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Abstract. In this paper I shall consider a model for the simplest kind of dynamic
routeing in a circuit-switched telecommunications network, namely Random Alternative

Routeing: if a call cannot be carried on a first-choice route, then a second-choice route is

chosen at random from a fixed set of alternatives. This kind of routeing can give rise to
several modes of behaviour. For example, the simple model I shall consider can exhibit

bistability; the system fluctuates between a low-blocking state, where calls are accepted

readily, and a high-blocking state, where the likelihood of a call being accepted can be
quite low. I shall describe a method which allows one to study the stability of the two

states. In particular, the method allows one to estimate the time for which these states
persist.

1. Introduction

Recently, Gibbens et al. (1990) introduced a simple model which helps to explain
why circuit-switched telecommunications networks with Random Alternative Routeing
can exhibit bistable behaviour. Such bistability can have serious implications for the
performance of the network, for, in the high-blocking state, a situation can persist
where large numbers of calls use alternative “second-choice” routes, which generally
demand greater link occupancy than do “first-choice” routes and, thus, new calls are
likely to be blocked frequently. The persistence of the high-blocking state is brought
about because, even when calls are accepted, they are allotted “first-choice” routes
rather rarely. It is of interest, therefore, to determine the time it takes for the system
to relax to the low-blocking state, where new calls are accepted more readily, and then
to determine the time for which the low-blocking state persists. In this paper I shall
describe a method by which one can model the random fluctuations of the system
about its various states, either stable or unstable. For example, the method allows
one to show that, as the number of links becomes large, the distribution of the time
it takes to leave a region containing a stable equilibrium is, asymptotically, negative
exponential.
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2. The model : a symmetric fully-connected network

There are N nodes connected to one another and, thus, a total of K =
(
N
2

)
links

(circuit groups). The links are assumed to have the same number of circuits, C, and
calls between any two given nodes, a and b, arrive according to a Poisson process with
rate ν > 0; the arrival streams are assumed to be independent. If a call is offered to
the link connecting a and b, and there is at least one free circuit on that link, then the
call is connected and is held for a negative exponentially distributed period with mean
1. If there are no free circuits on the direct link, a third node, c, is chosen at random
from the remaining nodes and an attempt is made to connect the call on the route via
c. If there is spare capacity on each of the two links comprising the alternative route,
the call is connected and holds one circuit from each link for a period that is negative
exponentially distributed with mean 1. The call is blocked, and then lost, if it cannot
be accommodated on the alternative route. Call lengths are assumed to be mutually
independent, and independent of the arrival process.

Although the usual model of this network is a finite-state irreducible Markov chain,
its state description is rather complicated and its equilibrium behaviour cannot be
analysed simply. For this reason, Gibbens et al. (1990) proposed a simplified model
which does not respect the graph structure of the network, but whose behaviour for
large N is a good approximation to that of the original model. The simplified de-
scription of the network, which I shall refer to as the GHK model, differs in two ways.
In cases when a call cannot be connected on a direct link, two links are chosen at
random from the remaining K − 1 links. If there is spare capacity on each of these
links, one circuit is held on each link, but, now, the two holding times are independent
negative exponentially distributed random variables with mean 1. Thus, in contrast
to the original model, the two circuits are released at different times (with probability
1).

If n
(K)
j (t) is the number of links with j circuits in use at time t, for a network

with K links, then, under the above assumptions, (n(K)(t), t ≥ 0), where n(K) =

(n
(K)
0 , n

(K)
1 , . . . , n

(K)
C ), is a continuous-time Markov chain which takes values in

S(K) =

{
n ∈ {0, 1, . . .}C+1 :

C∑
i=0

ni = K

}

and which has transition rates, Q(K) = (q(K)(n, n′), n, n′ ∈ S(K)), given by

q(K)(n, n+ ej+1 − ej) = νnj , 0 ≤ j ≤ C − 1,

q(K)(n, n+ ej−1 − ej) = jnj, 1 ≤ j ≤ C,

q(K)(n, n+ ei+1 − ei + ej+1 − ej) = νnC
ninj(
K
2

) , i > j, 0 ≤ i, j ≤ C − 1,

q(K)(n, n+ 2(ej+1 − ej)) = νnC

(
nj

2

)
(
K
2

) , 0 ≤ j ≤ C − 1,

where ei is the unit vector with 1 as its ith entry.
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Gibbens et al. (1990) proved a functional law of large numbers for the simplified
model, and this has recently been shown to be valid for the original model, sub-
ject to certain natural constraints on the initial state of the network (See Cram-
etz and Hunt (1990)). In particular, they considered the behaviour of X(K) =

(X
(K)
1 , X

(K)
2 , . . . , X

(K)
C ), where

X
(K)
j (t) =

n
(K)
j (t)

K

is the proportion of links with j circuits in use at time t. The process (X(K)(t), t ≥ 0)
is itself a Markov chain, but one which takes values in a lattice contained in the simplex

(2.1) E =

{
x ∈ [0,∞)C+1 :

C∑
i=0

xi = 1

}
.

Gibbens et al. showed that if, in the limit as K → ∞, X(K)(0) ⇒ x0 in E, then
X(K)(·) ⇒ X(·, x0) in DE [0,∞), where (X(t, x0), t ≥ 0) is a deterministic process
with initial point X(0, x0) = x0; here ⇒ denotes weak convergence and DE [0,∞) is
the space of all sample paths on [0,∞). By studying the behaviour of X(t, x0) in the
limit as t → ∞, they were able to demonstrate the possibility of bistable behaviour
for C large enough and for a narrow range of values of the ratio ν/C.

The law of large numbers establishes that, when K is large, the sample behaviour of
the model can be approximated by X(·, x0). However, it does not provide information
concerning the random fluctuations about this deterministic path. For this reason, I
shall propose an analogous functional central limit theorem that establishes a diffusion
approximation forX(K)(·) which is valid over finite intervals of time. This will be made
possible by observing that the GHK model is asymptotically density dependent , in the
sense of Pollett (1990). I shall first recall this notion and then state two functional
limit laws for asymptotically density dependent Markov chains which are appropriate
for analysing the GHK model.

3. Asymptotic density dependence

Let {n(K)(·)} be a family of continuous-time Markov chains, indexed by K > 0,
and suppose that n(K)(·) takes values in S(K), a subset of ZJ , and has transition rates
Q(K) = (q(K)(n, n′), n, n′ ∈ S(K)).

Definition. Suppose that there exists an open set E ⊆ R
J and a family, {f (K), K >

0}, of continuous functions, with f (K) : E × Z
J → R, such that

(3.1) q(K)(n, n+ l) = Kf (K)
( n
K
, l
)
, l 	= 0,

and
∑

l lf
(K)(x, l) converges for all x ∈ E. Then the family of Markov chains is

asymptotically density dependent if, in addition, there exists a function, F : E → R
J ,

such that {F (K)}, given by

F (K)(x) =
∑
l

lf (K)(x, l), x ∈ E,
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converges to F on E.

This definition of density dependence differs from that introduced by Kurtz (1970).
His definition requires only that there exists a continuous function, f : RJ × Z

J → R,
such that

q(K)(n, n+ l) = Kf
( n
K
, l
)
, l 	= 0,

and (implicitly)
∑

l lf(x, l) <∞ for all x. Thus, an asymptotically density dependent

family of Markov chains is density dependent if f (K) (and hence F (K)) does not depend
on K. Roughly speaking, a family is density dependent if the transition rates of the
corresponding “density process”, X(K)(·), defined by

X(K)(t) =
n(K)(t)

K
, t ≥ 0,

depend on the present state, n, only through the density n/K; an asymptotically den-
sity dependent family is one which exhibits this property in the limit asK → ∞. Thus,
there is a natural way to associate with this process a density dependent deterministic
process which, for large K, is “tracked” by the process. Indeed, a straightforward
formal argument based on the Kolmogorov forward differential equations for the state
probabilities, shows that, for large K,

d

dt
EX(K)(t) 
 EF (K)(X(K)(t)), t > 0.

Thus one might expect this deterministic process, call it X(·), to satisfy

d

dt
X(t) = F (X(t)), t > 0.

The following “law of large numbers” establishes that, under appropriate conditions,
the density process does track a deterministic process; see Pollett (1990) for details.

Theorem 3.1. Suppose that F is Lipschitz continuous on E and that, for all K > 0,

sup
x∈E

∑
l

|l|f (K)(x, l) <∞,(3.2)

lim
δ→∞

sup
x∈E

∑
l:|l|>δ

|l|f (K)(x, l) = 0(3.3)

and

(3.4) lim
K→∞

sup
x∈E

|F (K)(x)− F (x)| = 0.

Then, if

(3.5) lim
K→∞

X(K)(0) = x0,
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we have that

lim
K→∞

Pr

(
sup
s≤t

∣∣∣X(K)(s)−X(s, x0)
∣∣∣ > ε

)
= 0, 0 ≤ s ≤ t,

for all ε > 0, and for every trajectory, X(·, x0), satisfying

X(0, x0) = x0,

X(s, x0) ∈ E, 0 ≤ s ≤ t,

∂

∂s
X(s, x0) = F (X(s, x0)).

Conditions (3.2) and (3.3), together with the Lipschitz condition on F , are usually
satisfied in most practical situations. For example, (3.2) and (3.3) hold if, for each l,
f (K)(·, l) is bounded (on E) and if there are only a finite number of transitions out of
any state, n. Condition (3.5) is important. It stipulates that the density process should
begin close to the initial value, x0, of the deterministic trajectory. The conclusion of
the theorem is, then, that the density process converges (uniformly in probability) over
any finite time interval, to the deterministic path.

The following “central limit law” establishes that, for large K, the fluctuations
about the deterministic path follow a diffusion, provided that certain “second-order”
conditions are satisfied; again see Pollett (1990) for details.

Theorem 3.2. Suppose that {F (K)} converges uniformly to F and that F is bounded
and Lipschitz continuous on E. Suppose also that the family {G(K)}, where G(K)(x)
is a J × J matrix with elements

g
(K)
ij (x) =

∑
l

liljf
(K)(x, l), x ∈ E,

converges uniformly to G, where G is bounded and uniformly continuous on E.
If, in addition,

sup
x∈E

∑
l

|l|2f (K)(x, l) <∞,(3.6)

lim
δ→∞

sup
x∈E

∑
l:|l|>δ

|l|2f (K)(x, l) = 0,(3.7)

for all K > 0, and

(3.8) lim
K→∞

sup
x∈E

√
K|F (K)(x)− F (x)| = 0,

where now F is assumed to have uniformly continuous first partial derivatives, then,
provided

(3.9) lim
K→∞

√
K
(
X(K)(0)− x0

)
= z,
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the family of processes {Z(K)(·)}, defined by

Z(K)(s) =
√
K
(
X(K)(s)−X(s, x0)

)
, 0 ≤ s ≤ t,

converges weakly in DE [0, t] to a diffusion, Z(·), with initial value Z(0) = z and with
characteristic function, ψ = ψ(s, θ), which satisfies

(3.10)
∂ψ

∂s
(s, θ) = −1

2

∑
j,k

θjgjk(X(s, x0))θkψ(s, θ) +
∑
j,k

θj
∂Fj

∂xk
(X(s, x0))

∂ψ

∂θk
(s, θ).

Again, the technical conditions, (3.6) and (3.7), hold if f (K)(·, l) is bounded for
each l and there are finitely many possible transitions out of each state. Condition
(3.8) strengthens (3.4) to ensure that {F (K)} converges to F at the correct rate, while
Condition (3.9) provides the initial value of the diffusion.

4. A functional central limit theorem for the GHK model

The GHK model is clearly asymptotically density dependent, for one can define E
by (2.1) and f (K) : E × Z

(C+1) → R, K ≥ 1, by

f (K)(x, ej+1 − ej) = νxj , 0 ≤ j ≤ C − 1,

f (K)(x, ej−1 − ej) = jxj, 1 ≤ j ≤ C,

f (K)(x, ei+1 − ei + ej+1 − ej) = 2ν

(
K

K − 1

)
xCxixj , i > j, 0 ≤ i, j ≤ C − 1,

f (K)(x, 2(ej+1 − ej)) = ν

(
K

K − 1

)
xCxj

(
xj − 1

K

)
, 0 ≤ j ≤ C − 1,

so that (3.1) is satisfied. It is then clear that, as K → ∞, f (K) converges (uniformly
on E) to f , given by

f(x, ej+1 − ej) = νxj , 0 ≤ j ≤ C − 1,

f(x, ej−1 − ej) = jxj , 1 ≤ j ≤ C,

f(x, ei+1 − ei + ej+1 − ej) = 2νxCxixj , i > j, 0 ≤ i, j ≤ C − 1,

f(x, 2(ej+1 − ej)) = νxCx
2
j , 0 ≤ j ≤ C − 1,

and so the corresponding sequence {F (K)}, defined by F (K)(x) =
∑

l lf
(K)(x, l), x ∈

E, converges (uniformly on E) to F , given by F (x) =
∑

l lf(x, l), x ∈ E. On evaluating
this latter summation, one finds that

F (x) = (HT + λ(x)RT )x,
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where λ(x) = 2νxC(1− xC), and H and R are (C + 1)× (C + 1) matrices, given by

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

−ν ν 0 0 . . . 0 0 0
1 −(ν + 1) ν 0 . . . 0 0 0
0 2 −(ν + 2) ν . . . 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . C − 1 −(ν + C − 1) ν
0 0 0 0 . . . 0 −C C

⎞
⎟⎟⎟⎟⎟⎟⎠

and

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . −1 1
0 0 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Thus, the appropriate deterministic model to consider is

(4.1)

d

dt
X0(t) = X1(t)− (ν + λ(t))X0(t),

d

dt
Xj(t) = (ν + λ(t))Xj−1(t)− (ν + λ(t) + j)Xj(t) + (j + 1)Xj+1(t),

1 ≤ j ≤ C − 1,

d

dt
XC(t) = (ν + λ(t))XC−1(t)− CXC(t),

where λ(t) = λ(X(t)). We might have expected this kind of law of motion to govern the
limit proportions, for notice that H is the transition matrix of an Erlang loss system
with C circuits and with Poisson traffic offered at rate ν, and so if λ were identically
zero, (4.1) would comprise the forward equations for the state probabilities of such a
system. As it is, λ(t) gives the additional arrival rate at time t due to overflowing calls.
As Gibbens et al. point out, (4.1) admits a unique solution, X(·, x0), for each given
initial point, X(0, x0) = x0; this follows from the fact that F is Lipschitz continuous
on E. Now, (3.2) and (3.3) are trivially satisfied and (3.4) holds because

(4.2) |F (K)
j (x)− Fj(x)| = 1

K − 1
(2ν − λ(x))Δxj,

where

Δxj =

⎧⎪⎨
⎪⎩

−x0, j = 0,

xj−1 − xj , 1 ≤ j ≤ C − 1,

xC−1, j = C.

Thus, using Theorem 3.1, we have the following version of the law of large numbers
for the GHK model:
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Theorem 4.1. In the GHK model, let X
(K)
j (t) be the proportion of links with j circuits

in use at time t and define (X(K)(t), t ≥ 0) by X(K) = (X
(K)
1 , X

(K)
2 , . . . , X

(K)
C ). Then,

if
lim

K→∞
X(K)(0) = x0,

we have that

lim
K→∞

Pr

(
sup
s≤t

∣∣∣X(K)(s)−X(s, x0)
∣∣∣ > ε

)
= 0, 0 ≤ s ≤ t,

for all ε > 0, where X(·, x0) is the unique solution to (4.1) such that X(0, x0) = x0.

The theorem allows us to conclude, for example, that {X(K)(s)} converges in prob-
ability to X(s, x0) and, since for each s, X(K)(s) is uniformly bounded, dominated
convergence implies that

lim
K→∞

EX(K)(s) = X(s, x0)

on all finite time intervals.
The additional conditions of Theorem 3.2 are also satisfied, and so one can establish

an analogous central limit law. In particular, F is bounded and, since, for each l,
f (K)(·, l) converges uniformly on E to f(·, l), we have that {F (K)} converges uniformly
to F . The second-order technical conditions, (3.6) and (3.7), are trivially satisfied, as
is (3.8), by virtue of (4.2). A suitable sequence of covariance matrices, {G(K)}, can be
constructed from {f (K)} and it is easy to see that this sequence converges uniformly
to the matrix G with elements

gij(x) =
∑
l

liljf(x, l), x ∈ E.

Although the precise arithmetical evaluation of G is tedious, it is clear that G is
bounded and uniformly continuous on E. This follows from the definition of G and
the fact that, for each l, f(·, l) is bounded and uniformly continuous on E. Thus,
provided (3.9) holds, a diffusion approximation is justified and equation (3.10) specifies
the distribution of the approximating diffusion, Z(·). Using this expression, one can
obtain the mean and variance of Z(s) and thus, for large K, an approximate formula
for the mean and variance of X(K)(s). If one denotes by ∇F the matrix of first partial
derivatives of F , that is ∇F = [∂Fi/∂xj], and puts Bs = ∇F (X(s, x0)), then

EZ(s) =Msz,

where

Ms = exp

(∫ s

0

Budu

)
.

On the other hand, the covariance matrix, Σs, of Z(s) is given by

Σs =Ms

(∫ s

0

M−1
u G(X(u, x0))(M

−1
u )Tdu

)
MT

s .
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It follows that
CovX(K)(s) 
 K−1Σs

and a “working” approximation for the mean, obtained by setting z equal to√
K
(
X(K)(0)− x0

)
, is given by

EX(K)(s) 
 X(s, x0) +Ms(X
(K)(0)− x0).

Observe that the mean and variance of the numbers of circuits in use at time s are
both of order K.

In the important special case where x0 is chosen as an equilibrium point of the
deterministic model, one can be far more precise in specifying the approximating dif-
fusion. The equilibrium points of (4.1) have been studied extensively by Gibbens et
al. (1990). They showed that if x0 = (p0, p1, . . . pC) is an equilibrium point it must be
of the form given by

pj =
ξj

j!

(
C∑
i=0

ξi

i!

)−1

, 0 ≤ j ≤ C,

where ξ solves

(4.3) ξ = ν + 2νE(ξ, C) (1− E(ξ, C)) .

The quantity E(ξ, C), given by

E(ξ, C) =
ξC

C!

(
C∑
i=0

ξi

i!

)−1

,

is Erlang’s formula for the loss probability of a single link with C circuits and with
Poisson traffic offered at rate ξ. It is usually more convenient to calculate the solutions
to (4.3) by setting b = E(ξ, C) and solving the equation

(4.4) b = E (ν + 2νb(1− b), C) ;

this transformation of (4.3) shows that b could have been obtained as the celebrated
Erlang Fixed Point of the model (see, for example, Kelly (1986)). For C sufficiently
small, equation (4.4) has a unique solution and the corresponding equilibrium point is
stable. However, if C is large enough, there can be two or even three solutions depend-
ing, then, on the magnitude of the ratio ν/C, and these give rise to two, respectively
three, equilibrium points. In the case of two equilibrium points, one is stable and the
other unstable, while in the case of three, two are stable and the other is unstable.

The following central limit law shows that the random fluctuations about any given
equilibrium point, x0, are Gaussian. Moreover, it shows that these fluctuations can
be approximated by an Ornstein-Uhlenbeck (OU) process. It should be emphasised
that x0 need not be stable. Indeed, the approximation is appropriate for describing
the fluctuations about the unstable equilibria.
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Theorem 4.2. Let x0 be an equilibrium point of (4.1). Then, if

lim
K→∞

√
K
(
X(K)(0)− x0

)
= z,

the family of processes {Z(K)(·)}, defined by

Z(K)(s) =
√
K
(
X(K)(s)− x0

)
, 0 ≤ s ≤ t,

converges weakly in DE [0, t] to an Ornstein-Uhlenbeck process with local drift matrix
B = ∇F (x0), local covariance matrix G = G(x0), and with initial value Z(0) = z. In
particular, Z(s) is normally distributed with mean

μs = eBsz

and covariance matrix

Σs =

∫ s

0

eBuGeB
T udu = Σ− eBsΣeB

T s,

where Σ, the stationary covariance matrix, satisfies

BΣ+ΣBT +G = 0.

We can conclude that, for K large, X(K)(s) has an approximate normal distribution
for each s, and an approximation for the mean and the covariance matrix of X(K)(s)
is given by

EX(K)(s) 
 x0 + eBs(X(K)(0)− x0)

and
CovX(K)(s) 
 K−1

(
Σ− eBsΣeB

T s
)
.

The special case C = 1, where there is only one circuit available on each link, is
exceedingly simple to analyse. Set

F (x) = 1− (ν + 1)x− 2ν(1− x)x2, x ∈ (0, 1),

and
G(x) = 1 + (ν − 1)x+ 4ν(1− x)x2 x ∈ (0, 1).

Then, it can be shown that F has a unique zero, x0, on (0, 1), for all values of ν > 0,
this being a stable equilibrium point of the deterministic model, dx/dt = F (x). If
X(K)(s) is the proportion of links with no circuits in use at time s, then by virtue of
the OU approximation, X(K)(s) has an approximate normal distribution with

EX(K)(s) 
 x0 + eBs(X(K)(0)− x0),
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where B = F ′(x0) = 6νx20 − 4νx0 − (ν + 1)(< 0), and

VarX(K)(s) 
 K−1G(x0)

2B
(e2Bs − 1).

The magnitude of B, and hence the stability of x0, increases as ν becomes large, but
the stationary variance, G(x0)/(−2B), increases from 0 to a maximum around ν = 0.5
and then decreases to 0.

In cases where C > 1, it is convenient (see Barbour (1976)) to employ a change of
coordinates. If, as is the case envisaged here, the eigenvalues of B = ∇F (x0) are real,
an appropriate transformation is given by

W (K)(s) = AZ(K)(s),

where the rows of A are the left-eigenvectors of B. Since the column sums of B are
all equal to 0, B has a zero eigenvalue, and so one of the components of W (K), say

W
(K)
0 , is identically zero, since because

∑C
i=0X

(K)
i = 1, we have that

∑C
i=0 Z

(K)
i = 0.

The sequence {W (K)(·)}, where for convenienceW (K) = (W
(K)
1 ,W

(K)
2 , . . .W

(K)
C ), con-

verges weakly to an OU process, W (·), whose individual components are, themselves,
OU processes. Its local drift matrix is D = diag (η1, η2, . . . ηC), where η1, η2, . . . ηC
are the non-zero eigenvalues of B, and its local covariance matrix, S, is obtained from
the matrix AGAT by deleting the zeroth row and column. In particular, W (s) has a
properly C-dimensional normal distribution with

EWi(s) = wie
ηis,

VarWi(s) =
Sii

2ηi
(e2ηis − 1)

and

Cov (Wi(s), Wj(s)) =
Sij

ηi + ηj
(e(ηi+ηj)s − 1),

for i = 1, 2 . . . , C, where w = Az.
The change of coordinates allows us to use some powerful results of Barbour (1976)

which establish asymptotic results on the time of first exit of X(K)(·) from a region
containing x0. For example, suppose that x0 is a stable equilibrium point and let
τ(K, cK) be the time when W (K)(·) first crosses the contour{

w ∈ R
C :

C∑
i=1

√
2Tii
w2

i

exp

(
w2

i

2Tii

)
= c−1

K exp(c2K)

}
,

where T , the stationary covariance matrix of W (·), has elements Tij = −Sij/(ηi + ηj)
and {cK} is a sequence of real numbers such that cK → ∞ as K → ∞; as Barbour
notes, to order c−1

K , the contour delimits the rectangle{
w ∈ R

C : |wi| ≤ cK
√
(2Tii), i = 1, 2, . . . , C

}
.
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Then, Theorem 3 of Barbour (1976) states that if cK = o(K
1
8 ), the random variable

−τ(K, cK)
2√
π
ηcK exp(−c2K),

where η =
∑C

i=1 ηi, converges weakly to a unit-mean negative exponential random

variable as K → ∞. Thus, provided cK = o(K
1
8 ), the time at which W (K)(·) first

crosses the contour is of order c−1
K exp(c2K).

The result for the C = 1 case is more straightforward. Using Theorem 1(iii) of
Barbour (1976), one can see that the time that X(K)(·) first leaves the interval

{
x : |x− x0| ≤ K− 1

2 cK

}
is of order

1

−2BcK

√
πG(x0)

−B e−Bc2K/G(x0),

whenever cK = o(K
1
8 ). Hence, it is asymptotically larger than any power of K if, for

example, cK = O(K
1
8 / logK).
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