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Abstract

Admission controls, such as trunk reservation, are often used in loss net-
works to optimize their performance. Since the numerical evaluation of perfor-
mance measures is complex, much attention has been given to finding approx-
imation methods. The Erlang Fixed Point Approximation, which is based on
an independent blocking assumption, has been used for networks both with
and without controls. Certain methods of accounting for dependencies in
blocking behaviour have been developed for the uncontrolled setting. We
explore extensions to the controlled case, in order to gain insight into the
essential elements of an effective approximation. We are able to isolate the
dependency factor by restricting our attention to a highly linear network.

1 Introduction

Circuit-switched networks of the kind depicted in Figure 1 consist of a set of links
indexed by 3 =1,2..., K, with C} circuits comprising each link j, and a collection
of routes R. Each route r € R is a set of links. Calls using route r are offered at
rate v, from independent Poisson streams, and use a;.(> 0) circuits from link j.
Calls requesting route r are blocked and lost if, on any link j, there are fewer
than aj, available circuits. Otherwise, the call is connected and simultanecously
holds a;, circuits on each link j for the duration of the call. Call durations are 1id
exponential random variables with unit mean, independent of the arrival processes.
For simplicity, we shall take aj,. € {0,1}.

Although it is possible to construct an explicit expression for the blocking proba-
bility, it can not (usually) be computed in polynomial time. Thus, for networks with
even moderate capacity, one is forced to use alternative methods, arguably the most
important of which is the Frlang Fized Point Approzimation (EFP); see Kelly [6].
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Figure 1: A typical circuit-switched network
(5 nodes, 6 links and 5 routes)

The rationale for the EFP is one of independent blocking. The EFP performs
particularly well under two limiting regimes (Kelly [6], Ziedins and Kelly [12]), but
if neither regime is operative, may not perform as well: in particular, in highly
linear networks and/or networks with low capacities. Further, adding controls to
the network may cause the method to perform badly under otherwise favourable
regimes. A particularly useful control is trunk reservation, where traffic streams
are assigned priorities and calls are accepted only if the occupancies of links along
their route are below a given threshold, the level of which depends on the type of
call. With such a control operating in a network of reasonable size, the occupancy of
neighbouring links may be highly dependent and the equilibrium distribution will no
longer have a product form, as it does for the corresponding uncontrolled network.
Modelling dependencies in this context is thus critical.

Consider a loss network with K links forming a loop, and each link having the
same capacity C. There are two types of traffic: one-link routes (type-1 traffic)
and two-link routes comprising pairs of adjacent links (type-2 traffic). Type-t traffic
is offered at rate v; on each type-t route. The result (a symmetric ring network)
should be a simple, highly linear, network with correlations between adjacent links.
This correlation reduces the effectiveness of the EFP.

If L; is the EFP for the loss probability of type-¢ calls, then it is easy to show
that L; = B and L, = 1 — (1 — B)?, where the Erlang Fixed Point B is the unique
solution to B = E(v1 + 215(1 — B),C).

E(v,C) = % (Z I;—T:)

n=0

is Erlang’s Formula for the loss probability on a single link with C circuits and
Poisson traffic offered at rate v.



The blocking probabilities can be estimated more accurately by specifically ac-
counting for the dependencies between adjacent links. Bebbington et al. [1] proposed
the following improvements to the fixed point approximations for the ring network
without controls, using state-dependent arrival rates in two-link subnetworks. Take
links 1 and 2 as reference links and consider the subnetwork depicted in Figure 2.
We identify three routes in the subnetwork: {1}, {2} and {1,2}. If m, denotes the
number of calls on route r, then my is the number of calls occupying capacity on
link 1 but not on link 2, that is m; = ny +ng1, ms is the number occupying capacity
on link 2 but not on link 1, that is ms = ng + nas, and, mia(= ny2) is the number of
calls occupying capacity on both links.

A two-link subnetwork

Figure 2: Definition of my, mg and mqa
for the symmetric ring network

The first approximation (Approzimation I) is obtained by adapting the method
of Pallant [9], where the network is decomposed into independent subnetworks
and the stationary distribution is evaluated for each. For example, if we take
our subnetwork to be the one depicted in Figure 2, then its state space will be
S = {(my1,ma,m1a) : m; + mys < C,i = 1,2} with stationary distribution
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where ® is a normalizing constant. We then estimate B, the probability that a link
adjacent to the two-link subnetwork is fully occupied, using the subnetwork itself;

C C—mlz
B = Z W(m17m27m12) = Z Z TF(C - m12,m2,m12) . (1)
m:ml—l—mlgzc m12:0 mz:O

These expressions iteratively determine a fixed point B, and we estimate L; = B
and L2 == 2L1 — 2212:0 TF(C — Mg, C — M2, mlz).

A more accurate approximation (Approzimation II') uses additional knowledge
of the state of a given link in estimating the probability that the adjacent link is



full. We use state-dependent arrival rates, p, = v1 +15(1—b,),n € {0,1,...,C—1},
where b, is the probability that link K is fully occupied, conditional on m; = n (b,
is also the probability that link 3 is fully occupied, conditional on ms = n), so that

v (o pa) (IDn2o” pn)

m1!m2!m12!

Once b, is estimated and 7 determined, we estimate L; and L, as for Approxima-
tion I. An estimate of b, is found by assuming that b,, does not depend on my,. For
n=0,...,C —1, we set

B > _op(n—m,C —m,m)
i ZZL:O Zfz_om p(n -m,r, m)

?
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The dependence of b, on mis is due to the cyclic nature of the network, but is
expected to be slight for large networks.

While Approximation I gives some improvement in accuracy over the EFP, the
improvement obtained using Approximation II is considerable, with relative error
of the order of 1075 of the EFP. See Bebbington et al. [1] for details. Zachary and
Ziedins [11] derive an approximation for more general networks, which corresponds
to Approximation IT in the case of a ring network, although expressed differently.

2 Trunk Reservation

In a trunk reservation policy, a call of type-l is accepted on a link with capacity C
only if there will be at least #; circuits free on that link after the call is accepted.
Such a policy is usually applied independently for each link involved in a multilink
route. If each type (I = 1,2) of call produces a reward w; when accepted, then such
a policy is optimal for a single link (Lippman [8]), although not necessarily for a
multilink system.

In the trunk reservation case, provided all call types have the same capacity
requirements and holding time distributions, a one-dimensional description of the
occupancy of each link suffices, and the EFP can be extended in a straight-forward
manner, although the equilibrium distribution of the network no longer has product
form. If this is not the case, then a higher dimensional description of the occupancy
of each link is required. Coyle et al. [5] discuss two ways of dealing with the latter
case, with the object of achieving a product form approximation. This is then com-
bined, in their situation, with a modularization technique developed for Stochastic
Petri Net models by Ciardo and Trivedi [3, 4]. We observe that in the two link
subnetwork of Figure 2, product form is lost immediately on the imposition of a
control, such as trunk reservation.

The first method approximates the state of each link by a birth and death process,



giving an approximate distribution {p,} for the number of occupied circuits as
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forn = 0,1,...,C, where \; and p, are the (circuit) arrival and clear-down rates
when ¢ circuits are occupied. Obviously it will be necessary to approximate, as in
the EFP, arrivals due to two-link calls by assuming that the neighbouring link blocks
independently. The second method simply ignores the physical trunk reservation,
instead thinning the unprotected stream by the amount which would be blocked
due to trunk reservation. Thus we have the reduced load approximation on the two-
dimensional state space, which then gives a product-form equilibrium distribution on
that two-dimensional state space. (Note that Coyle et al. [5] recommend truncating
the state space “appropriately”.) In our case, we are interested in a situation with
differing traffic types, which take the same number of circuits per link, rather than
a different number of circuits on the same number of links, so some adaptation is
necessary. We will have the reduced arrival rates

{

. S

v = (% 7 (3)
Zi:o pi

[ = 1,2, where the exponent [ is due to the fact that the two-link traffic can run
afoul of trunk reservation on both links. This will be slightly modified for two-link
traffic when we consider conditional approximations. The state probabilities {p;}
are estimated by means of (2).

The approximate probabilities that a type-1 or type-2 call is blocked will be
denoted by Ly, Ly respectively. We will use BM) and B® for the probabilities that
a link has no circuit available for type-1 and type-2 calls, respectively. Let us first
suppose that type-2 traffic is only accepted when the occupancy is below a threshold
C — t,, thus reserving the last ¢5 circuits on each link for type-1 traffic. Then

141 + 21/2(1 — B(2)) ) < C — tz

A=< 1 C—t:<i<C
0 1> C

and p; = 4. The first approximation, the standard extension of the EFP (see,
for example, Kelly [7]) and hence denoted Approzimation Eal, is to let w(n) =

O~ (n) My + 2u,(1 — B(Z)))mi“(”’c_h)ugn_c—l_tz“, where [-]+ denotes the positive
part, B1) = 7(C), and the birth and death formula (2) is used to approximate
ta o
(2) = My = g 7

BZ =157 =5 Zu{(C—i)!' )

1=0

We then have L, = B, L, = 1 — (1 — B(Z))Z. In the case of the reduced load
approach, we obtain Approzimation Eb1 with m(n) = @~ (n!)~ (v, 421 (11__%* )2 (1—
B))", where B = n(C) and B* = f(B) is obtained from (4). The estimates for the

one-link and two-link traffic blocking probabilities are

Ll :.B7 LQZ]_—(]_—B*)Z (5)




Analogous approximations Ea2 and Eb2 can be constructed (see Bebbington et
al. 2] for details) when the last ¢; circuits on each link are kept for type-2 traffic.

Now let us consider how we might attempt to improve on these approxima-
tions using the ideas of Section 1. Consider a two link subnetwork, with state
description (mq,mg,mys) as in Figure 2, and with trunk reservation parameter
ta > 0 on each link. Then the arrival rate for type-2 calls occupying both links
is Vo lim, mis<C—ts} {{motmio<C—t,}, and we approximate the arrival rate on link iz,
¢ = 1,2, from other sources by vy + (1 — B(Z))I{mi+m12<c_t2}, provided the link is
not full. Let B be the probability that a link is at the trunk reservation threshold,
that is, there are exactly C' — ¢4 circuits in use. Then

B = Z Z m(C — ty — Mz, Mg, Maz). (6)

Using the birth and death approximation (2), we can then obtain

.12 (C — ty)!
B — 3711(007!2)7 (7)
and
BO _ § ~ V(C —ta)! (8)
— (C —ty + )

We can now produce Approzimation Ial, a product form approximation for the
equilibrium distribution (closely related to Approximation I of Section 1) with

(Vl —I_VZ(]- _ B(Z)))lel,Z min(ml,C—tz)ylz:lzl,z [ml_c+t2]+ V;nlz

Tr(ml,mg,mlz):@_l 5

m !mz!m12!

for mys < C — ty, where BM") and B are given by (6), (7) and (8). The estimated
blocking probabilities are then

C—t2 -1 C—t2 —1—m12 C—t2 —1—m12

Ll = .B(l)7 L2 =1- Z Z Z W(ml,mg,mlg). (9)

m12:0 mi =0 WLQZO

Alternatively, using the reduced load approach we obtain Approzimation Ib1, with

(o ) 0= 20) " o (25)) ™

m1!m2!m12!

W(ml,mg,mlg) = q)—l 5

where

B = Z Z 7(C — my2, ma, mys) (10)

is the blocking probability, and B* = f(B) is obtained from (4). The estimates for
the type-1 and type-2 traffic blocking probabilities are again given by (5). Again,



see Bebbington et al. [2] for the details of similar approximations a2 and b2 for
the case when t; circuits on each link are reserved for type-2 traffic.

While Approximation II of Section 1 does not lend itself to exploitation via the
birth-death or reduced-load approaches, we can construct a weakened version by
replacing the estimate for B in (1) with an estimate of the probability that a link is
full, conditional on the adjacent link having at least one circuit free:

20—1 -1 m TF(C — My2, My, m12)

B = le:o inzzo S ‘ (11)
Zrcr;lgl:o rcr;1 ;n012 22i0m12 W(mly ma, m12)

As a matter of interest, in the uncontrolled system, this is more accurate than Ap-
proximation I when the arrival rates are high (relative to the capacities). In the
birth and death approximation, the equations are almost identical to the Approxi-
mation Ia cases, but in order to obtain Approzimation Ilal (type-1 traffic protected),
we substitute for (8) with

5O _ Lo Yo 7(C — ta = iz, ma, miz) (S (€ — )]
St SOy SO T (i mg, map) = (C ot )Y

where the term before the summation is the probability that a link is at the trunk
reservation threshold conditional on the adjacent link being below the threshold.
The blocking estimates are again given by (9). Approzimation IIa2 (type-2 traffic
protected) can be obtained similarly. In the reduced load approach we must replace
the independent probabilities in (3) by the two link conditional probability that a
two-link call is rejected on at least one of the links. If type-1 traffic is protected we
thus obtain Approzimation IIb1, with

(1-B")(1-B") )™ " (, A=B)a-B"\ ™
(1 +wlEa=rla - B)) (')

W(ml,mg,mlg) = q)_l 5

m1!m2!m12!

where B is found from (10), B* = f(B) from (4), B from (11), and B = f(B)
from (4). The estimates for the one-link and two-link traffic blocking probabilities
are Iy = B, Ly, = 1— (1 - B*)(1 — B*) If we protect type-2 traffic, we obtain
Approzimation 1162 similarly.

Coyle et al. [5] use approximations Ea, Eb and Ib for a four link ring network,
resulting in relative errors of 4%-10% and upwards against simulated values.

3 Numerical Results

In order to investigate the accuracy (or otherwise) of the approximations, they were
computed for the system with varying C, vy, v, ¢, and t5. The resulting values were
compared with the simulated (Singer [10]) proportion of calls blocked in a system
with K = 24, after a presample period long enough to discount transient effects.
95% confidence intervals for the simulated blocking probabilities were calculated and
converted to confidence intervals for the relative errors. In some cases, notably Eb2,
ITb2 and all the bl approximations, the algorithms failed to converge in a straight-
forward manner, with blocking probabilities either exceeding unity, or displaying



two-point oscillation. This was remedied by applying a bisection procedure, with
the next iterate being the average of the previous two. Iterates exceeding unity were
reset to 1 before bisecting. The plots are presented in pairs, with the relative error
in Ly (L) on the left (right). We observe that approximations Eb, Ib and IIb give
very similar results (denoted “b approx” in the figures), while approximations la
and ITa are likewise similar (and labelled “a approx”).

If the load on the network is increased with v and v, in constant proportion,
Figure 3 shows that the “a” approximations seem to perform no worse than Ea when
approximating L; for a range of moderate rates, but are markedly worse at higher
rates. The “b” approximations for L; are much worse than Ea. Both “a” and “b”
approximations are markedly worse than Ea for estimating Lo, although the “b”
estimates for L, are comparable with Ea at very high arrival rates for ¢; = 3.
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As (t1,t,) varies, Figure 4 shows that the “a” and “b” approximations do better
than Ea when ¢; = ¢, = 0, as shown in Bebbington et al. [1]. Otherwise, both
are much worse than Ea over much of their range. The exceptions are the “a”
approximations for L;, which are comparable with Ea when ¢, = 1, and variants Ib
and IIb, as better estimates of L, than Ea when ¢; = 6.

From Figures 3 and 4 it is obvious that the greatest systematic deficiencies
are when two-link traffic is protected, and in predicting the blocking probability
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for two-link traffic. The latter is understandable, due to the additional level of
approximation in calculating L, from L;. This leads us to consider a constant
loading vy + 2v5 with ¢; = 3, and varying the traffic mix by means of v;. We see
in Figure 5 that the “b” approximations for single-link calls are markedly better
than Ea for very low vy, while being comparable for two-link calls, but rapidly
worsen.
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We also considered increasing C' with load proportional, and found that both
the “a” and “b” approximations became appreciably worse, with the exception of
the “a” approximation of L;, which however remained much poorer than Ea.

In general, the “a” approximations tend to underestimate L; while overestimat-
ing Ly. The “b” approximations tend to overestimate both loss probabilities. While
the “b” approximations seem to improve with higher loading or trunk reservation,
the “a” approximations improve little if at all. It seemed that none of the proposed
approximations performed as well in general as Ea, apart from a very limited range
of values. Interestingly the “a” approximations are at their best when estimating L,
whereas the “b” approximations do better for estimating L.



We have examined variations on the EFP for specialized networks with trunk
reservation, which incorporate information about dependencies between neighbour-
ing links. While our results are not as encouraging as we might have wished, they do
point to the possibility of a variant of the full Approximation II, hopefully without
the additional level of approximation superimposed by the birth and death product
form expressions for the subnetwork. We plan to address this, and the formulation
of an approximation for general networks, in future work.
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