Quasistationarity in populations that are subject to
large-scale mor tality or emigration

PK. Pollett
Departmentf Mathematics
TheUniversityof Queensland

Abstract We shallexaminea model,first studiedby Brockwell et al. [1982], which canbe usedto describe
thelong-termbehaiour of populationghataresubjectto large-scalanortality or emigration.Populationsan
suffer dramatidossesvhendiseasesuchasanintroducedvirus, affectsthe population,or whenfood shortages
occur, dueto overbrawsingor significantchangesn climate. However, perhapssurprisingly suchpopulations
cansurvive for long periodsand,althoughthey may eventuallybecomeextinct, they canexhibit anapparently
stationaryregime. It is usefulto be ableto modelthis behaiiour. Thisis particularlytrue of the ecologicalex-
ampleswhich motivatedthe presenstudy since,in orderto properlymanagehesepopulationsit is necessary
to be ableto predictpersistencéimesandto estimatethe distribution of populationsize. We shall seethatal-
thoughour modelpredictseventualextinction, thetimetill extinction canbelongandthestationarityexhibited
by thesepopulationsover any reasonabléme scalecanbe explainedusinga quasistationargistribution.

1. INTRODUCTION

Our startingpoint is a paperby Klein [1968] (see
also Schefer [1951] and Mech [1966]) that stud-
ies populationsof reindeerand moose,which, af-
terintroductioninto Alaska,have sufferedsubstan-
tial reductionsin numbersowing to overbrownsing
combinedwith effectsof severewinters;the moose
populationwasadditionallysubjectto SpruceBud-
worm infestation, and later fire. The model we
shall describe calledthe birth-deathand catastio-
phe process is particularly effective in modelling
thesepopulationgseePakes[1987]). Anotherpos-
sible applicationof this work lies in the manage-
mentof fish stocks(Holling [1973]). Althoughthe
modelpredictseventualextinction, thetime till ex-
tinction canbe long andthe surprisingstationarity
exhibited by the populationscan be explainedus-
ing aquasistationargistribution. It shouldbenoted
thatthe modelhaspossibleapplicationsoutsidethe
realmof wildlife managementFor example,in the
market placeonemight wish to predictthe trendin
salesof a certainproduct,which areaffectedby the
introductionof cheapimportsor theintroductionof
new technology However, in theseexamples,and
this lies in direct contrastto the ecologicalexam-
plescited above, the productmay be ableto adapt
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andrecover quickly from catastrophidallsin sales.
Neverthelesspur modelmight still be appropriate
in instancesvheresuchadaptionis lessmarked.

2. THE CATASTROPHE PROCESS

We shall use a continuous-time(time-homogene-
ous)Markov procesy( X (t), t > 0) to modelthe
population,where X (¢) is a non-neyative, integer
valuedrandomvariable indicating the size of the
populationattime ¢. We shall supposehatthe pro-
cesshastransitionrates@) = (g;z, j,k > 0) given

by

4.j+1 = Jpa, J 20,
4. = —IpP J 20,

qj,j—i = Jpbi, J22,1<i<y,
45,0 = ijiZj bis iz

with all othertransitionratesequalto 0. Herep
anda arepositive, b; is positivefor atleastonevalue
ofiin{1,2,...},anda + > 5, b; = 1. If j #k&,
g;» hasan interpretationas the instantaneousate
at which the populationsize changedrom j to k.
Thus, p canbe interpretedasthe rate per capitaat
which the populationsizechangesnd,giventhata
changeoccurs,a is the probability that this results
in the birth of anindividual andb; is the probabil-
ity that this resultsin a catastrophef size: (that



is the deathor emigrationof individuals). If, of
the b;’s, only b; is positive, we recover the simple
linear birth and deathprocess.Clearly 0 is an ab-
sorbingstatefor theprocessandC = {1,2,...} is
anirreducibleclass,thatis, every statein C' canbe
reachedy every otherstatein C'. Thusif the pop-
ulationis initially 0 it will remainso, while if it is
initially positive it will eithertendto O orto oo . It
is well known and easyto prove (seefor example
Pakes[1987]) thatthe probability of extinction «;,
startingwith ¢ individuals,is 1 for all i € C if and
only if D, theexpectedncrementsize,givenby

D=a-Yib;=1-> (i +1)b;,

is lessthanor equalto O (hereandhenceforthun-
marked sumsshallbeoveri € ). ThequantityD
can be thoughtof asa drift factorandthe process
is saidto besubcritical critical or supecritical ac-
cordingasD is negative, zeroor positve. In thesu-
percriticalcaseextinctionis of coursestill possible,
andthe extinction probabilitiescanbe expressedn
termsof the probability generatingunction f of 1
minustheincrementsize. Thisis givenby

f(s) =a+ > bstt,

sothat, for example,D = 1 — f'(1-) (< 1). It
follows from Theorem4 of Ezhor and Reshetgak
[1983] (seealsoPakes[1987]) thatwhenD > 0

ls| <1,

;  Ds
S(1—ay)s' = ) =5
Thus,writing b(s) = f(s) — s, we seethat
i_ 5 _Ds
2 st = 1—s b(s) @)

It is interestingto notethata; tendsto 0 asi tends
to oo; roughly speakingthe largertheinitial popu-
lationthelesslik ely the populationis to becomeex-

tinct (in the supercriticalcase). However, asPakes
[1987] notesthecornvergenceof o; to 0 canbevery
slow. For example,it is easyto shaw, lettings 1 1

in (1) andusingL’H dpital’'s rule twice, that

> a; = f"(1-)/(2D) )

andthatthis is finite if andonly if the secondmo-
mentof the incrementdistribution is finite. Later
we shall use (1) and (2), togetherwith this condi-
tion, whenevaluatingquasistationargistributions.

Thefunction b we have introducedappearsn con-
nectionwith the theory of Markov branching pro-
cesseslindeedtheseprocesseareintimatelyrelated
to the birth, deathand catastropherocess,a fact
which was establishedind exploited effectively by
Pakes[1987]. We shalluseoneimportantfactfrom

this theory: thatb(s) = 0 hasa uniquesolutiono

on[0,1]. Furtherg = 1if D > 0,and0 < ¢ < 1

if D < 0,andsob(s) > 0onJ0,0] . Indeed,b is
corvex onthisinterval.

3. QUASISTATIONARY DISTRIBUTIONS

We shall usetwo typesof quasistationarylistribu-
tion to describethelong-termbehaiour of the pro-
cess. In particular we shall be concernedvith the
existenceof thelimits

lim P(X(t) = j|X(0)=14,X(¢) >0,

t—00

X(t+r)=0forsomer >0) (3)

and

lim lim P(X () = j|X(0) =i, X (t+s) > 0,

t—00 s—00

X(@t+s+r)=0forsomer >0) (4)

for i, 5 € C. Thuswe shallseekthelimiting prob-
ability that the populationsizeis j, given that ex-
tinction hasnotoccurredpr (in the caseof (4)) will
notoccurin thedistantfuture, but thateventuallyit
will; we have conditionedon eventualextinction to
dealwith thesupercriticatasewherethis eventhas
probabilitylessthan1.

Conditionsfor the existenceof (3) and (4) for a
generalransientMarkov processvereobtainedby
Vere-Jonefl969] andFlaspohlef1974]. However,
theseconditionsareexpressedn termsof the tran-
sition probabilitiesof the process,which are sel-
domavailable.For conditionsin termsof thetransi-
tion rates,seePollett[1986], Pollett[1988], Pollett
[1989], andParsonsandPollett[1987]. We shallat-
temptto describeheseresultan awaythatis appro-
priateto the presentcontext, avoiding referenceto
the plethoraof nomenclatureisedin Markov chain
theory We shallstartby consideringhetwo eigen-
vectorequations

> mjgqir = —pmyg, jE€C, %)

and

2. 8ikTE = —pzr, J€C, (6)

wherey > 0 andnow C canby any irreducible
class. In the first instancewe shall seeksolutions
m = (m;, j € C)andz = (z;, j € C), each
with positive entries,for somey > 0 . Theseare
the positive left and right eigervectorsof Q¢, the
transition-ratematrix restrictedto C, correspond-
ing to the eigervalue —u . If C is a finite set,
their existenceis guaranteedat leastfor the eigen-
value—A with maximumrealpart(seeDarrochand
Senetg[1967]). If C is infinite, asis the casein

the presentapplication the situationcanbe consid-
erablymorecomplicated For example,it might not

bepossibleto obtainpositive solutionsfor any value
of 4 > 0. However, Vere-Jone$1969] hasshovn

that for quasistationaryistributions to exist, it is

necessaryhat positive eigervectorsexist for some



> 0. Thus,we shall assumethis to be the case
in the presentcontext. If A is the maximumvalue

of i for which positive eigervectorsexist, thenwe

shall denotetheseby m andz. Proposition5.1 of

Pollett[1988] cannow berestatedor our purposes
asfollows:

Proposition 1. If @ isregular, then

(i) if > myxp corverges,andeither)  my, con-
vergesor {z;} is bounded,then (4) exists
and definesa proper probability distribution
7@ = (z{?), j € C) overC, givenby

(2 Mm;T; ,
o)== je(. 7
; S mnan J (7)

(i) if in addition}_ myaz, corvergesthen(3) ex-
ists and definesa properprobability distribu-
tion7(1) = (7r§.1), j € C) overC, givenby

L0 _ _myey

J _kaak, jecC. (8)

Remarks. The condition that @) be regular can
be checled using Reuters conditions(see Reuter
[1957]). It will certainlybe satisfiedin the present
context if we assumeaswe shall, that the decre-
mentdistribution hasfinite mean,thatis ' (1-) <
0. Theconditionthat_ myz; corvergesis neces-
saryfor (7) to definea properprobability distribu-
tion over C. However, its realimportancdiesin the
factthatit is sufficientfor C' to possessheproperty
of A-positiverecurrence(Kingman[1963]) which,
for transienprocessess anotionanalogouso pos-
itive recurrencdor stationaryprocessesindeed,in
orderto verify A-positive recurrencejt sufficesto
shov only that, for somey > 0 and correspond-
ing positive eigervectorsm andz, > mpzp < 00
(this follows from Theoremb.2 of Pollett[1988]).
Once A-positive recurrenceis establishedCorol-
lary 5.1 of Pollett[1988] tells us that A, the max-
imal value of u, is the so-calleddecayparameter
of C' (Kingman[1963]); it determineshow quickly
the transition probabilitiesp;, () = P(X(t) =
k|X(0) = j) tendto O ast tendsto co. It then
follows, from Proposition3 of Tweedig[1974], that
positive eigervectorsmustexist wheng = A.

4. GEOMETRIC CATASTROPHES

Beforeproceedingo the generalcase et usexam-
ine theimportantspecialcaseof whenb; takesthe
formb; =b(1—¢q)¢’~1,5=1,2,..., whereb > 0,
0 < g < 1anda + b = 1. Thus,giventhatajump
occursin the size of the population,this is a birth
with probability a or a catastrophevith probabil-
ity b. If acatastropheccursits sizehasageometric

distribution. Noticethatif ¢ = 0 werecoverthelin-
earbirth anddeathprocessWe shallfirst solve (6),
whichin this casecanbewritten as

J
jpazipy — (jp— wa; + »_ jpbj_kze =0, (9)
k=0

for j > 1, with theunderstandinghatzy, = 0. Sub-
stituting for b;, multiplying by s+! andthensum-
ming theseequationsyields an expressionfor the
generatindunctionX, definedoy X (s) = _ zs*,
of anysolutionz = (z;, j > 1). The expression
hasa differentform dependingon the value of D,
whichis

D=a-b/(1-¢)=bla/b-1/(1-4q),
becausé(s) hastheform

b(s) = (1 —gs) " *{(b + qa)s* — (1 +qa)s + a}
— a1 — 8)(1 - (q + b/a)s)/(1 - gs).

It canbe shawn, althoughthe detailsare someavhat
tediousthatif D =0

X(s) = Mexp (_M) , (10)

a(l — )2t pa(l—s)
wheref = pq/(pa), whileif D #0
s(1—gs)

X(s) = (1-(g+b/a)s)’", (12)

wherea = p/(pD) and

a b
5=‘m(b+qa)-

The generatingunctionis well definedfor s < o,
whereg, the uniquesolutionof b(s) = 0 on [0, 1],
is givenby

1, if D >0,
7" \a/b+qa), D<o
We can now determinea candidatefor the maxi-
mum value of g for which there exists a positive
right eigervectorby letting s 1 ¢ in (10) and(11).
We seethat} zro® corvergesto 0 if eitherD > 0
anda > 1, D < 0andg > 1,orD = 0 and
u > 0. If eitherD > 0 anda = 1, or D < 0 and
8 = 1, thenthe seriescorvergesto a positive num-
berwhile, in theremainingcasest diverges. Thus,
if ;4 exceeds\, where

pD, if D >0,
A=1<0, if D=0,
—-b'pD(1 - ¢q)(b+qa), ifD<O,

the seriescorvergesto 0. It follows thatif = has
non-negative entries,they mustall be equalto O.



However, we cannotyet deducethat A is maximal
in the requiredsense.lt is first necessaryo shov
that,whenyu = A, z haspositive entries. We shall
do this by invertingthe generatingunction X . Af-
ter somestraightforward arithmeticalcalculations,
we find thatz, normalizedsothatz; = 1, is given

by
z; :rl—j(7+j—1)v+(1—qr)(j—1)

7-1 y+5-1

if D > 0, wherer = a/(b+ ga) andy = (1 —
gr)/(1-q),z;j =g+ (1 —¢)jif D=0, and,

. (6+j—1)6+(1—q>(j—1>

j—1 6+j—-1

if D < 0, where§ = 1/+. Clearlyz; > 0 for each
7 > 1. It now remainsto shov thatwheny = A
thereexists a positive left eigervectorm suchthat
> myzy, converges.Equationg5) take theform

(k — 1)pamp_1 — (kp — p)ms,

+ Y jpbjgm; =0, (12)
J>k+1

for k > 1, with theunderstandinghatmg = 0. On
substitutingfor (b;, j > 1), it is easyto show that
thepositive vectorm givenby m; = o7, j > 1, sat-
isfies(12) with ¢ = A, andthisis truewhateserthe
signof D. It followsthatthegeneratingunctionU,
definedby U(s) = 3~ myzxs®, canbeevaluatedn
termsof the generatingunction for z obtainedon
settingu equalto A, sinceclearlyU(s) = X (os),
s < 1. However, if D # 0, Y. zxo* converges,
which is to saythat " mzy corverges. Thus,we
have establishedat leastin the non-critical case,
that\ is maximal.

We cannow usePropositionl to provetheexistence
of thequasistationardistribution7(?) whenD # 0.

It is easyto seethat > m;, corvergesif D < 0

(¢ < 1),whileif D >0 (o = 1), > =z corverges
implying that{z} is bounded Thustheconditions
of Part (i) of the propositionare satisfiedfor D #

0 andwe candeducethat (4) exists and definesa
proper probability distribution 7(?) = (7r§.2), j €

C), givenby

) _ 0%
J ZO”".’Iik,

The denominatoiis X (c—) andthis canbe calcu-
lated explicitly from (11) after settinga = 1 if

D > 0andg = 1if D < 0. On substituting
into (13), we arrive at the following explicit eval-

uationof the quasistationardistribution = (2 :

jec. (13)

w?) = (L= g)(r = )"+ O+

(7+j—1)7+(1—wﬂj—D
j—1 y+ji—1

if D> 0and

® = (1—gr)(1 —r)Hopi—t

(5+j—1)5+(1—q)(j—1)
j—1 d+j5-1

if D < 0. It is interestingto note that on setting
g = 0 we obtaina resultfor the linear birth and
deathprocess:we seethatif a # b then(4) exists
andis givenby 775.2) =(r-1%r Ut ifr > 1,
and7r§~2) = (1-r)%jrU=Yif r < 1, wherer = a/b.
Thisis consistentvith theresultsof Pollett[1988].

We shall now prove thatif D # 0, the otherkind
of quasistationargistribution existsaswell. To do
this, we shall needto checkthatthe conditionmen-
tionedin Part (ii) of Propositionl is satisfied.First
obserethatif D < 0, thena;, theprobabilityof ex-
tinction startingwith a populationof sizei, is equal
to 1, andso the conditionis satisfiedandthe exis-
tenceof (3) in this casds automatic Clearly= () is
the geometriadistribution givenby

M =(1-0), j>1 (14)
If D > 0 wearerequiredto establishthatthe series

dompap =) ag (15)

converges. In view of (2) it sufices to check
that f”(1-) < oo (equialently ¥”’(1-) < o0).
On differentiating b(s) twice we get b"’(1-) =
2b/(1 — ¢)2. Indeed,it is easyto invert (1). In
doing sowe find thata; is proportionalto . It
followsthat(3) existsandagaindefinesageometric
distribution. Thisis givenby 7(1) = (775.1), j>1),
wherer(") = (r—1)r=4.If ¢ = O thenr = a/band
the specifiedquasistationargistributions are con-
sistentwith thosefoundin Pollett[1988]for thelin-
earbirth anddeathprocess.

5. THE GENERAL CASE

Perhapssurprisingly the processwith a general
catastrophsizedistribution canbehandledwith lit-

tle moredifficulty. Indeed,it is possibleto follow
stepsanalogoudo eachof thoseperformedabove
in connectionwith the geometriccase. First, it is
easyto shov thatthe generatingunction X of ary
solutionto (9) canbewritten

X(s) = b(s—s) exp(—pB(s)),

where,for s < o, B(s) = p~* [; dy/by). (Re-
call that ¢ is the uniquesolutionto b(s) = 0 on
[0,1], andthate = 1 or0 < ¢ < 1 accordingas
D = —¥'(1-) is non-neyative or negative.) Now, if
welet s 1 o in (16), we find that}" z;07 diverges

s <o, (16)



if 4 = 0, while if 3> ;07 corvergesit is neces-
sarythatthe integral fo" dy/b(y) diverges. Regret-
tably, L'H0pital'srule is of little helpto usin eval-

uatingthis sum,for the derivative of exp(—uB(s))

is —(u/(pb(s))) exp(—pB(s)). However, we can
saythatif >° z;07 cornvergesto a positive numbery
it is necessaryhaty = A, whered = —pb’'(c—)

(> 0). Let usnow considerthe left eigervector
equation(12). If oneattemptsasolutionof theform

m; = t/, wheret > 0, thenthek = 1 equation
impliesthaty = —pb’(t—) andthe otherequations
imply thatb(t) = 0. Sincewe requirep > 0 it is

necessaryhatd’(t—) < 0. Thus,for m to beof this

form it is necessaryhatt = ¢ andy = A. We have

shavn thatwhenu = A, (12) admitsthe positive

solutionm = (mj;, j > 1), givenby m; = o7, no

matterwhattheform of (b;, j > 1). It followsthat
the corvergenceor otherwiseof > myz; depends,
asbefore,onthe behaiour of X nears = o. If we

can establishthat this seriescorvergesand that A

is maximalin the requiredsensethen,by Proposi-
tion 1, (4) exists and definesa quasistationarylis-

tribution 7(?) = (7r§.2), j > 1) givenby (13). Fur

ther, the existenceof (3) will thenbe automatic,at

leastwhenD > 0, sincethena; = 1 foralli > 1

and0 < o < 1; the quasistationandistribution

7™ = (x{V, j > 1) will begivenby (14) (aresult
of Pakes[1987]). If D > 0 then, on considera-
tion of (2) and(15), it is clearthatif f"(1-) < oo

(equivalently ¥ (1—) < o0), then (3) will exist

and 7 will begivenby 7{") = a;/S ax. It

follows that7(!) will have a probability generating
functiongivenby (1).

All of this rests on establishingthat the series
3" z;of corvergesandthat \ is the maximalvalue
of u for which positive eigervectorsexist. It seems
difficult to obtainnecessargonditionsfor the con-
vergenceof this series. However, in view of The-
orem 6.2 of Pakes[1987], it is clearthat a sufi-
cient conditionfor )" z;07 to corvergeis that ei-
therD < 0, or, D > 0 andb canbe written as
b(s) = D(1—s)+(1—s)?L((1—s)~!), whereL is
aslowlyvaryingfunction. Notethatb hasthis form
in the caseof “geometric catastrophesbecauset
canbeshawn that

bx
1-9)(1-qz+q)

andso clearly L(zt) ~ L(z) for larget. If one
of theseconditionscanbe satisfied thenit is possi-
ble to deducethat A is maximalusinganargument
basedon Theorem5.1 of Pollett[1988]. Thus,we

have beenableto establisithe existenceof thequa-
sistationarydistribution (4) in the subcriticalcase,
andin the supercriticalcasewhena regularity con-
dition on b is satisfied. In the subcriticalcase,(3)

alsoexists undertheseconditions,while in the su-

L(z) =

percritical casean extra condition, that the decre-
mentdistribution hasfinite secondmoment,is re-
quired.

6. DISCUSSION

To illustrate our results,we shall considerthe ef-
fect on the meanpopulationsize (underthe quasis-
tationarydistributions)of varyingthe parametersf
the model. For simplicity, we shall restrictour at-
tention to the casewherethe size of catastrophes
has a geometricdistribution. Let ¢ = a/b and
lete = 1/(1 — q), sothat ¢ representghe ratio
of births to catastrophesyhile ¢ (> 1) is the av-
eragesize of a catastrophe.Obsene that the pro-
cesds subcritical critical or supercriticahccording
asc is greaterthan ¢, equalto ¢, or lessthan ¢,
andthatif ¢ < 1 the processcannotbe super
critical. Expressiongor the meanof the two qua-
sistationarydistributions canbe obtainedeitherdi-
rectly, or by differentiatingthe appropriategenerat-
ing functions. Let m™ andm® be, respectiely,
the meanof 7(1) andthe meanof (. Then, it
is easyto shaw thatm™ = —¢ + ¢?/(¢ — c) if
1<c<od,mV =1+¢+¢*/(c—9¢)ifc> 9,
m® =1-2¢—2c+2¢*/(¢p—c)if 1 <c< ¢,
andm® = 1+ 2¢((1 + ¢)c — ¢)/(c(c — ) if
¢ > ¢. Recallthatin the critical caseno quasista-
tionary distribution exists; the limits in (3) and(4)
areidenticallyO for all ¢ andj.

Let usfirst determinethe effect of varying ¢ with ¢
fixed. Figure 1 illustratesthe resultsfor the linear

birth and deathprocessobtainedon settinge = 1.
Notice that m() underestimatesn(? uniformly.

6

2 3 4
Ratio of births to catastrophes @

Figurel: Quasistationardistribution means
m) (solid)andm(? (dashedfor ¢ = 1.

Thisis indicative of thefactthat,in general(3) as-
signsmoremasscloserto 0 thandoes(4) and,fur-
ther, it is consistentwith the fact that (4) is more
appropriatdor describinghebehaiour of the pop-
ulationearlyin its evolution, well beforeextinction
occurs. Notice also that both meansare large for



nearcritical valuesof ¢, in which casegenuinequa-
sistationanbehaiour obtains.If ¢ islarge,thelike-
lihood of extinctionis rathersmallyet, surprisingly
bothdistributionsassignall their massnearl.

Next we shallobsenetheeffectof varyingthemean
catastrophsizec wheng is fixed. In orderto allow
for the possibility of a supercriticalcase,we shall
choosea valueof ¢ greaterthanl, say¢ = 2. Fig-
ure2 illustratestheresults.Thetrendsaresimilarto

12

10r

6
Expected catastrophe size ¢

Figurel: Quasistationargdistribution means
m (solid) andm(® (dashed¥or ¢ = 1.

thosealreadyobsened,in particular for the super

critical andnearcritical casesHowever, noticethat
in thesubcriticalcasethegraphscrossand,for suffi-

ciently largevaluesof ¢, m® underestimates:(!).

Further the limiting valuesasc becomedarge are
not the same,the differencebetweenthesevalues
being ¢. That both distributions assignnearly all

theirmassnearl, is consistentvith thefactthatthe
timetill extinctionis rathershort.
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