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ABSTRACT

We shall be concerned with the problem of determining quasista-
tionary distributions for Markovian models directly from their transition
rates Q. We shall present simple conditions for a µ-invariant measure m
for Q to be µ-invariant for the transition function, so that if m is finite
it can be normalized to produce a quasistationary distribution.
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1 INTRODUCTION

In a recent paper, Hart and Pollett (1996) identified conditions, expressed solely
in terms of the transition rates Q of a continuous-time Markov chain, which guar-
antee that any finite µ-invariant measure for Q can be normalized to produce a
quasistationary distribution. These Reuter FE conditions (so named because of
their similarity to Reuter’s (1957) conditions for the forward differential equations
to have a unique solution) extended and complemented earlier work (Elmes, et
al. (1994), Nair and Pollett (1993), Pollett (1993a, 1993c, 1995a), Pollett and Vere-
Jones (1992)) on the relationship between µ-invariant measures and quasistationary
distributions. The Reuter FE conditions involve testing for the non-existence of a
solution to an infinite system of linear equations, but, for a range of specific models,
they can usually be expressed in quite simple terms. For example, in the case of
birth-death processes, they are expressed in terms of the divergence of certain series
(Hart and Pollett (1996)). Since the transition rates of a birth-death process are
reversible with respect to a measure π, one might hope for a simplification of the
Reuter FE conditions in the more general case of reversible Markov chains. This
is indeed the case, and our main result, presented in Section 3, establishes that if
Q is reversible with respect to a subinvariant measure π, then every µ-invariant
measure for Q which is bounded above by π is also µ-invariant for the transition
function. We shall illustrate this result with reference to some simple Markovian
models, including the birth-death process. Further examples will appear in Hart
(1997). Finally, in Section 4, we shall indicate how the reversibility assumption can



be relaxed, thus providing a set of analogous conditions for general Markov chains.
We begin by reviewing the existing theory of µ-invariant measures and quasis-

tationary distributions for continuous-time Markov chains.

2 QUASISTATIONARY DISTRIBUTIONS

Let S = {0, 1, . . .} and let Q = (qij, i, j ∈ S) be a stable, conservative and
regular q-matrix of transition rates over S. Let (X(t), t ≥ 0) be the unique Markov
chain associated with Q and denote its transition function by P (·) = (pij(·), i, j ∈
S). Let C be a subset of S and µ some fixed non-negative real number. Then, the
measure m = (mj, j ∈ C) is called a µ-invariant measure for P if∑

i∈C
mipij(t) = e−µtmj, j ∈ C, t ≥ 0. (2.1)

In contrast, m is called a µ-invariant measure for Q if∑
i∈C

miqij = −µmj, j ∈ C. (2.2)

We shall take C = {1, 2, . . .} and for simplicity we shall suppose that C is irre-
ducible; this guarantees that all non-trivial µ-invariant measures m satisfy mj > 0
for all j ∈ C. We shall also assume that 0 is an absorbing state, that is q00 = 0,
and, that qi0 > 0 for at least one i ∈ C, a condition which guarantees a positive
probability of absorption starting in i. We shall use van Doorn’s (1991) definition
of a quasistationary distribution:

Definition. Let m = (mj, j ∈ C) be a probability distribution over C and define
h(·) = (hj(·), j ∈ S) by

hj(t) =
∑
i∈C

mipij(t), j ∈ S, t ≥ 0. (2.3)

Then, m is a quasistationary distribution if, for all t > 0 and j ∈ C,

hj(t)∑
i∈C hi(t)

= mj.

That is, if the chain has m as its initial distribution, then m is a quasistationary
distribution if the state probabilities at time t, conditional on the chain being in C
at t, are the same for all t.

The relationship between quasistationary distributions and the transition prob-
abilities of the chain was identified by Nair and Pollett (1993). They showed that
a probability measure m = (mj, j ∈ C) over C is a quasistationary distribution
if and only if, for some µ > 0, m is a µ-invariant measure for P . Thus, in a way
which mirrors the theory of stationary distributions , quasistationary distributions
can be interpreted as eigenvectors of the transition function. However, the transi-
tion function is available explicitly in only a few simple cases, and so one requires
a means of determining quasistationary distributions directly from transition rates



of the chain. Since qij is the right-hand derivative of pij(·) near 0, an obvious first
step is to rewrite (2.1) as∑

i∈C: i 6=j
mipij(t) =

(
(1− pjj(t))− (1− e−µt)

)
mj, j ∈ C, t ≥ 0.

Then, proceeding formally, dividing this expression by t and letting t ↓ 0, we
arrive at (2.2). This argument can be justified rigorously (see Proposition 2 of
Tweedie (1974)), and so if m is a quasistationary distribution then, for some µ > 0,
m is a µ-invariant measure for Q.

The more interesting question of when a positive solution m to (2.2) is also a
solution to (2.1) was answered in Pollett (1986, 1988):

Theorem 1. A µ-invariant measure m for Q is µ-invariant for P if and only if the
equations ∑

i∈C
yiqij = νyj, 0 ≤ yj ≤ mj, j ∈ C, (2.4)

have no non-trivial solution for some (and then for all) ν > −µ.

Thus, the problem of determining µ-invariant measures, and hence quasistationary
distributions, was ostensibly solved, but the conditions (2.4) were found to be diffi-
cult to verify in practice. Consequently, a range of simpler sufficient conditions were
sought. The first of these was based on the premise that the µ-invariant measure m
for Q be finite; Pollett and Vere-Jones (1992) showed that a µ-invariant probability
measure for Q is a quasistationary distribution if and only if µ =

∑
i∈Cmiqi0, a

condition which stipulates that µ be equal to the probability flux into the absorbing
state under m. However, although these conditions have proved useful in practice
(Pollett (1993b, 1995b)), they are deficient in so far as µ and m are interrelated;
indeed, there is usually a one-parameter family of quasistationary distributions in-
dexed by µ. This problem was addressed by Hart and Pollett (1996), who presented
a set of conditions solely in terms of the transition rates:

Theorem 2. (The Reuter FE conditions) If the equations∑
i∈C

yiqij = νyj, j ∈ C,

have no non-trivial, non-negative solution such that
∑
i∈C yi < ∞, for some (and

then all) ν > 0, then all µ-invariant probability measures for Q are quasistationary
distributions.

The conditions we shall present here for a µ-invariant measure for Q to be µ-
invariant for P do not require m to be finite, but rather involve comparing m with a
subinvariant measure on C for Q, that is, a measure π = (πj, j ∈ C) which satisfies∑

i∈C
πiqij ≤ 0, j ∈ C. (2.5)

Our irreducibility assumption guarantees that all non-trivial subinvariant measures
satisfy πj > 0 for all j ∈ C.

We shall first deal with the case when Q is reversible with respect to π.



3 THE REVERSIBLE CASE

Suppose that there exists a collection of positive numbers π = (πi, i ∈ C)
satisfying the detailed-balance conditions

πiqij = πjqji, i, j ∈ C. (3.1)

Then, summing (3.1) over i in C shows that π satisfies (2.5). Thus, π is a subin-
variant measure for Q; Q is said to be reversible with respect to π.

Theorem 3. Suppose that Q is reversible with respect to the subinvariant measure
π = (πi, i ∈ C). Then, every µ-invariant measure m = (mi, i ∈ C) for Q which is
bounded above by π, that is,

sup
i∈C
{mi/πi} <∞, (3.2)

is also µ-invariant for P .

It should be emphasized that neither π nor m need be finite; we require only that
m be bounded above by π. If m is finite, it can then be normalized to produce a
quasistationary distribution. Our proof rests heavily on the assumption that Q be
regular, a condition which cannot be relaxed under reversibility.

Proof. Let m be a µ-invariant measure which satisfies (3.2) and suppose that m
is not µ-invariant for P . Then, by Theorem 1, the equations (2.4) have a non-
trivial solution y, certainly for ν > 0. On substituting (3.1) into (2.4) we find that
z = (zj, j ∈ C), given by zj = yj/πj, satisfies∑

i∈C
qjizi = νzj, (3.3)

with 0 < zj ≤ mj/πj for all j ∈ C. But, m is bounded above by π and so
we have found a bounded, non-trivial, non-negative solution to (3.3). Thus, by
Theorem 2.2.7 of Anderson (1991), we have contradicted our assumption that Q is
regular.

Example 1. We shall illustrate Theorem 3 with reference to the absorbing birth-
death process on S = {0, 1, . . .}. This has transition rates given by

qij =


λi, if j = i+ 1,
−(λi + µi), if j = i,
µi, if j = i− 1,
0, otherwise,

where the birth rates (λi, i ≥ 0) and the death rates (µi, i ≥ 0) satisfy λi, µi > 0,
for i ≥ 1, and λ0 = µ0 = 0. Thus, 0 is an absorbing state and C = {1, 2, . . .} is an
irreducible class. Define series A and C by

A =
∞∑
i=1

1

λiπi
and C =

∞∑
i=1

1

λiπi

i∑
j=1

πj,



where π = (πi, i ∈ C), given by π1 = 1 and πi =
∏i
j=2 λj−1/µj for i ≥ 2, is a

subinvariant measure on C with respect to which Q is reversible. We shall assume
that C =∞, a condition which is necessary and sufficient for Q to be regular (see
Anderson (1991)). The classical Karlin and McGregor theory of the birth-death
process involves the recursive construction of a sequence of orthogonal polynomi-
als using the equations for an x-invariant vector (see van Doorn (1991)): define
(φi(·), i ∈ C), where φi : R→ R, by φ1(x) = 1, λ1φ2(x) = λ1 + µ1 − x and

λiφi+1(x)− (λi + µi)φi(x) + µiφi−1(x) = −xφi(x), i ≥ 2,

and let
mi = πiφi(x), i ∈ C, x ∈ R. (3.4)

It can be shown (van Doorn (1991)) that φi(x) > 0 for x in the range 0 ≤ x ≤ λ,
where λ (≥ 0) is the decay parameter of C (see Kingman (1963)). Since Q is
reversible with respect to π, it follows, from Theorem 4.1 b(ii) of Pollett (1988),
that, for each fixed x in the above range, m = (mi, i ∈ C) is an x-invariant measure
for Q; specifically, m satisfies (2.2) with µ = x. Moreover, m is uniquely determined
up to constant multiples. We can use Theorem 3 to obtain conditions under which
m is µ-invariant for P . In view of (3.4) we need simply to determine whether φi(x)
is bounded in i. This is not straightforward, and we thank Erik van Doorn for
providing the argument: using Theorems 3.1, 3.4(i), 3.6 and 3.8 of Kijima and van
Doorn (1995), one can show that, for every x in the range 0 ≤ x ≤ λ, φi(x) is
bounded in i if and only if A < ∞. Thus, the given m is µ-invariant for P if
A < ∞. This complements the “classical case” A = ∞ dealt with by van Doorn.
Theorem 3.2(i) of van Doorn (1991) establishes that under this condition also, m is
µ-invariant for P . Hence, (3.2) is not a necessary condition for m to be µ-invariant
for P . These results are now well known; for a detailed analysis see Kijima et
al. (1997).

Example 2. Our second example is taken from Jacka and Roberts (1995), who
used it to show that conditioned Markov chains do not always converge weakly.
The q-matrix of the chain is given by

q10 = 1/2; q11 = −q1 = −1; qi1 = −qii = qi for all i ≥ 2;

q1j > 0 for all j ≥ 2; qij = 0 otherwise,

where the constants qi are all positive. Clearly 0 is an absorbing state accessible
via state 1 from the irreducible class C = {1, 2, . . .}; on leaving state 1 the chain is
either absorbed with probability 1/2, or jumps to a higher state j with probability
q1j (note that

∑
k≥2 q1k = 1/2) and then returns to state 1 after an exponential

holding time with mean 1/qj, and so forth. It is elementary to show that Q is
regular and that π = (πj, j ∈ C), given by πj = q1j/qj, is a subinvariant measure
on C with respect to which Q is reversible.

Next, a simple calculation based on (2.2) reveals that non-trivial µ-invariant
measures m exist for Q if and only if µ satisfies∑

k≥2
q1k

qk
qk − µ

= 1− µ, (3.5)



in which case m is given, unique up to constant multiples, by

mi =
q1i

qi − µ
, i ∈ C. (3.6)

Note that, of necessity µ ≤ q := infj∈C qj (≤ 1) (Kingman (1963)), and that clearly

mi

πi
=

qi
qi − µ

≤ q

q − µ
.

Now, the right-hand and left-hand sides of (3.5) are monotonically increasing and
decreasing, respectively, from 1/2 and 1, respectively, at µ = 0. So, there is at most
one µ which satisfies (3.5). Thus, we have proved that a µ-invariant m exists for Q
if and only if ∑

k≥2
q1k

qk
qk − q

≥ 1− q.

When this condition holds, m is given by (3.6), with µ being the unique solution to
(3.5), and m is µ-invariant for P .

4 A MORE GENERAL RESULT

Theorem 3 can be generalized in a number of ways, but we shall content ourselves
with the following result, which requires neither the reversibility of Q with respect
to π, nor the regularity of Q. When Q is not regular, there is no longer a unique
process with transition rates Q, but in such cases we can take P to be the transition
function of the minimal process (Anderson (1991)).

Theorem 4. Let π = (πi, i ∈ C) be a subinvariant measure on C for Q and
suppose that the equations∑

i∈C
xiqij = νxj, 0 ≤ xj ≤ πj, j ∈ C, (4.1)

have no non-trivial solution for some (and then all) ν > 0. Then, every µ-invariant
measure m = (mi, i ∈ C) for Q which is bounded above by π is also µ-invariant
for P .

Proof. Let m be a µ-invariant measure which satisfies (3.2), but is not µ-invariant
for P . Then, as before, (2.4) has a non-trivial solution y for ν > 0. Now, y is
bounded above by π because m is. Therefore, by setting

xi =
yi

supj∈C {yj/πj}

we obtain a non-trivial solution x = (xi, i ∈ C) to (4.1), thus contradicting the
conditions of the theorem.

It will not be immediately clear why Theorem 3 is a corollary of Theorem 4,
and in particular how the regularity condition of Theorem 3 can be realized as a
consequence of Theorem 4. To see this, we must define a reverse q-matrix Q∗ =
(q∗ij, i, j ∈ C) by setting

q∗ij = πjqji/πi, i, j ∈ C. (4.2)



Clearly Q∗ is a stable q-matrix over C. If Q∗ were conservative over C, then the
invariance condition (4.1) would be necessary for Q∗ to be regular. This can be
seen on substituting (4.2) into (2.4). If y is a non-trivial solution to (2.4), then
z = (zi, i ∈ C), given by zi = yi/πi, provides a non-trivial solution to∑

j∈C
q∗ijzj = νzi, 0 ≤ zi ≤

mi

πi
, i ∈ C. (4.3)

But, m is bounded above by π, implying that z must be bounded and hence that
Q∗ is not regular. However, Q∗ is usually non-conservative, since π will usually be
strictly subinvariant for Q, and so it is not yet entirely satisfactory to say that Q∗

is playing the role which Q played in Theorem 3. However, if we were to extend
the definition of π and Q to S by setting π0 = 1 and allowing the absorbing state
to communicate with C by setting q0j = −∑i∈C πiqij for j ∈ S, then π would be
an invariant measure for Q (equality holds in (2.5) for all j, indeed, for all j ∈ S)
and Q∗, defined by (4.2) now for i, j ∈ S, would then be conservative. In this way
we can see that Q∗ plays the role which Q played in Theorem 3.

This extension is not entirely artificial, for in generic models (such as was the
case with the birth-death process) π is often realized as an invariant measure for an
irreducible version of the model. It is also worth noting that through our extension
procedure we make a connection with the invariance conditions of Kelly (1983);
condition (4.1) is necessary and sufficient for π to be an invariant measure for P ,
where the obvious extension of the definition of P to S follows from that for Q.
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