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Abstract This note considers continuous-time Markov chains whose
state space consists of an irreducible class, C, and an absorbing state
which is accessible from C. The purpose is to provide results on u-
invariant and g-subinvariant measures where absorption occurs with prob-
ability less than 1. In particular, the well known premise that the u-
invariant measure, m, for the transition rates be finite is replaced by the
more natural premise that m be finite with respect to the absorption
probabilities. The relationship between p-invariant measures and quasis-
tationary distributions is discussed.

1 INTRODUCTION

We consider the problem of obtaining quasistationary distributions for a continuous-
time Markov chain directly from the g-matrix, ), of transition rates. In Nair
and Pollett (1993) it was shown that, for an arbitrary @-process, a necessary and
sufficient condition for a proper distribution, m, to be a quasistationary distribution
is that m be a p-invariant measure for the transition function. Thus, in view of
Theorem 1 of Pollett (1986), which provides a necessary and sufficient condition for
a p-invariant measure for @) to be a y-invariant measure for the minimal transition
function, the problem of determining quasistationary distributions directly from
the g-matrix is ostensibly solved, at least in the practically important case of the
minimal process. However, the invariance condition, which is usually expressed
in terms of the regularity or otherwise of a related g-matrix (see Theorem 3.1 of

Pollett (1988)), is not easily verified in practice. Simpler conditions, which are



much easier to check, are available under the premise that the y-invariant measure,
m, for @ be finite, that is, Y ;ccm; < o0o; see Nair and Pollett (1993), Pollett
and Vere-Jones (1992), van Doorn (1991) and Vere-Jones (1969). In view of the
theory for the existence of limiting conditional distributions for evanescent Markov
chains (see, for example, Flaspohler (1974)), a much more useful premise would
be that m is finite with respect to the absorption probabilities, that is, m satisfies
> jec mja; < oo, where a; is the probability that the process is eventually absorbed

after starting in state j.

2 PRELIMINARIES

Let § = {0,1,...} and let @ = (gj, t,7 € S) be a stable and conservative g-
matrix over S. Suppose that P is a given @-process, that is, a standard (but not
necessarily honest) transition function, (p;;(-), 4,5 € S), with pi,(0+) = g¢;;, over S.
For C, a given subset of S, and p some fixed non-negative real number, the measure
m = (m,, 7 € C) is said to be a u-subinvariant measure on C for P if
Zmipij(t) < e_”tmj, jeC, t>0,
1eC
and p-invariant if equality holds for all 7 € C and ¢ > 0. In contrast, m is said to
be a p-subinvariant measure on C for Q) if
> migi; < —pmy,  jeC,
1eC
and p-invariant if equality holds for all 7 € C.

Take C = {1,2,...} and, for simplicity, suppose that C is irreducible for P, that
is, for all 7,57 € C, p;;(t) > 0 for some (and then for all) ¢ > 0. The irreducibility
ensures that non-trivial p-subinvariant measures, m, satisfy m; > 0 for all 7 € C.
In addition, assume that 0 is an absorbing state, that is, po;(t) = éoj, for 7 € S and
t > 0; this is equivalent to assuming that go = 0. Finally, assume that ¢;0 > 0 for at
least one ¢ € C. This guarantees that there is a positive probability of absorption,
that is, pio(t) > 0 for all ¢t > 0.



3 INVARIANT VECTORS AND THE DUAL CHAIN

The key to our results is the notion of a dual chain and the application of the results
of Nair and Pollett (1993) to that chain. The dual is usually defined in terms of
an arbitrary invariant or subinvariant vector, but there will be no loss of generality

P (aP

in defining it in terms of the absorption probabilities, a* = (a;, ¢ € S), given by

af = lim; o pio(t) fori € S.
Let z be an invariant vector (on ) for P, that is, a collection of strictly positive
numbers, (z;, j € §), which satisfies
> pii(t)z; = i, 1€S85,t>0. (3.1)
Jjes
Suppose that zo > 0, so that under the above assumptions z; > 0 for all j € C.
Define P(-) = (;;(*), 1,7 € S), the dual of P with respect to z, by

pii(t) = pi(t)zs/ze;, 1,7 €5, £20. (3.2)
Then, it is elementary to show that P is an honest transition function over S.
Furthermore, if we divide (3.2) by ¢ and let ¢ | 0 we find that p;,(0+) = g;;, where
Gij = 4T/, 1,7 € S. Clearly, g = ¢ > —o0, and, for j # 4, g;; > 0. The

g-matrix Q = (g;, 2,7 € S) is called the dual of Q with respect to z. The following

result demonstrates that @ is conservative.
Theorem 1 z is invariant for Q, that is, 3 ,c5qiz; =0 fori € S.

Proof. From (3.1) we have that

ij():ﬂj: p()mi, 1€ 5, t>0,

— ¢ t

IF
and so, letting ¢ | 0 and using Fatou’s lemma, we deduce that z is subinvariant for
Q, that is, 3.5 giyz; < 0 for 2 € S. Hence Y ;.0 4;; < 0 for 5 € C, with equality
if and only if z is invariant for ). Now, since () is conservative, P satisfies the

backward equation

pij(t) = Z qikpkj(t)7 t >0, (33)

keS
for all 7,7 € S, from which it follows that P satisfies the corresponding backward

equation

Bi(t) = D2 Gubi(t),  t2>0, (3.4)
keS



for all 4,5 € S. Thus, since P is honest we deduce, from Theorem I1.17.2 of Chung
(1967), that @ must be conservative and, hence, that z is invariant for Q. O

In order to interpret conditions on P in terms of corresponding conditions on P,
we shall need the following results, both of which follow directly from the definitions

of p-subinvariance and p-invariance, and the definitions of P and Q.

Lemma 2 For anyi,7 € S, P satisfies the forward equation

pij(t) = Zpik(t)qkj7 t >0, (3.5)

keS

if and only if P satisfies the corresponding forward equation

Pi(t) = Y Dir(t)qrj, ¢t >0. (3.6)

keS
Lemma 3 Let m be a measure on C and define m = (m;, j € C) by m; = mjz;.

Then,

(a) m is a p-subinvariant measure on C for P if and only if m is a p-subinvariant
measure on C for P, in which case m is p-invariant if and only if m is -
nvariant.

(b) m is a p-subinvariant measure on C for @ if and only if m is a p-subinvariant
measure on C for Q, in which case m is p-invariant if and only if m is u-

invariant.

We can now establish that there is no loss of generality in taking z to be af.
Firstly al = 1. Next, since P satisfies the Chapman-Kolmogorov equations, we
have, in particular, that

p’to(t + S) = szk(t)pko(s), 1€ C; 5t > 07 (37)

keS

and so pio(t + s) > pio(t). Now, by assumption, gjo > 0, for some 7 € C, which,
as already noted, implies that p;o(¢) > 0 for all ¢ > 0. Hence af > 0. Letting
t — oo in (3.7) shows that a” satisfies (3.1). Thus, in particular, af’ > pij(t)aﬁ-D for
all 7 € C, from which it follows, by the irreducibility of C, that a’ > 0 for all: € C.

We have shown that a” is a strictly positive invariant vector for P.

Theorem 4 Let m be a u-subinvariant measure on C for P which satisfies

Yiccmiz; < 0o. Then, forall1 € S, af = z;/z0.



Proof. As already noted, P is an honest Q-process, and, from Lemma 3 (a), m,
given by m; = mjz;, j € C, is a p-subinvariant measure on C for P. By the
definition of P, we have (in an obvious notation) that af = afzo/z; for all: € S.
The result now follows by applying Lemma 3.1 of Nair and Pollett (1993) to P:
since 7 is finite and P is honest, af =1 for all i € C. 0

In the sequel, take P to be the dual of P with respect to af. It’s g-matrix, @,
will then be the dual of @ with respect to a”. Note that C is irreducible for P,
that 0 is an absorbing state for P, that is, po;(t) = &o;, and, that afl =1.

4 RESULTS ON p-INVARIANCE UNDER THE WEAKER PREMISE

In this section we shall show that all of the results contained in Sections 3 and 4
of Nair and Pollett (1993) hold good under the premise that Y ;¢ mjaﬁ-D < 0.
Observe that if, for some p > 0, there exists a finite p-subinvariant measure on C
for P, then, by Lemma 3.1 of Nair and Pollett (1993), > ;.o ps;(t) — 0 as t — oo,
for 2 € C. Thus, if a finite p-subinvariant measure exists, the Markov chain with
transition function P will eventually leave C' (with probability 1) if it starts there.
So, for example, if P is honest and a! is strictly less than 1 for some (and then for

all) ¢ € C, then P admits no finite y-subinvariant measures on C; all p-subinvariant

measures, m, must satisfy Y ;.o m; = 0.

Theorem 5 Suppose that, for some u > 0, m s a p-subinvariant measure on C

for P which satisfies 3 ;cc mial < co. Then,

(a) if P satisfies the forward equations (8.5) for alli € C and 7 =0,

pY mial <Y migio; (4.1)

eC 1eC

(b) if m is p-invariant on C for P,

w Z miaf) > Zmi(_h'o- (4.2)

icC ieC
Proof. Define m = (m;, j € C) by m; = mjaf. Then, if P satisfies the forward
equations (3.5) forall € C and j = 0, P is a Q-process which, by Lemma 2, satisfies
the forward equations (3.6) for all 7 € C and j = 0. Since m is a p-subinvariant

measure on C for P, we have, by Lemma 3(a), that m is a finite subinvariant



measure on C for P. Thus, we may apply Theorem 3.3 of Nair and Pollett (1993)
to P and deduce that

i€C ieC
But, for all z, afj = 1 and o = gio/al, and so ;G0 = m;gqi. Thus, (4.3) is the
same as (4.1).
If m is p-invariant on C for P, then we have, by Lemma 3 (a), that m is a finite
p-invariant measure on C for P. Thus, by applying Theorem 3.2 of Nair and Pollett
(1993) to P, we find that u Y ;cc mial > 3, Miio, which is equivalent to (4.2). O

Corollary 6 Suppose that P satisfies the forward equations (8.5) for alli € C and
g = 0, and suppose that, for some p > 0, m 1s a p-invariant measure on C for P

which satisfies Y ;cc mual < co. Then,
w Zmiaf = Z m;igso. (4.4)

1eC ieC

The above results hold for any @-process, in particular the minimal Q-process,
that is the minimal solution, F(-) = (fi;(-), 7,7 € S), to the backward equations.
Thus, if m is a p-invariant measure on C for F' which satisfies 3 ;¢ mial < oo,
then (4.4) holds for F', because F' satisfies the forward equations (3.5) for every

1,7 € S. Our next result shows that this condition is also sufficient.

Theorem 7 Let F' be the minimal Q)-process and suppose that, for some p > 0, m
is a p-subinvariant measure on C for Q which satisfies 3 ;cc mial < co. Then, m
1 a p-invariant measure on C for F if and only if
w Z miaf = Z M550 (4.5)
1eC ieC

When this condition holds, m is p-invariant on C for Q).

Proof. Define m = (m,, j € C) by m; = mjaf. Then, since m is a y-subinvariant
measure on C for F, we have, by Lemma 3(a), that /m is a finite p-subinvariant
measure on C for F, the dual of F. Thus, by Theorem 4.1 of Nair and Pollett (1993),
a necessary and sufficient condition for 7 to be u-invariant for F, or equivalently,

for m to be p-invariant for F, is that

p> o mial = Migio. (4.6)

1eC 1eC



F

1

Finally, if (4.5) holds (equivalently, (4.6) holds), Theorem 4.1 of Nair and Pollett

But, m;al’ = m; = m;af and m;q0 = mugo, and so (4.5) is the same as (4.6).
(1993) also allows us to deduce that 7 is p-invariant on C for @, from which it

follows, by virtue of Lemma 3 (b), that m is p-invariant on C for Q. O

5 QUASISTATIONARY DISTRIBUTIONS

The duality relationship identified in Section 3 leads to the following refinement of
the notion of a quasistationary distribution. It is obtained by applying van Doorn’s
(1991) definition of a quasistationary distribution (see Definition 3.1 of Nair and
Pollett (1993)) to the dual of P and then interpreting this for P itself. It reduces

to van Doorn’s definition in the case when af =1forall j€S.

Definition 8 Letm = (mj, j € C) be a measure on C such that ) ;¢ mjaﬁ-D =1,
and define h(-) = (h;(-), J € S) by
hi(t) =Y mipii(t), j €S, t>0,
1eC
and p = (3, j € C) by

P
70

j€eC. (5.1)

pj = m;a

Then, p s a quasistationary distribution on C for P if, for allt > 0 and 5 € C,

hj(t)af o
Yicc hi(t)af — P (5:2)

Thus, if (X(¢), t > 0) is a continuous-time Markov chain with transition func-

tion P, then, when h(t) can be interpreted as the absolute distribution of the process

at time ¢, p is a quasistationary distribution if and only if
Pr(X(t)=7|X@k) € C,X(t+ s) =0, for some s > 0] = p;, 5 €0,

that is, the state probabilities at time ¢, conditional on both the process being in C
at ¢t and the process eventually reaching 0, are the same for all ¢. If },ccm; =1,
then m can be interpreted as the initial distribution of the process, but note that
Yicc ™y < o0 is not necessary for h(t) to be interpreted as its absolute distribution

at time ¢; see Sections 2 and 4 of Reuter (1962), as well as Lamb (1971).



We can identify a relationship between this general notion of a quasistationary
distribution and p-invariant measures for P. Let P be the dual of P and define
B(-) = (7i(-), j € S) by B;(t) = hj(t)a7, j € S, ¢t > 0, so that p;(t) = Yicc pibii(t),
J € 8,t >0, that is, p(t) is the absolute distribution at time ¢ of a continuous-
time Markov chain with transition function P and initial distribution p. It follows
that (5.2) can be written as p;(t)/ Yicc Di(t) = p;. Thus, if m = (m;, 7 € C)
is a measure on C such that }°. ¢ mja;-D = 1, then p, given by (5.1), is a proper
distribution over C, and, since af = 1for all j € S, p is a quasistationary distribu-
tion on C for P if and only if it is a quasistationary distribution on C for P. By
Proposition 3.1 of Nair and Pollett (1993), this holds if and only if, for some px > 0,
p is p-invariant on C for P, or equivalently, by Lemma 3 (a), m is p-invariant on C

for P. Thus, we have proved the following result:

Theorem 9 Let m = (mj, j € C) be a measure on C such that ;¢ mja;-D =1
and define p = (p;, 7 € C) by (5.1). Then, p is a quasistationary distribution on C
for P if and only +f, for some p > 0, m s p-invariant on C for P.

Using Theorem 9, together with Theorem 3.1 of Nair and Pollett (1993), we
arrive at the following corollary, which identifies a relationship between u-invariant
measures on C for ) and the more general notion of a quasistationary distribution

for P:

Corollary 10 Let m = (m;, j € C) be a measure on C such that 3¢ mjaﬁ-D =1
and suppose that p = (p;j, 7 € C), defined by (5.1), is a quasistationary distribution
on C for P. Then, for some u > 0, m s a p-subinvariant measure on C for @) and

p-invariant if and only if P satisfies the forward equations (3.5) for all 2,5 € C.

Example We shall illustrate our results with reference to the absorbing birth-death
process on S = {0,1,...}. This has transition rates given by

A, if =241,
—(Ai+ ), ifj=1,

G5 = e o
Hiy if J=1t— 17
0, otherwise,

where the birth rates (A;, 2 > 0) and the death rates (u;, ¢ > 0) satisfy A;, p; > 0,
for 2 > 1, and Ag = po = 0. Thus, 0 is an absorbing state and C = {1,2,...} is



an irreducible class. Define 7 = (7, ¢ > 1) by 7, = 1, and 7, = H;-:z(Aj_l/pj) for
1 > 2. Noting that A 7, = p, . 7 . forall n >0, then define

o0

© 1 1
A=Y —— and C=

o0
Tm 2
m

=1 n—m )\nﬂ-n

Note also that @ is regular if and only if C = 0.

The spectral representation approach to birth and death processes, introduced
by Karlin and McGregor (1957a), involves constructing a sequence of orthogonal
polynomials, O(-) = (9Q,(:), : € C), with Q(s) being an s-invariant vector on C
for @, that is, defined by Q,(s) = 1, —sQ,(s) = X, Q,(s) — (A, + u,) Q,(s) and
—5Q,(s) = X,Q,,,(8) — (A, +p,)Q,(s) + 1,Q,_,(s) for 1 > 2. Any notational
occurrence of Q (-) should be interpreted as zero, and for all = > 2, Q.(0) =
1+ p, 5211/ (A7), whilst Q_(0) := lim;_,e Q,(0) < oo if and only if A < oo.

The probabilities of absorption of the minimal process, into state 0, given the
F
Karlin and McGregor (1957b)): af = 1 for all 5 if and only if A = co, and, when
A< oo,af =1-0,0)/Q,(0) forzi € S.

It is also well known that 7 is a subinvariant measure on C for (), and hence,

from Theorem 4.1 b(ii) of Pollett (1988), that, for any p € [0, A], where A is the

process starts from some state 1 € S, that is, af = (af’, 1 € §), are well known (see

decay parameter of C, m = (7,Q,(p), ¢ € C) is the unique p-invariant measure on

C for Q.
Assuming that C = oo, that is @ is regular, and that A < oo, that is af < 1,
it then follows, from Theorem 3.5 (ii) of Kijima et al. (1997), that

3 maf =m0 Uoa )

Moreover, the only invariant vector, z, on S for F such that ;. m;z; < 00 is aF,

as stated in Theorem 4. It also follows, from Theorem 7, that m is a p-invariant

measure on C for F if and only if

i Smom{1- G} -

Thus, by Theorem 9, p = (p;, € C), given by p; = LmQi(p){1 — Qi(0)/Q(0)},

is a quasistationary distribution on C for F. This result is now well known; for a

detailed analysis and extensions to the case when @) is not regular, see Kijima et

al. (1997).
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