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ABSTRACT: We consider the problem of how best
to assign resources in a packet switching network
with generally distributed transmission times so as to
minimize the average delay under a cost constraint.
For such networks there are typically no analyti-
cal formulae for the delay distributions. Thus, we
shall approach the optimal allocation problem using
an approximation technique, namely the residual-life
approzimation [9]. This work extends previous work
of author [10] and generalizes results of Kleinrock [6],
who studied networks with exponentially distributed
service times.

1. INTRODUCTION

In contrast to circuit switched networks, where
one or more circuits are held simultaneously on
several links connecting source and destination
nodes, only one link is used at any given time by
transmissions in a message or packet switched
network; transmissions are received in their en-
tirety at a given node before being transmitted
along the next link in their path through the net-
work. If the link is busy, packets are stored in
a buffer until the link becomes available for use:
hence the term store-forward. Thus, the total
delay W is the sum of the individual delays ex-
perienced en route. We shall consider the prob-
lem of how best to allocate link capacities so as
to minimize E(W), the expected total delay.

2. THE MODEL

Suppose that there are N switching nodes, la-
belled n = 1,2,..., N, and J communications
links, labelled j = 1,2,...,J. We shall as-
sume that all the links are perfectly reliable
and not subject to noise, so that transmission
times are determined by message length. We
shall also suppose that the time taken to switch,
buffer, and (if necessary) re-assemble and ac-
knowledge, is negligible compared with the trans-
mission times. Traffic entering the network from
external sources is assumed to be Poisson, and

that which originates from node m and is des-
tined for node n is offered at rate v,,,. Mes-
sage lengths are assumed to be mutually inde-
pendent and arbitrarily distributed with com-
mon mean g~ ! (bits, say). We shall assume that
each link operates under the the usual first-come-
first-served (FCFS) discipline and that a total
effort (or capacity) of ¢; (bits per second) is as-
signed to link j. (We shall indicate later how our
results extend to deal with other disciplines.)

We shall allow for two possible routing pro-
cedures, that of fized routing, where there is a
unique route specified for each origin-destination
pair (m,n), and random alternative routing,
where one of a number of possible paths is cho-
sen at random. (We do not allow for adaptive
or dynamic routing, where routing decisions are
made on the basis of the observed traffic flow.)

For fixed routing we define R(m, n) to be the
(unique) collection of links used by a message
emanating from node m and destined for node n.
In particular, let

R(m,n) = {rmn(1), .. rmn(Smn)}

where s, is the number of links used by
that message and rp,(s) is the link used at
stage s along its route (note that rpn(s), s =
1,2,..., Smn, are distinct).

It is perhaps surprising that random alter-
native routing can be accommodated within the
framework of fixed routing (see, for example,
Kelly [4], Exercise 3.1.2). If there are a number of
alternative routes for a given origin-destination
pair (m, n), then one simply provides a finer clas-
sification for messages using these routes. We
label the alternative routes as (m,n,d), i =
1,2,...,N(m,n), where N(m,n) is the number
of alternatives for origin-destination pair (m, n),
and we replace R(m,n) by

R(m, 7, l) = {Tmni(l), ceey rmni(smni)} )

for i = 1,2,..., N(m,n), where now rpp;(s) is
the link used at stage s along alternative route 4



and Spyp; is the number of stages. We then re-

place Vmn by Vmni = VmnQmni, where qmni is
the probability that alternative route 4 is cho-
N(m,n)

sen. Clearly vy, = Zi:l Vmni, and so the
effect is to thin the Poisson stream of messages
of ‘type’ (m, n) into a collection of independent
Poisson streams, one for each type (m,n,7). We
should think of messages as being identified by
their type, whether this be simply (m,n), for
fixed routing, or the finer classification (m,n, 1),
for alternative routing. For convenience let us
denote by T the set of all types, and suppose
that, for each ¢ in 7, messages of type ¢ arrive
according to a Poisson stream with rate v, and
traverse the route

R(t) = {r:(1),..., ()},

a collection of s; distinct links. Having estab-
lished this new nomenclature, that of type, the
network can be perceived as a network of queues
with customers of different types (Kelly [3]) with
the queues representing the links and the cus-
tomers representing the messages. Thus, in par-
ticular, if message lengths have an exponential
distribution, the model is analytically tractable:
in equilibrium, the links behave independently:
indeed as if they were isolated, each with inde-
pendent streams of Poisson offered traffic (inde-
pendent among types). For example, if we let

e
aj(t’s):{ut, if ro(s) = J,

0, otherwise,

so that the arrival rate at link j is given by

aj = Zi:aj(t,s)

teT s=1

and the demand (in bits per second) by a; =
«j/u, then, provided the system is stable (a; <
¢; for each j), the expected number of messages
at link j (whose transmission is incomplete) is
given by

a;

¢; —aj

E(n;) = (1)

and the expected delay by
1 a; 1
EW;)= — J ) = .
(3) @ (@—aj poj — oy

APPROXIMATION TECHNIQUES

In order to make satisfactory progress in cases
where message lengths have an arbitrary distri-
bution, we shall need to make one further as-
sumption. It is similar to the celebrated indepen-
dence assumption of Kleinrock [6]. We shall sup-
pose that successive messages requesting trans-
mission along any given link have lengths which

are independent and identically distributed, and
that message lengths at different links are inde-
pendent. Clearly a message of a given type main-
tains its length as it passes through the network.
However, numerous simulation results (see, for
example, Kleinrock [6]) suggest that, even so,
the network behaves as if successive message
lengths at a given node are independent. This
phenomenon can be explained by observing that
the arrival process at a given node is the result
of the superposition of a generally large number
of streams, and the approximation can then be
justified on the basis of limit theorems concern-
ing the superposition of marked point processes
(see Brown and Pollett [7] and the references con-
tained therein). The assumption that indepen-
dence is apparent at the links themselves can be
justified on the basis of the corresponding results
on thinning of marked point processes (see, for
example, Brown [1]). Kleinrock’s independence
assumption differs from ours in that the message-
length distribution at a given link j is assumed to
be exponential with common mean p~!, a natu-
ral consequence of the usual teletraffic modelling
assumption that the lengths of messages arriv-
ing from outside the network are independent
and identically distributed exponential random
variables. However, although the exponential as-
sumption is usually valid in circuit switched net-
works, we should not expect it to be appropriate
in the present context of message/packet switch-
ing, since packets are of similar length. Thus, it
is more realistic to assume, as we do here, that
message lengths are arbitrarily distributed. In
order that this be reflected in our independence
assumption, we shall allow successive messages
requesting transmission along a given link j to
be arbitrarily distributed. Although this distri-
bution might be the same for each link, we shall
find it no less convenient to assume that it dif-
fers from one to another. Thus, we shall assume
that at link j message lengths have a distribution
function Fj;(z) which has mean ,uj_l and vari-
ance 0']2-.

Even under the independence assumption,
our model is not analytically tractable. In partic-
ular, there are no analytical formulae for the de-
lay distributions. We shall therefore adopt one of
the many approximation techniques. Consider a
particular link j and let @;(z) be the distribution
function of the queueing time, that is, the period
of time a message spends in the buffer at link j
before its transmission begins. The residual-life
approzimation, developed by the author in [9],
provides an accurate approximation for Q;(z):

Qi)=Y Pr(n; =n)GM(z),  (2)



where
bz
Gila) = [ (1= P dy

and G;n)(x) denotes the n-fold convolution of
Gj(z). The distribution of nj, the number of
messages at link j, used in (2), is that of a corre-
sponding quasireversible network (see Kelly [4]);
specifically, a network of symmetric queues ob-
tained by imposing a symmetry condition at each
link j. In the present case, this amounts to re-
placing the FCFS discipline with a preemptive-
resume last-come-first-served discipline at each
link in the network. The term residual-life ap-
prozimation comes from renewal theory; Gj(z)
is the residual-life distribution corresponding to
the (life-time) distribution Fj(z/¢;).

One immediate consequence of (2) is that the
expected queueing time @); is approximately

L+ uid5
2p;¢;

E(ny),

where E(n;) is the expected number of messages
at link j in the quasireversible network. Hence,
the expected delay at link j is approximated as
follows:

1 1+ ,u]
w;%; 2p;¢;

E(W;) ~ LE(n;).  (3)

In the residual-life approximation, it is only
E(n;) which changes when the service discipline
is altered. For the present FCFS discipline E(n;)
is given by (1) with a; = o/ ;.

Simulation results presented in [9] justify the
approximation by assessing its accuracy under
a variety of conditions. Even for relatively
small networks with generous mixing of mes-
sage streams, it is accurate, and the accuracy
improves as the size and complexity of the net-
work increases. (The approximation is very ac-
curate in the tails of the queueing time distri-
butions and so it allows an accurate prediction
to be made of the likelihood of extreme queue-
ing times.) For moderately large networks, the
approximation becomes worse as the coefficient
of variation p;o; of the message-length distribu-
tion deviates markedly from 1, the value which
obtains in the exponential case.

OPTIMAL ALLOCATION OF EFFORT

We now turn our attention to the problem of how
best to assign resources so that the average net-
work delay, or equivalently the average number
of messages in the network, is minimized. We
shall suppose that there is some overall network
budget F (dollars) which cannot be exceeded,

and that the cost of operating link j is a func-
tion f; of its capacity. Suppose that the cost
of operating link j is proportional to ¢;, that is,
[i(¢;) = f;¢; (the units of f; are dollars per unit
of capacity (or dollar-seconds per bit)). Thus, we
should choose the capacities subject to the cost
constraint

J
> figi=F. (4)
j=1

We shall suppose that the average delay of mes-
sages at link j is adequately approximated by
(3). Thus, we shall assume that

1 1+ pio? a;
BWj) = ——+ 52+ ——— ).
;i ®; HjTj Bi%; — aj

Using Little’s Theorem, we can obtain an (ap-
proximate) expression for the mean number m
of messages in the network. This is

a;(1 —|—,u]2-0']2-)
2. {Mﬂﬁy 2156 (njdj — o)

j=1

j=1

m

where ¢; = u]z¢]2 is the squared coefficient of vari-
ation of the message-length distribution Fj(z).
We seek to minimize m over ¢q,...,d s subject
to (4).

To this end, we introduce a lagrange multi-
plier A~2; our problem then becomes one of min-
imizing

J
(b1, X =mt g (S 65— F
j=1

Setting dL/8¢; = 0 for fixed j yields a quartic
polynomial equation in ¢;, namely

2f;67 —4a; f;65 + 2a;(a; f; — X*)63
- 26]a]/\ ¢; +€ja; N2 = (5)
where ¢; = ¢; — 1, and our immediate task is
to find solutions such that ¢; > a; (recall that
this latter condition is a requirement for stabil-

ity). The task is simplified by observing that the
transformation

¢jfj/F—)¢j, a]-fj/F—>aj, /\Z/F—)/\Z, (6)

reduces the problem to one with unit costs f; =
F =1, whence the polynomial equation (5) be-
comes

2¢;1 - 4a]’¢? + 2a; (a]’ - /\2)¢]2
- 26ja]2-/\2¢j + Gja?/\Z =0, (7)



and the constraint becomes
$r14+ P2+ +ds=1. (8)

If transmission times are exponentially dis-
tributed (¢; = 0 for each j) it is easy to verify
that (7) has a unique solution on (a;,c0) given
by

1/2
65 = a; + |Aa;’*.
Upon application of the constraint (8) we arrive
at the optimal capacity assignment

1/2

¢j =a; + (1_2(”“)7’

k=1"k

for unit costs. In the case of general costs this
becomes

A1/2
é; =a; + ( ka k) —f]a])

S (frag)/2

after applying the transformation (6). This is a
result obtained by Kleinrock [6] (see also Kelly
[4]): the allocation proceeds by first assigning
enough capacity to meet the demand a;, at each
link j, and then allocating a proportion of the
affordable excess capacity,

J

% (F - Z fk%)

J k=1

(that which could be afforded to link j), in pro-
portion to the square root of the cost f;a; of
meeting that demand. In the case where some
or all of the ¢;, j = 1,2,...,J, deviate from
zero, (7) is difficult to solve analytically. We
shall adopt a perturbation technique, assuming
that the lagrange multiplier and the optimal al-
location take the following forms:

J

A=Xo+ ) e +0(€2),
k=1

J
¢ =doj + Y _ bijrex + O(€),

k=1
j=1,...,J,

where by O(e?) we mean terms of order ¢;e5. The
zero-th order terms come from Kleinrock’s solu-
tion: specifically,

¢0.7_a’]+/\0a1/27 j:l,...,.],

where ,
A 1- Zkt 1 ag
0= 1/2
Zk 1@

On substituting (9) into (7) we obtain an ex-
pression for ¢ in terms of Ax, which in turn

is calculated using the constraint (8) and by set-
ting e = dx; (the Kronecker delta). We find that
the optimal allocation, to first order, is

1/2
¢; =a; + /\0‘11/2 J 1/2 Zbke’“
k=1% k#j
2
+<1_‘]]71/2>b6.7’ (10)
k=1 %%

where

3/2 ap + 2/\0ak/

b, :—/\0
(ax + Aoay’?)?

For most practical applications, higher-order so-
lutions are required. To achieve this we can
simplify matters by using a single perturbation
€ = maxi<j<J|€¢;|. For each j we then define a
quantity ,8_] = €;/€ and write ¢; and A as power
series in e:

A= i Ape”
n=0

¢jzz¢nj6n, i=1,...,J.

n=0

(11)

Substituting as before into (7), and using (8),
gives rise to an iterative scheme, details of which
can be found in Pollett [8]. The first-order ap-
proximation is useful, none-the-less, in dealing
with networks whose message-length distribu-
tions are all ‘close’ to exponential in the sense
that their coefficients of variation do not differ
significantly from 1. It is also useful in providing
some insight into how the allocation varies as ¢;,
for fixed j, varies. Let ¢;, j = 1,2,...,J, be the
new optimal allocation obtained after increment-
ing €¢; by a small quantity 6 > 0. We find that
to first order in 4

2
k

=1 ak
and, for ¢ # j,

1/2
at/

¢i—bi=———73 1/2(¢' —¢;)<0.

k=1%

Thus, if the coefficient of variation of the
message-length distribution at a given link j
is increased (respectively decreased) by a small
quantity 4, then there is an increase (respec-
tively decrease) in the optimal allocation at link j
which is proportional to 6. All other links ex-
perience a complementary decrease (respectively
increase) in their allocations and the resulting
deficit is reallocated in proportion to the square
root of the demand.



In Pollett [8] empirical estimates were ob-
tained for the radii of convergence of the power
series (11) for the optimal allocation. In all cases
considered there, the closest pole to the origin
was on the negative real axis outside the physical
limits for €;, which are of course —1 < ¢; < o0.
The perturbation technique is therefore useful
for networks whose message-length distributions
are, for example, Erlang (Gamma) (—1 < ¢; < 0)
or, for example, Hyperexponential (0 < ¢; < oc)
with a not too large a coeflicient of variation.

We have assumed that the capacity does not
depend on the state of the link (as a consequence
of the FCFS discipline), and, that the cost of op-
erating a link is a linear function of its capacity.
Let us briefly consider some other possibilities.
Let ¢;(n) be the effort assigned to link j where
there are n messages present. If, for example,

n

¢;(n) = mtn—1

¢j )

where 7 is a positive constant, the zero-th or-
der allocation, optimal under (4), is precisely the
same as before (the case n = 1). For values of 5
greater than 1 the capacity increases as the num-
ber of messages at link j increases and levels off
at a constant value ¢; as the number becomes
large. If we allow 1 to depend on j we get a
similar allocation but with the factor

(fia;)1/?
S (frax) /2

replaced by

(fimja;)'/? ‘
S (famkag) /2

See Kelly [4] for further details. The higher order
analysis is very nearly the same as before. The
factor 1+ ¢; is replaced by n;(14¢;); for the sake
of brevity, we shall omit the details.

As another example, suppose that the ca-
pacity function is linear, that is ¢;(n) = ¢;n,
and that message lengths are exponentially dis-
tributed. In this case, the total number of mes-
sages in the system has a Poisson distribution
with mean ijl a;/¢;, and it is elementary to
show that the optimal allocation subject to (4)
is given by

4i = (fia5)'/
j = J

[i k=1 (frax)t/?
It is interesting to note that we get a proportional

allocation, ¢;/¢r = a;/ax, in this case if (4) is
replaced by

i=1,...,J.

J
Zlog@- =1.
j=1

[1]

[2]

[3]

[10]

More generally, we might use the constraint

J
> filog(gid;) = F

j=1

to account for ‘decreasing costs’, when costs be-
come less with each increase in capacity. Under
this constraint, the optimal allocation is ¢; =

Aaj/ fj, where

F =0, Jxloglgrar/ fi)
Zgzl fk

logA =
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