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Abstract

We consider a Markovian model proposed by Gyllenberg and Silvestrov for studying
the behaviour of a metapopulation: a population that occupies several geographi-
cally separated habitat patches. Although the individual patches may become empty
through extinction of local populations, they can be recolonized through migration
from other patches. There is considerable empirical evidence (in the work of Gilpin
and Hanski, for example) which suggests that a balance between migration and
extinction is reached which enables these populations to persist for long periods.
The Markovian model predicts extinction in a finite time. Thus, there has been
considerable interest in developing methods which account for the persistence of
these populations and which provide an effective means of studying their long-term
behaviour before extinction occurs. We shall compare and contrast the methods of
Gyllenberg and Silvestrov (pseudo-stationary distributions) and those of Day and
Possingham, which are based on the classical notion of a quasi-stationary distribu-
tion. We present here a convincing rationale for the latter, using limits of conditional
probabilities.

1 INTRODUCTION

Suppose that we are using a stochastic process (X(t), t ≥ 0) to model a popu-
lation which might eventually become extinct. The state X(t) at time t might
be something as simple as the number in the population, but it could be more
complicated: X(t) might be a vector indicating the numbers of various species,
or the numbers occupying various geographical regions. If we are to use our
model to explain observed phenomena, to make predictions, or if, in the first
instance, we wish simply to refine it in order that it might faithfully capture
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the behaviour of the population, then the very best we can hope to extract from
our model is the complete set of state probabilities: px(t) = Pr(X(t) = x),
x ∈ S, t > 0, where S is the set of states. This can usually be done, at least
in principle, by solving a set of difference equations or differential equations.
More often than not, an exact solution cannot be obtained analytically, and
so either analytical approximations, computational methods or asymptotic
methods are used. But, for the moment, let us imagine that we have complete
information: to be emphatic, we know px(t) for every x and t.

Now suppose that we observe the population at an arbitrary time u and we
see that extinction has not yet occurred. We know nothing more. How can
we incorporate this new information? We should evaluate a conditional state
distribution, that is, the state probabilities at time u conditioned on non-
extinction:

mx(u) = Pr(X(u) = x|X(u) 6= 0) =
px(u)

1− p0(u)
, x ∈ C, (1)

where 0 is the state corresponding to extinction, and C comprises the remaining
states (S = {0} ∪ C).

Our purpose here is to use this conditional state distribution to better under-
stand the metapopulation models introduced by Gyllenberg and Silvestrov [4].
If the numbers of states is not too large, as is the case in all the examples
studied in [4], then mx(t) can be calculated numerically. We shall compare the
conditional state distribution, m(t) = (mx(t), x ∈ S), with quasi-stationary
distributions (later called pseudo-stationary distributions in [5]) introduced
by those authors. We shall see that, as t becomes large, m(t) approaches a
limit m, called a limiting conditional distribution (traditionally called a quasi-
stationary distribution), and that m is the eigenvector corresponding to the
largest eigenvalue of the transition matrix restricted to C. Thus, when the
convergence of m(t) to m is rapid, m provides a simple means of assessing
the long-term behaviour of the metapopulation before extinction occurs. Day
and Possingham [2] have used this approach in analyzing a similar, more re-
fined model. They comment that the quasi-stationary distribution and the
pseudo-stationary distribution appear not to coincide. We shall amplify this
observation, by showing that the two ways of analyzing the model can give
rise to opposing conclusions.

2 A STOCHASTIC MODEL FOR METAPOPULATIONS

Suppose that there are n distinct geographical regions, or patches , and let
Xi(t) be 1 or 0 according as patch i is occupied or not at time t, where
t = 0, 1, 2, . . . . Let X = (X1, X2, . . . , Xn) and suppose that (X(t), t ≥ 0) is
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a (discrete-time) Markov chain taking values in S = {0, 1}n. Its transition
structure is defined as follows.

Define an interaction matrix Q = (qij, i, j ∈ N ), where N = {1, 2, . . . , n},
which governs the behaviour of the patches over a single time step: qij, for
j 6= i, is the probability that patch j will not be colonized by migration
from patch i, and qii is the probability that, in the absence of immigration,
patch i will become extinct. We shall assume that the interaction probabilities
depend on the distance dij between patches i and j (note that dii = 0 and
that dij = dji) and the area Ai of patch i in the following way (see [4]):

qij = exp(−e−adijAi), i, j ∈ N ,

where a(≥ 0) measures how badly individuals are at migrating. Thus, the
larger the area of a given patch, the more likely that patch is to survive and
to successfully colonize other patches, while the larger the distance between
patches the smaller the chance of colonization between them. In the extreme
case a = 0, colonization does not depend on the distance between colonies;
otherwise, the larger the value of a, the more pronounced is the effect of
distance between patches.

The various colonization processes and local extinction processes are assumed
to be independent. Hence, we can define qi(x), where x = (x1, x2, . . . , xn), by

qj(x) =
n∏

i=1

qxi
ij , j ∈ N , x ∈ S,

to be the probability that patch j will become extinct at the next epoch given
a present configuration x. Thus it is clear not only that the model accounts
for spatial structure in the population but also that the local extinction prob-
ability may depend on the effect of migration.

Finally, the transition matrix P = (p(x, y), x, y ∈ S) can be written as

p(x, y) =
n∏

i=1

qi(x)1−yi(1− qi(x))yi , x, y ∈ S.

Notice that, since qi(0) = 1 for all i ∈ N , state 0 = (0, 0, . . . , 0) (corresponding
to the extinction of all patches) is an absorbing state for the chain:

p(0, y) =





1, if y = 0,

0, otherwise.

We shall assume that the remaining states C = {x ∈ S : x 6= 0} form an
irreducible, aperiodic class (Assumptions A1-A3 of [4] guarantee this). We
shall also assume that qii > 0 for all i ∈ N , so that, locally, every patch has
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a positive probability of extinction. This ensures that p(x, 0) > 0 for some
x ∈ C, so that the absorbing state is accessible from all states in C, and hence,
since C is finite, eventual extinction will occur with probability 1.

A salient feature of this model is that it helps account for the persistence
of metapopulations. Figure 1 shows a simulation of a 5-patch metapopula-
tion. The number of occupied patches is plotted against time up to extinction
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Fig. 1. Simulation of a 5-patch metapopulation with a=7 and initially all patches
occupied.

at t = 728. All patches have the same area (Ai = 1). The distance between
Patches 2,3,4 and 5 is the same (dij = 0.1), while Patch 1 is 10 times that
distance away from each of the others (d1j = 1).

Do the conditional state probabilities account for the observed behaviour?
Figure 2 compares the observed frequencies for the sample path illustrated in
Figure 1, with the conditional state distribution mx(t) at t = 1, 2, 5 and 10. In
each case, the black bar is the distribution of the number of occupied patches
evaluated using mx(t), while the white bar is the proportion of time for which i
patches were occupied (i = 1, 2, . . . , 5) during the period of the simulation.
The conditional state distribution was evaluated using (1) and the iteration

p(t + 1) = p(t)P, t = 0, 1, . . . , (2)

with p(0) assigning all its mass to the initial state. Notice that when t is large
the conditional state distribution is in reasonable agreement with empirical
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Fig. 2. Comparison between the conditional state distribution (black) and the sim-
ulated proportions of occupied patches (white).

frequencies. This agreement is not surprising from a theoretical point of view,
for in a sense which can be made very precise, the set of frequencies is a
“good” estimate of the state distribution for t large. My purpose here is to
endorse the reader’s common sense: that using conditional state probabilities
is a sensible approach to modelling the behaviour of the population before
extinction occurs.

3 LIMITING CONDITIONAL DISTRIBUTIONS

The trend illustrated in Figure 2 has a simple theoretical explanation. Since
C is a finite set, the limit

lim
t→∞mx(t) = mx (3)

exists and defines a proper distribution m = (mx, x ∈ C), called a limiting
conditional distribution, and m is the left eigenvector of PC (P restricted to C)
corresponding to the eigenvalue, ρ1, with maximal modulus. This is true for
any aperiodic Markov chain with a finite transient class C ; see Darroch and
Seneta [1]. Indeed, classical (Perron-Frobenius) matrix theory guarantees that,
under our assumptions, ρ1 has multiplicity 1, it is real and strictly less than 1,
and, the corresponding left and right eigenvectors have strictly positive entries.
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Figure 3 illustrates the rapid convergence of mx(t) to mx for the 5-patch
metapopulation model. The corresponding distributions of the number of oc-
cupied patches are plotted and compared at times t = 2, 4, 9 and 15.
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Fig. 3. Comparison between the conditional state distribution (black) and the lim-
iting conditional distribution (white) for the number of occupied patches.

Again since C is finite, we can be precise about the rate of convergence in (3) by
examining the eigenvalue, ρ2, of PC with second-largest modulus. This eigen-
value might not be real, and it might have a multiplicity, κ, which is greater
than 1, but, for simplicity, let us suppose that κ = 1. It can be shown (see [1])
that

mx(t) = mx + O(βt) as t →∞,

where β = |ρ2|/ρ1(< 1). Thus, the smaller |ρ2| is compared with ρ1, the faster
the convergence of mx(t) to mx. Further, the expected time till absorption,
τ , is approximately ρ1/(1 − ρ1) and so if, in addition, ρ1 is close to 1, we
should expect m to faithfully describe the behaviour of the population before
extinction. For the 5-patch metapopulation model with a = 7, we find that
ρ1 ' 0.9979, ρ2 ' 0.6312 (real with multiplicity 1), β(= ρ2/ρ1) ' 0.6325 and
τ ' 488.

Before we proceed to examine the notion of a pseudo-stationary distribution,
we remark that usage of the term quasi-stationary distribution for limiting
conditional distribution is commonplace. However, in recent times, this term
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has been reserved for any initial distribution (αx, x ∈ C) such that the condi-
tional probability mx(t) does not depend on t: mx(t) = αx for all t > 0, x ∈ C.
Every limiting conditional distribution is a quasi-stationary distribution in
this sense, but the converse is not true; see for example Nair and Pollett [7],
van Doorn [9], and van Doorn and Schrijner [10]. The interchangability of
the terms arose perhaps because, for Markov chains with S irreducible, the
stationary distribution and limiting distribution coincide. The problem of iden-
tifying conditions under which a quasi-stationary distribution is also a limiting
conditional distribution has been the subject of much recent research; see [6].

4 PSEUDO-STATIONARY DISTRIBUTIONS

If we had assumed that a given patch, say Patch 1, had a zero local extinction
probability (q11 = 0), that patch would behave, in an obvious sense, as a
mainland . State 0 would no longer be accessible from all states and indeed C
would decompose into two irreducible classes, C0 and C1, consisting of those
states in C which have, respectively, x1 = 0 and x1 = 1: either the process
would start in C1 (the mainland is inhabited) and remain there, or, start in C0

(the mainland is uninhabited) and eventually enter either C1 or the absorbing
state.

The method of Gyllenberg and Silvestrov depends on being able to identify
a “quasi-mainland”, namely a single patch i with qii small; take this to be
Patch 1. By considering a sequence of processes indexed by ε = qii, Gyllenberg
and Silvestrov were able to invoke the powerful perturbation theory of Markov
chains by treating ε as a perturbation. It is worth reviewing their results in
some detail.

Let ε ∈ (0, 1] (now arbitrary) and suppose that our interaction matrix depends
on ε in the following way:

q
(ε)
ij = qij + εq̂ij + ◦(ε) as ε → 0,

where

qij = lim
ε→0

q
(ε)
ij and q̂ij = lim

ε→0

1

ε

(
q
(ε)
ij − qij

)
,

the latter assumed to be non-negative and finite, and, that Q = (qij, i, j ∈ N )
satisfies q11 = 0. (This notation might cause some confusion; it is important to
realize that Q(ε) is the original interaction matrix, with ε chosen appropriately
(say ε = q11), and that here Q is the interaction matrix obtained in the limit
as ε → 0.) Then, in an obvious notation,

p(ε)(x, y) = p(x, y) + εp̂(x, y) + ◦(ε), x, y ∈ S,
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where P (ε) = (p(ε)(x, y), x, y ∈ S) is the transition matrix corresponding to
Q(ε) and P = (p(x, y), x, y ∈ S) is the transition matrix corresponding to

Q. It is worth emphasizing at this stage that, of necessity, q
(ε)
11 → 0, and so

the choice ε = q11 is a natural one, and one which Gyllenberg and Silvestrov
adopted in all their examples (see Section 7 of [4]).

Next, Gyllenberg and Silvestrov examined the asymptotic behaviour of the
state probabilities, obtained from P (ε), by letting ε → 0 and t(= tε) → ∞ in
such a way that ε tε → s, where 0 ≤ s ≤ ∞. This is an intriguing idea. By
arguing that the expected lifetime of the quasi-mainland is of order 1/ε, they
were able to study the process on different time scales: smaller than, larger
than, and of the same order as, the expected lifetime (these corresponding,
respectively, to s = 0, s = ∞, and 0 < s < ∞). They proved that, for x, y ∈ C,
the limit

lim
ε→0

Pr(X(tε) = y|X(0) = x)

exists and is given by a mixture of the limiting probabilities π(x, y) for the
(ergodic) chain generated by Q and the degenerate distribution δ(y, 0) which
assigns all its mass to state 0, the mixing probability being e−λs, where λ is
a positive constant which is specified in terms of p̂(x, y). Gyllenberg and Sil-
vestrov called this mixture a quasi-stationary distribution; later, in [5], they
coined the term pseudo-stationary distribution to distinguish it from the dis-
tributions described in Section 3. Note that π(y) = π(x, y) is the same for all
x ∈ C1, that π(y) = 0 for y ∈ {0} ∪ C0 and strictly positive otherwise, and,
that for x ∈ C0 and y ∈ C1, π(x, y) = h(x, C1)π(y), h(x, C1) is the probability
that the chain reaches C1 starting in x.

The most interesting case for the practitioner is s = 0, where the population
is observed before extinction occurs; when tε grows more slowly than the
expected lifetime, the limiting state probabilities converge to the distribution
obtained by setting q11 = 0. In all the examples given in [4], only this case
was examined.

The case s = ∞ gives rise to an obvious conclusion: that if the population
is observed on a time scale with tε growing more rapidly than the expected
lifetime, then the limiting distribution would be degenerate.

The most interesting case from a mathematical point of view is 0 < s < ∞,
where the process is observed on the same time scale as expected lifetime—
though the author contends that the observer could not possibly discern this.
Here, the limiting distribution is a genuine mixture of π and δ.
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5 A COMPARISON

In this section we shall compare the two approaches to modelling quasi-
stationary behaviour in metapopulations.

First let us return to the 5-patch model studied in Section 2. Recall that all
patches had the same area (Ai = 1), Patches 2,3,4 and 5 (“islands”) were
a distance 0.1 from one another, while Patch 1 (the quasi-mainland) was a
distance 1 from each of the others. Figure 4 compares the limiting conditional
distribution, the simulated proportions of occupied patches and the pseudo-
stationary distribution. The disparity is marked: for this example, the two
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Fig. 4. Comparison between the limiting conditional distribution (black), the simu-
lated proportions of occupied patches (grey) and the pseudo-stationary distribution
(white).

ways of analysing the model lead to quite different predictions. And, as illus-
trated in Figure 5, this disparity becomes worse as the time-scale parameter
s increases. The source of the disparity is easy to identify. The limiting condi-
tional distribution assigns mass to all states, whereas the pseudo-stationary
distribution assigns mass to only those states x with x1 = 1, and, for these
states the distributions are markedly different. For example, under the lim-
iting conditional distribution, state (1, 0, 0, 0, 0) has negligible mass, whereas
the pseudo-stationary distribution assigns nearly half its mass to this state.

To illustrate this graphically, it is simpler to consider the corresponding 3-
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Fig. 5. The effect of varying s on the pseudo-stationary distribution (black). The
white bar represents the simulated proportions of occupied patches.

patch model. All patches have the same area, the distance between the islands
(Patches 2 and 3) is 0.1, and the quasi-mainland (Patch 1) is 10 times that
distance away from each of 2 and 3. This is precisely the first example of [4].
Figures 6 and 7 compare the limiting conditional distribution, the simulated
proportions of occupied patches, and the pseudo-stationary distribution for the
3-patch metapopulation model with a = 3. Figure 6 shows the distribution of
the number of patches, while Figure 7 shows that actual state distribution. The
white bar in Figure 6 can be compared with Figure 1(d) of [4]. The disparity
is particularly noticible in the state distribution. Observe, in particular, the
unexpectedly high probability assigned to state (1, 0, 0) under the pseudo-
stationary distribution.

We remark that for the 3-patch model, repeated runs are needed to accurately
estimate the proportions of occupied patches, for extinction occurs quickly
(the expected time till extinction being τ ' 12.94 starting, as we did, in state
(0, 1, 1)). Our results are based on 1000 runs. For the a = 3 model we have
ρ1 ' 0.9155, ρ2 ' 0.6005 and β ' 0.6560. The anticipated rapid convergence
of the conditional state distribution is observed.
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Fig. 6. Comparison between the limiting conditional distribution (black), the simu-
lated proportions of occupied patches (grey) and the pseudo-stationary distribution
(white) for a 3-patch metapopulation model with a = 3.

6 DISCUSSION

In a recent paper, Gosselin [3] has attempted to reconcile the two approaches
by establishing an intuitively obvious result. Denote the state probabilities
corresponding to P (ε) by p(ε)(t) = (p(ε)

x (t), x ∈ S), so that

p(ε)(t + 1) = p(ε)(t)P (ε), t = 0, 1, . . . ,

and denote the corresponding conditional probabilities by m(ε)
x (t) (cf (1)).

Gosselin proved that

lim
ε→0

lim
t→∞m(ε)

x (t) =





π(x), if x ∈ C1,

0, if x ∈ C0,

which he compared with Theorem 6.2 of [4]:

lim
ε→0

m(ε)
x (tε) =





π(x), if x ∈ C1,

0, if x ∈ C0.

(These results have been stated here in slightly more generality than in [3]
and [4]; they assume, or condition on, a particular initial state, but since C
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Fig. 7. Comparison between the limiting conditional distribution (black), the simu-
lated proportions of occupied patches (grey) and the pseudo-stationary distribution
(white) for a 3-patch metapopulation model with a = 3.

is a finite set, we may use an arbitrary initial distribution p(0) over states,
in which case the limits do not depend on p(0).) Thus, in the important
case s = 0, the limiting conditional distribution and the pseudo-stationary
agree when ε is small. The problem with the models examined earlier is that
ε(= q11) ' 0.3679, independently of the number of patches.

However, quasi-stationary behaviour is a property of the model and not the
means of analysing it. The 5-patch model exhibits quasi-stationarity, demon-
strated emphatically in Figure 1, yet q11 is not small. The pseudo-stationary
distribution does not capture this behaviour. On the other hand, the con-
ditional state distribution m(t) does: afterall, it is the most information our
model can provide at any time t given that we know extinction has not occured
by time t. In cases when the convergence of m(t) to the limiting conditional
distribution m is rapid, this distribution can be used instead.

A case for which q11 is small, is the second example of [4]. It differs from the 3-
patch example described above only in that A = (10, 5, 0.001) and d23 = d32 =
0.001, so that the quasi-mainland is well away from the two islands, a distance
1000 times that between the islands, and, of the two islands, one is half the
size of the quasi-mainland and 5000 times that of the other island. When
a = 7.5 we find that ε ' 0.000045, and that ρ1 ' 0.9999, ρ2 ' 0.9905 and
β ' 0.9906. Thus, the expected time till extinction is large, while convergence
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of the conditional state distribution is slow. Figure 8 shows the distribution of
the number of occupied patches. The white bar in Figure 8 can be compared
with Figure 3(c) of [4].
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Fig. 8. Comparison between the limiting conditional distribution (black), the simu-
lated proportions of occupied patches (grey) and the pseudo-stationary distribution
(white) for the second 3-patch metapopulation model with a = 7.5.

We shall conclude with a brief discussion of computational issues. There are
many numerical software libraries available which include routines for per-
forming matrix computations and, in particular, for evaluating eigenvalues
and eigenvectors. Perhaps the most widely used is MATLAB. In using this
package, we have three obvious methods available to us. We could use the
function eig, which evaluates all eigenvalues and/or eigenvectors using the
QR algorithm, or the function eigs (available in Version 5 or above), which
evaluates particular eigenvalues and/or eigenvectors using the Arnoldi algo-
rithm, or, we could simply use iteration based on (1) and (2). We note that
the Arnoldi algorithm is normally used for large-sparse systems (see for exam-
ple [8]), but can be used in the present context (P is always dense), though
its advantages will not be fully realized. Table 6 compares these methods. The
size of the system, measured by the number of states (equivalently, the size of
P ), is given in Column 1. Columns 2,3 and 4 list the numbers of flops (floating
point operations) used by each method; the iteration was stopped (at t given
in the last column) when the maximum elementwise difference between the
state vector and the corresponding result of the Arnoldi method was smaller
than 10−6 (this being also the default tolerance of the Arnoldi method). The
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2n Arnoldi QR Iteration t

4 3543 1182 932 29

8 41966 12610 5768 45

16 260232 64996 15888 31

32 740295 527710 59424 29

64 1116134 3554160 245824 30

128 2264912 30466852 983168 30

256 5425752 223682282 3932416 30

512 17161871 – 15729152 30

1024 65372004 – 62915584 30

Table 1. Comparison between various computational methods.

QR algorithm works well for small systems, while the Arnoldi algorithm ap-
pears to be better for large systems. The performance of the simplest method,
namely iteration based on (1) and (2), is always the best.
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