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Abstract: Diffusion models are widely used in ecology, and in more general population biology contexts, for
predicting population-size distributions and extinction times. They are often used because they are particularly
simple to analyse and give rise to explicit formulae for most of the quantities of interest. However, whilst diffu-
sion models are ubiquitous in the literature on population models, their use is frequently inappropriate and often
leads to inaccurate predictions of critical quantities such as persistence times. This paper examines diffusion
models in the context in which they most naturally arise: as approximations to discrete-state Markovian mod-
els, which themselves are often more appropriate in describing the behaviour of the populations in question,
yet are difficult to analyse from both an analytical and a computational point of view. We will identify a class
of Markovian models (called asymptotically density dependent models) that permit a diffusion approximation
through a simple limiting procedure. This procedure allows us to immediately identify the most appropriate
approximating diffusion and to decide whether the diffusion approximation, and hence a diffusion model, is
appropriate for describing the population in question. This will be made possible through the remarkable work
of Tom Kurtz and Andrew Barbour, which is frequently cited in the applied probability literature, but is ap-
parently not widely accessible to practitioners. Their results will be presented here in a form that most easily
allows their direct application to population models. We will also present results that allow one to assess the ac-
curacy of diffusion approximations by specifying for how long and over what ranges the underlying Markovian
model is faithfully approximated. We will explain why diffusion models are not generally useful for estimating
extinction times, a serious shortcoming that has been identified by other authors using empirical means.
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1. INTRODUCTION

One of the central themes of population biology is
the estimation of persistence times. Diffusion mod-
els are frequently used because their parameters can
be estimated simply from very little data and they
offer explicit expressions for important quantities
of interest, such as the expected time to extinction.
Whilst it might appear trite to suggest that practi-
tioners should use such expressions with care, be-
cause the assumptions of the model might not al-
ways be satisfied in any given situation, there does
seem to be a prevailing view that they can be applied
universally. In a recent paper, Wilcox and Possing-
ham [2001] show, by empirical means, that the for-
mula given in Foley [1994] for the mean time to ex-
tinction of a population may not always be accurate.
However, there are often simple reasons why one
would not expect formulae such as this to apply in
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all situations. Foley’s formula is nothing more than
an expression for the expected time it takes Brow-
nian motion with drift to reach state 0 (represent-
ing extinction) from a given state �� (representing
the initial population size). We should not possibly
expect this to be accurate if, in the first place, the
underlying discrete-time model is inappropriate in
describing the population in question, or, if the lim-
iting procedure that gives rise to the diffusion has
no physical analogue. While these matters might be
construed as “mathematical scruples”, as Foley puts
it (p. 136), they are in fact key scientific issues: the
kind of issues that lie at the very core of whether
mathematical models can be useful in describing
the physical world. In Foley’s case, the diffusion
in question (Brownian motion with drift) is realized
as an approximation of the simplest discrete-time
random walk with state-independent jump probabil-
ities, and this is achieved by correctly scaling time
and space, and the parameters accordingly. The for-



mal approximation procedure mirrors the way in
which the Central Limit Theorem works, with the
position of the random walk at any given time in-
stant being expressed as the sum of a large num-
ber of independent increments [for a simple expo-
sition, see Section 4.8 of Ross, 1996]. So, whether
Foley’s formula could possibly be accurate depends
firstly on whether the population in question could
be modelled as a discrete-time process that jumps
up or down by � at each time point (independently
at each time point), with jump probabilities that do
not depend on the population size, and, secondly,
whether there have been sufficiently many transi-
tions for the approximation procedure to work. To
be emphatic, it would be naive to expect Foley’s for-
mula to be useful otherwise.

The above discussion also throws up the important
question of whether a continuous-time model might
be more appropriate in any given context. There
seems to be a view that, because data are collected
at discrete time points, say at the end of each breed-
ing cycle, a discrete-time model is preferred. How-
ever, populations evolve continuously in time, and
it should be the internal workings of the popula-
tion that determine the nature of the model. Af-
ter all, it is the population that is being modelled,
rather than the estimation procedure. The fact that
data might be collected only periodically, does not
prevent one from estimating the parameters of a
continuous-time model. This is done by way of cer-
tain embedded discrete-time processes, which are
indeed determined by the sampling procedure.

It is also apparent that the term “diffusion approx-
imation” is used in some of the ecology litera-
ture without specifically identifying any approx-
imation procedure. This may help account for
the sometimes-inappropriate use of formulae de-
rived from diffusion models. However, in contrast
to the above-mentioned space-time scaling proce-
dures, there are many instances where the approxi-
mation procedure can be realized explicitly in terms
of the parameters of the underlying model, and it
is often then a simple task to identify conditions un-
der which the approximation is likely to be accurate.
For example, the diffusion approximation might be-
come more accurate as the area of the habitat grows,
or as the immigration rate becomes large, or, as the
carrying capacity grows. In these situations it may
also be possible to estimate the error in the approx-
imation.

We shall identify a class of Markovian models that
permit a diffusion approximation through an explic-
itly defined limiting procedure that identifies the
most appropriate approximating diffusion. Explicit
expressions are derived for various quantities of in-
terest, and, in the stationary case, error bounds are

given to assess the accuracy of the approximation.
However, as we shall see, even when the diffusion
process accurately models (say) the population size,
it might be that the expected extinction times it pre-
dicts are different from those predicted by the un-
derlying model. In these instances one is forced to
deal directly with the underlying model. Since it
is Markovian, one can always obtain the expected
extinction times as the solution to a system of lin-
ear equations, and, if it is as simple as a birth-death
process, then an explicit expression is available.

2. DENSITY DEPENDENCE

We shall restrict our attention to processes that are
density dependent in a sense that might not accord
with general usage of this term in the ecology liter-
ature. The basic idea is as follows. First, we iden-
tify a scale parameter � (the approximation will be
achieved by letting � become large). Then, if ����
denotes the number in the population at time �, ����
is density dependent if the rate of change of ���� de-
pends on ���� only through the population density
������ , whence the population density can usually
be modelled accurately by a diffusion, one whose
parameters can be written down explicitly in terms
of the parameters of the underlying model. We shall
make this precise shortly.

Suppose that the population in question can be mod-
elled as a continuous-time Markov chain ������ � �
�� taking values in a discrete set � with a (conser-
vative) set of transition rates � � ���	����	� � �
��, with ��	��� representing the rate of transi-
tion from state 	 to state �, for 	 �� �, and
��	� �� ���	�	� �

�
���� ��	��� represent-

ing the total rate out of state 	. For simplicity,
we restrict our attention to one-dimensional Markov
chains, and we take ���� to represent the number in
the population at time �. We also restrict attention to
the case when the state space � is finite, though all
of the results presented here hold more generally.
Of course the “state” of the population will usu-
ally be more complicated. Fortunately, the general
procedure we shall describe carries over almost im-
mediately to multi-dimensional processes, but fur-
ther technical conditions are required to handle the
infinite-state case; see Pollett [1990].

Now let ������� be a family of such processes in-
dexed by � 
 �, and suppose that �� ��� takes val-
ues in �� , a finite subset of the integers �, and has
transition rates �� � ��� �	����	� � � �� �. In
practice, one has great freedom in identifying an in-
dex parameter. For definiteness, let us imagine � is
the carrying capacity.

Definition Suppose that there exists an interval
� � � and a family ��� � � 
 �� of continuous



functions, with �� � � 	 � 
 �, such that

�� ��� � 	 
� � ���

� �

�
� 

�
� 
 �� ��

Then, the family of Markov chains is (asymptoti-
cally) density dependent if, additionally, there exists
a function � � � 
 � such that ����, given by
�� ��� �

�
� 
����� 
�, � � �, converges (point-

wise) to � on �.

This definition of density dependence is more gen-
eral than that introduced by Kurtz [1970], which
has �� (and hence �� ) being the same for all � .
Roughly speaking, the family is density dependent
if the transition rates of the corresponding “density
process” �� ���, defined by �� ��� � �� ����� ,
� � �, depend on the present state � only through
the density ��� , or, failing this, if this property is
exhibited asymptotically for large � . Thus, there
is a natural way to associate with this process, a
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Figure 1. Simulation of the stochastic logistic
model, together with its diffusion approximation
(� � 
��, � � ��
, � � ��� and �� ��� � ���).

density dependent deterministic process which, for
large � , is “tracked” by the process. (Figure 1 illus-
trates this with reference to the stochastic logistic
model to be described in Section 3.) The follow-
ing (functional) law of large numbers establishes a
deterministic approximation under appropriate con-
ditions. It can be deduced immediately from Theo-
rem 3.1 of Kurtz [1970].

Theorem 2.1 Suppose that ����� 
� is bounded,
for each 
 and � , that � is Lipschitz continuous
on� and that ���� converges uniformly to� on�.
Then, if ��
�������� � ��, the density process
�� ��� converges uniformly in probability on ��� ��
to ���� ��, the unique (deterministic) trajectory sat-
isfying ���� �� � �, ���� �� � �, � � ��� ��, and

�

��
���� �� � � ����� ���� (1)

The following (functional) central limit law estab-
lishes that, for large � , the fluctuations about the
deterministic path follow a Gaussian diffusion, pro-
vided that certain “second-order” conditions are sat-
isfied. It can be deduced from Theorems 3.1 and 3.5
of Kurtz [1971]. In particular, (2) strengthens the
condition that ���� converges uniformly to � , to
ensure that this convergence happens at the correct
rate, while (3) provides the initial value of the ap-
proximating diffusion.

Theorem 2.2 Suppose ����� 
� is bounded, that �
is Lipschitz continuous and has uniformly continu-
ous first derivative on �, and that

��

���

���
���

�
� ��� ���� � ���� � �� (2)

Suppose also that the sequence ����, where

�� ��� �
�
�


��� ��� 
�� � � ��

converges uniformly to �, where � is uniformly
continuous on �. Let �� � �. Then, if

��

���

�
� ��� ���� ��� � �� (3)

the family of processes �������, defined by
�� ��� �

�
� ��� �������� ����, � 
 � 
 �,

converges weakly in ���� �� (the space of right-
continuous, left-hand limits functions on ��� ��) to a
Gaussian diffusion ���� with initial value ���� �
� and with mean and variance given by �� ��
������� � ���, where �� � ����

� �
� ����� and

�� � � ������ ����, and ��������� � ��
� , where

��� � ��
�

� �
�
���

� ������ ������.

It follows that ����� has an approximate normal
distribution with ������ ���� � ����� . We would
usually take �� � �� ���, thus giving �������� �
���� ���. Figure 1 illustrates this with reference to
the stochastic logistic model to be described in Sec-
tion 3: the deterministic mean path is shown, to-
gether with plus and minus two standard deviations:
���� ���� ����

�
� .

In the important special case where �� is chosen as
an equilibrium point of (1), we can be far more pre-
cise about the approximating diffusion:

Corollary 2.1 If �� satisfies � ���� � � then,
under the conditions of Theorem 2.2, the family
�������, defined by �� ��� �

�
���� ��� � ���,

� 
 � 
 �, converges weakly in ���� �� to an
Ornstein-Uhlenbeck (OU) process ���� with initial
value ���� � �, and with local drift � � � �����
and local variance � � �����. In particular, ����
is normally distributed with mean �� �  	�� and
variance ��� � 


�	 � �	� � ��.



We conclude that, for � large, ����� has an ap-
proximate normal distribution with ������ ���� �
����� . A “working approximation” for the mean
(that is, for a fixed value of � ) can be obtained by
setting � equal to

�
� ��� ���� ��� (c.f. (3)):

���� ���� � �� 	  	���� ���� ����

The OU approximation is illustrated in Figure 2,
with two standard deviations as before.
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Figure 2. Simulation of the stochastic logistic
model, together with its OU approximation

(� � ���, � � ���, � � ��� and �� ��� � ���).

In the context of population models �� will usually
be asymptotically stable, that is � ! �. However,
it should be emphasised that it need not be for each
of the above conclusions to hold. Indeed, the OU
approximation is often very accurate in describing
the fluctuations about centres and unstable equilib-
ria [see Barbour, 1976].

Although one expects the diffusion approximation
detailed in Theorem 2.2 to provide a more accurate
estimate of the distribution of �� ��� for � small
(since it concerns random fluctuations about the de-
terministic trajectory, rather than a given equilib-
rium point), the OU approximation has the advan-
tage that the approximate formulae for the mean and
variance are explicit. Furthermore, we have at our
disposal results that show how closely, for how long,
and over what ranges, the density process is faith-
fully approximated. For example, we can obtain ex-
plicit information concerning the order of the error
arising from approximating�� ��� by a normal ran-
dom variable [see Barbour, 1976]:

����� ��� � �� � "����

�
� 	 #

�
$�
�

�����
�

��
�

where "���� � �� ���� � �������, provided $�
is of order between ��������� and � ���. This
result holds uniformly over � in ��� $� � and over
time intervals of the form ���� ����Æ$�

� ��, for any
positive �� and Æ. Thus, the questions of “how

closely” and “over what ranges” are both answered
here. Barbour also obtains results which show
that, when �� is asymptotically stable, the time
until first exit of ����� from an interval of the
form %� ���� � �� � �� � ��� ! ����� ��,
where  � 
 �, is approximately exponentially
distributed, conditional on the process leaving at,
say, the left endpoint (asymptotically, left or right
are equally likely). This result answers the question
of “how long”, because it establishes that, provided
 � � &������, the mean time until exit is asymp-
totically

�
'� �(  �


�

�
�
 ���( ��, where ( � ��

(
 �). Thus, in particular, the time taken for �� ���
to first leave %� ���� is of order  ��� ���� �� 

�
������,

whenever  � � &������. Hence, it is asymptot-
ically larger than any power of � if, for example,
 � � #��

�

� � �����. As Barbour points out, al-
though this may well be enough to justify treat-
ing the normal approximation around �� as the true
equilibrium distribution, it does not yield the dis-
tribution of the time until extinction, which would
require  � � &������.

3. BIRTH-DEATH PROCESSES

As these arise frequently in population modelling,
we shall examine them briefly. We shall consider
only the finite-state case with �� � ��� �� � � � � ��,
and birth and death rates of the form

)� �� �� ��� � 	 �� � �*����� 	 #����

+� �� �� ��� �� �� � ������� 	 #����

where *��� and ���� are positive continuous func-
tions defined on � � ��� �� with continuous first
derivative. This form of rates ensures that the
process is asymptotically density dependent with
� ��� � *�������� and�� ��� � � ���	#�����.
We also have ���� � *��� 	 ���� and �� ��� �
���� 	 #�����. Whilst the form of rates does
not include all birth-death processes on �� , it does
include ones commonly encountered in population
modelling, for example, those for which the transi-
tion rates are polynomials in �. Indeed, if we spe-
cialize further to this latter case, then all of the tech-
nical conditions of Theorems 2.1 and 2.2 concern-
ing ����, ����, � , ���� and � will be satisfied,
and, provided (3) holds, there will be a valid diffu-
sion approximation.

To illustrate this further, let us consider the stochas-
tic logistic model, ubiquitous in the literature on
population modelling [see for example Bartlett,
1960], but also appearing in a variety of different
guises: for example, chemical kinetics [Oppenheim
et al., 1977] and epidemics [Nåsell, 1999]. It is a
birth-death process �� ��� on �� � ��� �� � � � � ��



with transition rates that are polynomials in �:

�� ��� � 	 �� �
*

�
��� � �� � �*

�

�

�
�� �

�

�
�

�� ��� �� �� � �� � ��
�

�
�

where *� � 
 �. Clearly ,� � ��� � � � � �� is irre-
ducible (every state in ,� can be reached by every
other state in ,� ), and absorption at 0 (representing
the event of extinction) occurs with probability 1.
We have � ��� � *��� � �� � �� � *���� � ��
and ���� � � ��� 	 ���, where �� � � � � and
� � ��*. We will consider the most interesting
case � ! �, when there is drift away from the ab-
sorbing state. Under this assumption, the system (1)
has two equilibria in � � ��� ��: � (unstable) and ��

(asymptotically stable). Indeed, (1) has the solution

���� �� �
���

� 	 ��� � �� �����
� � � �� (4)

remembering that ���� �� � �. It is possible
to write down the full diffusion approximation for
�� ��� � �� ����� about the deterministic path (4),
but we will not pursue this further here. Suf-
fice it to say that the standard deviation plotted
in Figure 1 was evaluated by numerically integrat-
ing
� �
� ���

� ������ �����. Instead, we will con-
sider the OU approximation about the stable equi-
librium ��. Since � ���� � *��� � ���, we have
local drift � � � ����� � �*�� and local variance
� � ����� � ���� � �*���. Thus, provided we
arrange for (3) to hold, there will be a valid OU ap-
proximation. We conclude that, for � large, �� ���
has an approximate normal distribution with

�������� � �� 	  ������ ���� ����

������ ���� � ����  ��������

where ( � *�� � *� � �
 ��. This is depicted in
Figure 2.

Also, since �� is asymptotically stable, we may de-
duce if  � � &������, the time until first exit
of �� ��� from an interval of the form %� ����
has an approximate exponential distribution, condi-
tional on the process leaving at, say, the left end-
point, and the mean time until exit is asymptoti-
cally

�
'���  ��� ���

	
�
� 

�
���



�(. As already in-

dicated, we cannot use this result to estimate the
time to extinction, for this would require  � �
&������. Indeed, it is strongly suggestive that the
OU approximation will not accurately predict the
expected time to extinction. Since we have at our
disposal an explicit expression for this quantity, we
can test the hypothesis.

For a general Markov chain with transition rates
� � ���	����	� � � ��, whose state space �
(possibly infinite) includes a subset " which is

reached with probability 1, the time -� it takes to
reach " starting in state . is the minimal (and then
unique) non-negative solution to

�
��� ��.� /�-� 	

� � �, . �� ", with -� � � for . � ". This result
can be found in any text on Markov chains, no mat-
ter how ancient [for a recent exposition see Norris,
1997], but it is apparently not widely used by bi-
ologists; in their paper “Four facts every conserva-
tion biologist should know about persistence”, Man-
gel and Tier [1994] implore their readers to use it:
Fact 2 “There is a simple and direct method for the
computation of persistence times that virtually all
biologists can use”. It is often then a matter of sim-
ple arithmetic to evaluate the expected hitting times
in any given situation. Failing that, a host of numer-
ical methods exist (we are merely solving a system
of linear equations).

In the present context of birth-death processes on
�� with birth rates �)�� and death rates �+��, the
time -���� it takes to reach � starting in state . is
given by -���� �

��
����+�'��

��
��

��� '�, with
-���� � �, where the potential coefficients �'��

are given by '� � � and '� �
��

����)����+�� for
/ � �. (This formula is valid in the infinite state
case, replacing � by�.) For the logistic model,

-���� �
�

�

��
���

����
���

�

/ 	 0

����
���

�
� � / � 


��

�
�

Whilst this admits further simplification, the form
given here reflects the algorithm used to evaluate
-����, the product being evaluated recursively, and
the sums evaluated in such a way as to minimize
round-off error.

Estimating expected extinction times by way of the
OU approximation is also a simple task. For an OU
process ������ � � �� with local drift � and local
variance � , let 1� � �� �� � ���� � )� and 2��� �
��1������ � ��. Then, 2 is the unique solution to
the linear ODE

�
��

��2

���
	 ��

�2

��
	 � � ��

with 2�)� � � (an absorbing barrier at )) and
2��+� � � (a reflecting barrier at +) [see Sec-
tion 15.3 of Karlin and Taylor, 1981]. For the lo-
gistic model, we have � � �(� and � � �(.
The DE was solved by first converting it to two
first-order ODEs in the usual way, and then using
the Matlab (Version 6) command bvp4c, which
implements a three-stage Lobatto IIIa formula to
solve two-point boundary value problems. Note
that the time it takes the density process �� ��� to
hit � is approximated by the time it takes the dif-
fusion to reach ) � ���

�
� starting at the point

� �
�
���� ���� ���. We took + � � 	 !��� )�.



Figure 3 compares the OU approximation for the
expected extinction time with the exact values, for
all values of the starting point �� ��� � �. Notice
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Figure 3. OU approximation (dashed) for the
expected extinction time, and exact values (solid)
(� � ���, � � ��", � � ��� and �� ��� � �).

that the approximation is generally poor, but is best
when � is near the equilibrium point (�� � ����.

Whilst the formula for -���� does not pose any
significant numerical problems, several authors
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Figure 4. OU approximation (dashed) for the
expected extinction time, exact values (solid)

and the asymptotic expansion (dash-dot)
(� � ���
, � � ��� and ����� � ���
).

have derived asymptotic expansions [for example
Kryscio and Lefèvre, 1989]. Our formula is at vari-
ance with their formula (2.4), but shows a slight im-
provement. By evaluating the factorials as gamma
integrals, and using Cauchy’s method to estimate
these integrals, we obtain

-���� � ���� ���

���� ���

�
 ������

�

��

�'

�
�

Figure 4 compares the OU approximation with the
exact values and the asymptotic expansion for vari-
ous values of � .

For an alternative approach to estimating extinc-
tion times, see Nåsell [1999], who approximates the
time to extinction from the “quasi-stationary state”.

4. ACKNOWLEDGEMENTS

I would like to thank Michael McCarthy and the Ed-
itor for helpful comments on an earlier draft of the
manuscript.

5. REFERENCES

Barbour, A., Quasi-stationary distributions in
Markov population processes, Advances in
Applied Probability, 8, 296–314, 1976.

Bartlett, M., Stochastic Population Models in Ecol-
ogy and Epidemiology, Methuen, London,
1960.

Foley, P., Predicting extinction times from envi-
ronmental stochasticity and carrying capacity,
Conservation Biology, 8, 124–137, 1994.

Karlin, S., and H. Taylor, A Second Course in
Stochastic Processes, Academic Press, Lon-
don, 1981.
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