimal
nonnegative solution to equation (2.4) for # = (z) and has maximal eigenvalue
z. In the next section we show that for y € (zo, 1] there is a nonnegative solution
Ry(y) to equation (2.4) for 5 = B(y) with maximal eigenvalue y.

It is very important to note that Ry(z) is the matrix that arises probabilistically
as defined in equation (2.3), due to the minimality requirement. In contrast, Rs(z)

has no such interpretation.

4 TuE QUASISTATIONARY DISTRIBUTIONS
In this section we show that the distribution m(3) = (my(3),...) given by

m;(8) = c& [Ry(22(B8)) — Ru(=1(B))] . (4.1)

with ¢ a normalising constant, is a #-invariant measure, and hence quasistationary
distribution, for (X,,) when 8 < a. We also show that m(a) = (my(«a),...) given

by ;
m;(a) = ca— [Ri(2)] _ (4.2)

dZ 2=2Z0



with ¢ a normalising constant, is the a-invariant measure, and hence quasistationary
and limiting-conditional distribution, for (X,,).

The major contribution of this paper is that this is the first presentation of the
complete set of B-invariant measures. Further, these distributions are the obvious
matrix analogues of the well-known scalar results for the ordinary birth-and-death

process. This is in contrast to the form of the a-invariant measure presented in

Makimoto (1993) and Bean et al. (1995).

4.1 CALCULATION OF THE MATRIX Rj(y)
First define y(z) = z2(8(x)) for « € [#1(1), 20] and z(x) = 2 (f(z)) for = € [z, 1].

For simplicity, we usually write y instead of y(x) and z instead of z(x), where
there can be no confusion. Thus z and y are z1(3) and z3(3), respectively, where
p = p(z) = (y) and we will freely interchange the notation when convenient.

Throughout this section, we assume that z € [z1(1),z9) and hence y = y(z) €
(207 1]'

Lemma 3 The matrix
S(y) = Ra(z) + w(=)uly) [yl = Ry (2)] (4.3)
where w(y) is normalised so that w(y)w(z) = 1, has the following spectral properties:

1. The maximal eigenvalue of S(y) isy.

2. The left and right eigenvectors of S(y) associated with the eigenvalue y are
given by uw(y) and w(z), respectively.

3. Otherwise the eigenvalues of S(y) and Ri(z) are identical.

4. For eigenvalues of S(y) not equal to y, the associated left eigenvectors of S(y)
and R1(z) are identical. The right eigenvectors are, in general, different from

those of Ri(z).

Proof: All these properties are simple consequences of the definition of u(y), w(z)
and S(y) on recalling the normalization condition for wu(y). ]

Lemma 4 For all j > 1,
Siy) = Ri(2) + w(2)u(y) [y'T — Bi(2)] . (4.4)

Proof: The proof follows a simple mathematical induction argument using the
spectral properties of S(y) given in Lemma 3. [



Theorem 5 A nonnegative solution to equation (2.4) for 5 = B(y) = B(z) with
maximal eigenvalue y is given by

Raly) = S(y) = Ralz) + w(=)uly) [yl — By(2)] . (4.5)

Proof: First we shall prove that S(y) obeys equation (2.4). Consider the right-hand

side of equation (2.4).

B(2) [Ao + S(y)Ar + 5%(y) Ao

= B(2) [Ao+ Ri(2) A1 + R} (2)A)]

+B()w(=)uly) [(y] = Ry(2)) A+ (v°T = RY(2)) Ao,

(2) + w(=)u(y)B(z) [(Ao+ y A1 + 57 4s) — (Ao + Ba(2) A1 + Bi(2)4;)]
(2 (=)uly) [yl = By(2)],

= S),

since 8(z) = B(y), x(y) = y/B(y) and Ry(z) obeys equation (2.4) when g = 3(z).
Next, we shall prove that w(y)(yl— Ri(z)) is a nonnegative vector. To prove this

Ri(z)+w (
= Ri(z)+w (

result we follow a very similar argument to that presented in the proof of Theorem 5
in Bean et al. (1995), as follows. Let Ry be the zero matrix and define

Ry = B(2) [Ao + R, A+ RiAz] .

[t is easy to show by induction that the sequence {R,} is nondecreasing. It is also

possible to show, again by induction, that

u(y)R, < yu(y), (4.6)

because 3(z) = B(y) and u(y) is the strictly positive left eigenvector of A(y) with
eigenvalue y/3(y). Since Theorem 5 of Bean et al. (1995) shows that the sequence

{R,} converges monotonically to Ry(z), we can conclude that

u(y)Ri(z) < yuly), (4.7)

and hence that S(y) > Ri(z) > 0 (where all inequalities are treated elementwise).
Therefore, S(y) is a nonnegative solution to equation (2.4) with maximal eigen-

value y. We take Ry(y) = S(y). [ |

4.2 THE QUASISTATIONARY DISTRIBUTION FOR EACH [ < o

Theorem 6 [f 3 < «, then for any @ such that xw(z1(3)) # 0, the distribution
m(8) = (ma(B), ...) given by

m;(8) = c& [Ry(22(B8)) — Ru(=1(B))] . (4.8)



with ¢ a normalising constant, is a B-invariant measure, and hence quasistationary
distribution, for (X,). Moreover, m;(3) has the more compact form

m;(B) = ku(=(B)) [22(8) 1 — Ri(2(8))] (4.9)
with k = cew(z1(F)).

Proof: We first show that m(j3) obeys equations (2.1) and (2.2). Consider the
right-hand side of equation (2.2) for k > 2.

Bl 1 (8) Ao + my(B) AL + my i (5) Ag
= @ Ry(2(8))" "8 [Ao + Ra(22(8)) A1 + R3(22(5)) Ao

—@ Ry (21(8)) 7B [Ao + Ri(21(8)) Ar + B3 (21(8)) As] |

= x (32(22(5))k - Rl(zl(ﬁ))k) )
= mu(P),

since Ry(z2) and Ry(z1) obey equation (2.4). Consider now the right-hand side of
equation (2.1).

BIma(B)Ar + ma(f)Ag]
= @8 [Ra((8) A1 + B3 (2(8)) 4] — @ [Ra(21(8)) A1 + B} (1(5)) Ao
= @f [Ao+ Ra(2(B)) A1 + R3(2(8)) Ao
—@ 3 [Ao + Bi(=1(8) A + Ri(=1(8) 4y

= (Rz(zg(ﬂ)) - 31(21(5))) )
= ml(ﬂ)v

since Ry(z2) and Ry(z1) obey equation (2.4).
The only requirement on the choice of the vector @ is that m;(3) should be
nonnegative for all 7 > 1. This raises the question of how many distinct solutions

to equations (2.1) and (2.2) of the form in given in equation (4.8) there are for each

value of 37

It follows from equation (4.7) that Ry(29) — Ri(21)) = w(z1)u(22) (Z%] — R{(Zl))
is nonnegative for all j > 1. It is also a rank one matrix. Therefore, there is only one
such solution for each value of 3. Any choice of vector @ such that @w(z:(3)) # 0
will realise this f-invariant measure on appropriate normalisation. Equation (4.8)
reduces to equation (4.9) by letting k = cxw(z1(3)). [

4.3 CALCULATION OF THE DERIVATIVE OF THE MATRIX R;(z)

When 3 = «, we cannot use the form of the f-invariant measures that we found
earlier because z1(a) = z3(a) and so Ra(zs) is identical to Ri(z1). In order to
determine the a-invariant measure, proposed in equation (4.2), we need to calculate



the derivative of Ry(z). In fact we do not necessarily calculate the derivative, instead
we find a solution to the equation that the derivative must obey, which is sufficient
for our purposes. Therefore, we shall abuse the notation and label this solution as

the derivative.

Lemma 7 The derivative of Ry(z) must obey

#'(z)
p(z)
where 3'(2) = X(z) — 2x(z) ~ ZX/(Z).
Proof: First, 5(z) is defined in equation (3.2) as f(z) = ﬁ Therefore, the

form of 3'(z) follows trivially. Also, Ry(z) is defined to be the minimal nonnegative

Ri(2) + B(2)|T AL+ (TRi(2) + Ri(2)T)As| =T =0, (4.10)

solution to

S =B Ao+ SA + 524, . (4.11)

Differentiating this equation with respect to z, while remembering the functional
dependencies, completes the proof of the lemma. [

Throughout the remainder of this section we assume that § = «. Recall that
zo = z1(a) = z(a) and that 3(z9) = a. Note that « is defined by the fact that
X(20) = z0X'(20) and hence that 3'(z,) = 0.

Lemma 8 A solution to equation (4.10) when z = zy is given by
T = w(zo) (w(z0) + w'(20) (2] — Ry(20))) . (4.12)

where w'(zg) is the solution to
1 1
subject to be = 0.

Proof: The existence of the vector w'(zo) is shown in Lemma 9 of Bean et al. (1995).
It is a simple matter to substitute the expression for T' into equation (4.10) to
complete the proof. [

Henceforth, we shall label T" as R/ (zo), whilst being aware that this may be an
abuse of notation.

4.4 THE QUASISTATIONARY DISTRIBUTION FOR [} = «

Theorem 9 For any x such that ®R|(zy) # 0, the distribution m(«a) = (my (), .. .)

given by ;
m;(a) = ca— [Ri(2)] _ (4.14)

dZ 2=2Z0



with ¢ a normalising constant, is the a-invariant measure, and hence quasistationary
and limiting-conditional distribution, for (X,). Moreover, m;(a) has the more

explicit form
m(a) =k (0w (z0) + j = u(z0) — w/(20) Ra(a)) | (4.15)
with k = cew(z).

Proof: Note that

d

L [Riep] = 3 R o) R o B (o). (1.16)

7=
0 =1

To prove that m(«a) is an a-invariant measure, we simply need to show that
it obeys equation (2.1) and (2.2) when § = «a. Consider the right-hand side of
equation (2.2) for k > 2.

o i () Ao + i) As + () A
= x EZ_:_I Ry~ (20) ) (20) RE ' (20)a [ Ao + Ru(20) Ay + B2 (20) Ao
e (20)" o [ o)+ i (20) iy (20) s+ () ) ]
@Y R B ) B ) £ 2 (0) R ),

=1

B w;Rf_l(ZO)RQ(ZO)RIfJ(ZO)v
= mk(Oé),

by the definition of Ry(zg) and R{(zo). Consider now the right-hand side of equa-
tion (2.1).

Blmi(a)Ar + ma(a)A;] = =5 [RQ(ZO)Al + R (20) £, (20) Az + Rl(ZO)Rﬁ(ZO)Az] ;
= lel(ZO)v

= my(a),

again by the definition of R} (zo).

It is easy to show that R/ (zo) is a rank one matrix. Therefore, there is a unique
solution to equations (2.1) and (2.2) of the form in given in equation (4.14). This
solution will be realised for all & such that @ R}(z¢) # 0.

We now show that equation (4.14) reduces to equation (4.15). Simple substitu-
tion is sufficient to complete the proof on recalling that w(zo) and w(zy) are the left
and right eigenvectors of Ry(z), respectively, associated with the eigenvalue z.
m;(a) = cxl [Ra(zy]

dZ 2=2Z0



J ,
= ca Y R (20) Ry (20) R (20),

=1

= cx zjj Ri™ (z0)w(z0) (w(z0) + w'(20) (20] — Ri(20))) B~ (20).

=1

— ca ; 267 w(z0) (w(z0) + w'(20) (20] — Ry(20))) B (20),

= cx ZJ: zo w(z0) (“(ZO)R{_K(ZO) + ' (20)20 R (20) — “/(ZO)R{_HI(ZO)) ;

=1

= caw(z) (ju(ZO)Zé_l +u'(20) ZJ: [253{4(20) - Zg_lR{JH(ZO)]) ;

=k (ju(z0)2 " +w/(20)2) — w/(20) R(0)) ,

by letting k = cew(z).

Theorem 10 of Bean et al. (1995) shows that the expression for m;(«) given in
equation (4.15) is nonnegative for all j > 1. Hence, the expression for m;(«) given
in equation (4.14) must also be nonnegative for all j > 1.

Therefore, the solution to equations (2.1) and (2.2) proposed in equation (4.14) is
the unique a-invariant measure, and hence quasistationary and limiting-conditional
distribution, for (X,). ]

5 COMPUTATION OF THE DISTRIBUTIONS

In this section we briefly indicate the steps involved in the computation of the
quasistationary distributions. We assume that « and zy have already been computed

according to Theorem 2, for more computational details see Section 6(i) of Bean et

al. (1995).

51 Ifp<a

In this situation we need to calculate m;(3) according to equation (4.8). That is,
we need to find Ry(z1(8)) and Ry(z2(/5)). First we need to determine both z;(3)
and z(/). These can be evaluated by performing bisection searches on the intervals

[21(1), z0] and [z, 1], respectively, to determine the two solutions to x(z) = %

(this is a similar procedure to that of finding zo and «). At the same time it is
most efficient also to generate u(z2(/3)). Then we must find Rq(z1(3)). This can
be evaluated using the algorithm explained in Theorem 11 of Bean et al. (1995).
It is then easy to calculate w(z1(f3)) by elementary methods and Ry(z2(3)) using
Theorem 5. Finally, Theorem 6 can be applied to generate the required quasista-
tionary distribution, where it is computationally easier to use equation (4.9) rather
than equation (4.8).



52 Iff=a

In this situation we need to calculate m;(«) according to equation (4.14). That is,
we need to find Ry(zg) and R/ (zp). We assume that zo has already been evaluated at
the same time as a. Again, Ry(zo) can be evaluated using the algorithm explained
in Theorem 11 of Bean et al. (1995). It is then easy to calculate u(zy) by elementary
methods, u'(zg) as in equation (4.13) (more details are given in Section 6(ii) of Bean
et al. (1995)) and Rj(zo) using Lemma 8. Finally, Theorem 9 can be applied to
generate the required quasistationary (and in fact limiting-conditional) distribution.
In fact this is not the best numerical method for evaluating the limiting-conditional
distribution. From a computational point of view, it is better to use the explicit

representation given in equation (4.15) instead of that given in equation (4.14).
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