ANALYTICAL AND COMPUTATIONAL METHODS
FOR MODELLING THE LONG-TERM BEHAVIOUR
OF EVANESCENT RANDOM PROCESSES

P.K. POLLETT

Department of Mathematics
The University of Queensland

ABSTRACT. There are a variety of stochastic systems arising in areas as diverse
as wildlife management, chemical kinetics and reliability theory, which eventually
“die out”, yet appear to be stationary over any reasonable time scale. The notion
of a quasistationary distribution has proved to be a potent tool in modelling this
behaviour. In finite-state systems the existence of a quasistationary distribution
is guaranteed. However, in the infinite-state case this may not always be so, and
the question of whether or not quasistationary distributions exist requires delicate
mathematical analysis. The purpose of this paper is twofold: to present simple con-
ditions for the existence of quasistationary distributions for continuous-time Markov
chains, and, to describe an efficient computational procedure for evaluating them.
The computational method I shall describe is a variant of Arnoldi’s algorithm and it
is particularly suited to problems where the transition-rate matrix is both large and
sparse, but does not exhibit a banded structure which might otherwise be usefully
exploited. The analytical and computational methods will be illustrated with refer-
ence to a variety of examples, including birth-death processes, the birth-death and
catastrophe process, and an epidemic model for which I shall compare the computed
quasistationary distribution with an appropriate diffusion approximation.

1. INTRODUCTION

Quasistationary distributions have been used in a variety of diverse contexts
for modelling the long-term behaviour of stochastic systems which, in some sense,
terminate, but appear to be stationary over any reasonable time scale. For exam-
ple, in the context of modelling chemical reaction kinetics, there are a number of
reactions in which one or more species can become depleted, yet these reactions
settle down quickly to a stable equilibrium; quasistationary distributions have
been used here to model the concentration of the catalyst in reactions in which
the catalyst can become exhausted (see, for example, Oppenheim et al. (1977),
Turner and Malek-Mansour (1978), Dambrine and Moreau (1981a, 1981b), Par-
sons and Pollett (1987) and Pollett (1988b)). In the context of reliability theory,
one might wish to determine the distribution of the residual lifetime of a system at
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some arbitrary time ¢, conditional on the system being functional (see, for exam-
ple, Kalpakam and Shahul Hameed (1983), Pijnenburg and Ravichandran (1990)
and Pijnenburg et al. (1990)); in the case of a two-unit warm-standby redundant
system, the limiting form of this conditional distribution, as ¢ becomes large, is
always exponential, no matter what the distribution of lifetimes and repair times
(Kalpakam and Shahul Hameed (1983)). Yet another example of the use of qua-
sistationary distributions is in the area of wildlife management, where these have
proved to be a potent tool in predicting persistence times, and the distribution of
the number of individuals, in animal populations which are subject to large-scale
mortality or emigration; in spite of the fact that the usual stochastic models pre-
dict eventual extinction, these populations can be surprisingly resilient (see, for
example, Scheffer (1951), Mech (1966), Klein (1968), Holling (1973), Pakes (1987),
Pollett (1987), and Pakes and Pollett (1989)).

The idea of a quasistationary distribution can be traced back to the work of the
Russian Mathematician A.M. Yaglom, who showed that the limiting conditional
distribution of the number in the n*® generation of the Galton-Watson branch-
ing process always exists in the subcritical case (see Yaglom (1947)). But, it
was not until the early sixties, and largely stimulated by the remarkable work
of Vere-Jones (1962), and later Kingman (1963), that a general theory was an-
nunciated. Since then, there have been a number of significant advances on
questions concerned with the existence of quasistationary distributions; in the
present context of continuous-time Markov chains, see, for example, Darroch and
Seneta (1967), Good (1968), Vere-Jones (1969), Flaspohler (1974), Tweedie (1974),
Cavender (1978), van Doorn (1991), Kijima and Seneta (1991), Kijima (1992) and
van Doorn and Kijima (1992) (a spectacularly clear account of much of this work
is also given in the recent text by Anderson (1991)).

In this paper I shall give a unified account of the theory of quasistationary
distributions for continuous-time Markov chains. In Section 2 I shall establish
simple conditions for the existence of quasistationary distributions and these will
be illustrated, in Section 3, with reference to finite-state systems, birth and death
processes, and the birth, death and catastrophe process. Section 4 is devoted
to the problem of how one should evaluate quasistationary distributions. I shall
describe a computational method, developed previously by David Stewart and 1
(Pollett and Stewart (1994)), which is particularly suited to problems where the
transition-rate matrix is both large and sparse. I shall illustrate the method with
reference to an epidemic model, for which there is no analytical expression for the
quasistationary distribution, and, for which standard widely available numerical
methods fail owing to the size and the structure of the problem; the computed
quasistationary distribution will be compared with an appropriate diffusion ap-
proximation.

2. THE EXISTENCE OF QUASISTATIONARY DISTRIBUTIONS

We shall suppose that the system in question can be modelled as a time-
homogeneous Markov chain, (X (t), t > 0), taking values in a discrete set S. Let
@ = (gj, %, € S) be the g-matrix of the chain (assumed to be stable and con-
servative), so that g;; (> 0), for j # i, represents the transition rate from state 2



to state j and ¢;; = —gq;, where ¢; = Zj# gij (< o) represents the transition
rate out of state <. In addition, we shall suppose that @ is regular, so that X(-)
i1s the unique chain with these rates. Checking for regularity should be, though
apparently seldom is, a part of the routine of modelling. Simple sufficient con-
ditions for the regularity of @) are contained in Pollett and Taylor (1993). The
condition sup, g; < oo, which is predominant in, say, the engineering literature,
is certainly too strong for practical purposes; for example, it rules out branching
and catastrophe processes and random delay systems.

We shall be concerned with evanescent chains, so, for simplicity, let us take 0 to
be the sole absorbing state, that is, go = 0, and suppose that § = {0} U C, where
C ={1,2,...} is an irreducible transient class. In order that there be a positive
probability of reaching 0, given that the chain starts in C, we shall suppose that
gio > 0 for at least one z € C'.

The definition of a quasistationary distribution, which I shall use here, is the
one introduced by van Doorn (1991). Let P(-) = (ps;(+), ¢,7 € S) be the transition
function of the chain, so that p;;(t) = Pr(X(¢) = 7|X(0) =), for t > 0.

Definition. Let m = (mj, j € C) be a probability distribution over C' and define
p(-) = (pi(+), s € §) by
pi(t) = mpij(t), FES, t>0.
i€C
Then, m is a quasistationary distribution if, for all t > 0 and j € C,
p;j(t)

2ice Pilt)

That is, if the chain has m as its initial distribution, then m is a quasistationary
distribution if the state probabilities at time t, conditional on the chain being in
C at t, are the same for all t.

The relationship between quasistationary distributions and the transition prob-
abilities of the chain is made more precise in the following proposition:

Proposition 1 (Nair and Pollett (1992)). Let m = (m;, j € C) be a probability
distribution over C'. Then, m is a quasistationary distribution if and only if, for
some p > 0, m is p-invariant on C for P, that is

(1) Zmipij(t) = e_“tmj, jedC, t>0.
1€C

Thus, in a way which mirrors the theory of stationary distributions, one can in-
terpret quasistationary distributions as eigenvectors of the transition function.
However, the transition function is available explicitly in only a few simple cases,
and so one requires a means of determining quasistationary distributions directly
from transition rates of the chain. Since g;; is the right-hand derivative of p;;(-)
near 0, an obvious first step is to rewrite (1) as

Y. mipii(t) = (1 —pji(1) — (1 —e*))my,  jeC,t>0,
1€C: i#£]



and then divide by ¢ and let ¢ | 0. Proceeding formally, we get

(2) Z m;iqi; = (qj - :u’)mja .7 S Ca
i€C: itj

or, equivalently,

(3) Zmiq'ij = —pumj, jeC.
ieC

Accordingly, we shall say that m is p-invariant on C for Q) whenever (3) holds. The
above argument can be justified rigorously (see Proposition 2 of Tweedie (1974)),
and so, in view of Proposition 1, we have the following result:

Proposition 2. If m is a quasistationary distribution then, for some p > 0, m is
p-invariant on C for Q).

The more interesting question of when a positive solution, m, to (3) is also a
solution to (1) was answered in Pollett (1986, 1988a). However, the necessary
and sufficient conditions obtained are usually difficult to verify in practice. If
one takes into account the fact that, for m to be a quasistationary distribution,
one requires Y jec™mi = 1, then much simpler conditions obtain, as the next
result demonstrates. It can be deduced from Theorems 3.2, 3.4 and 4.1 of Nair
and Pollett (1992); the assumption made here, that @ be regular, facilitates the
simpler and more direct proof given below.

Proposition 3. Let m = (m;, j € C) be a probability distribution over C' and
suppose that m is p-invariant on C for ). Then,

(4) Y S ijqua

jec
with equality if and only if m is a quasistationary distribution.

Proof. First observe that, since m is a probability distribution, there exists a 7 € C
such that m; > 0. Hence, because m is p-invariant on C for () and C is irreducible,
we have, from (2), that p < infcc ¢; and that m; > 0 for all j € C.

Define @* = (gf;, 1,5 € C) by ¢}; = mjqji/ms, for j # i, and gj; = —g}, where
q; = ¢ — p. Clearly ¢j; > 0 for all j # ¢ and 0 < ¢} < co. And, since m is
p-invariant on C for (), we have that Zjec g;; = 0. Thus, @ is a stable and
conservative g-matrix over C' (Q* is called the p-reverse of @ with respect to m).
Let P*(:) = (pj;(*), 3,5 € C) be the transition function of the minimal process
associated with @*. Then, by Lemma 3.3 of Pollett (1988a), we have that

(5) m;p;;(t) = e_"tmjp;fi(t), 1,7 € C.

Summing this equation over j € C, and remembering that, because () is regular,
Zjespij(t) =1, we get

mi(l — pio(t)) = e Y mypj(t), i€C.
jeEC



On summing this equation over ¢, and using Fubini’s theorem, we find that

Zmzpzo =1—e" Mzmgngz

i€C jec 1€C

or, equivalently,

(6) Zmzpzo —1_6 #t‘l‘e #thJ )

1€C jec

where df(t) = 1 — Zjecp;-‘j(t). Notice that df(¢t) > 0, since, because P* is a
transition function, we have that Zjecp;‘j(t) <1,forallze Candt>0.

Now, since P satisfies the forward differential equations, we have, in particular,
that

pho(t) = ) _ pij(t)gjo, i€C, >0,
jecC

or, equivalently,

pio(t Z/ pi;i(s)gjo ds, 1€C, t>0.

jec

Multiplying by m; and summing over 1 € C, and then using (5) once again, we get

Z mip'LO / Z Z m'LP'LJ qJO ds

i€eC jeciec
/e 4y mi Y piils)aj ds
jec 1€C
/ e “sZmJ 1 —d3(s))gjo ds
jec
:/ ZquJO ij s)gjo | ds
jecC jeC
= 1—e #ty ZquJO—/ € “sZmJ 1(8)gj0 ds.
jeEC jeC

On combining this equation with (6) we find that

pe Pt ijd;f(t) —I—/ e H* ij 7 s)gjo ds

jec jec

(1- e_#t Z mj;q5o — K
JEC



The left-hand side of this equation is always non-negative, and so we deduce that
(4) must hold. It is also clear that df is identically O for each 7 if and only if
p= Zjec m;gjo. But, from (5), we have that

Y mapij(t) = e *'m(1 —dj(t)), jEC,
i€C

and so a necessary and sufficient condition for m to be p-invariant on C for P is
that df(t) =0, for all : € C and t > 0. Thus, in view of Proposition 1, we have
proved that m is a quasistationary distribution if and only if equality holds in (4).

Proposition 3 corrects Theorem 6 of Vere-Jones (1969) and the first part of
Corollary 1 of Pollett (1986), both of which assert falsely that a p-invariant prob-
ability distribution on C for @) is always p-invariant of C for P. The error was
pointed out by van Doorn (1991) and the counter example which he presented
provides the basis for the arguments used above. In determining where the error
occurred in the original proof, Vere-Jones and I were able to identify a simple
sufficient condition (see Corollary 2 of Pollett and Vere-Jones (1992)). It is in-
structive to see how this condition arises in the context of Proposition 3. Consider
the following formal argument, based on summing (3) over j € C:

(7) Zmiqw:—Zmithj:—sziqij:,uz:mj:,u.

i€C e jec jeEC ieC jec

The interchange of summation is not permitted in general, but can be justified
under various conditions (see Section 3.7 of Knopp (1956)). For example, the
interchange is permitted if the double sum in (7) is absolutely convergent, and a
necessary and sufficient condition for this is Zjec mjq; < oo. Thus, we have the
following result:

Corollary 1. Let m = (mj, j € C) be a probability distribution over C and
suppose that m is p-invariant on C for ). Then, if ZjecquJ' < 0o, mis a
quasistationary distribution and p = ZjEC’qujO'

3. EXAMPLES

Finite-state systems. If S is a finite set, then clearly Zjec mjg; < oo and so
every p-invariant probability distribution on C for @) is a quasistationary distri-
bution. Indeed, classical matrix theory can be used to show that the g-matrix
restricted to C has eigenvalues with negative real parts, that —p is the dominant
eigenvalue (it has maximal real part), that this eigenvalue always has multiplic-
ity 1, and, that both the corresponding left and right eigenvectors have positive
entries (see Mandl (1960), and Darroch and Seneta (1967)); the left eigenvector
is, of course, the quasistationary distribution. Thus, for example, in Markovian
reliability models, the stationary conditional distribution of the number of func-
tioning units (conditional on the system not having failed) can be obtained as the
dominant left eigenvector of the transition-rate matrix restricted to the transient
states. In most cases one is forced to evaluate the dominant eigenvector numeri-
cally. If the number of states is reasonably small, say 100, then one can use any of



the standard methods (inverse iteration, for example) which are widely available
as part of matrix packages, such as MATLAB. If the number of states is even mod-
erately large, these methods are ineffective, both in respect of storage and CPU
time. For example, if there are 10* states, () requires over 400 Mbytes of storage.
If Q) is sparse, or if it possesses a banded structure that can be usefully exploited,
then moderately large systems can be handled without difficulty. In Section 4 I
shall describe a computational algorithm for dealing with sparse g-matrices. This
has been used to evaluate the quasistationary distribution, to within a tolerance of
1078, for a variety of systems with of the order of 10* states, in times ranging from
7 to 15 CPU minutes on a Sun SPARC 10. If the number of states is large, say 10°,
then it is frequently the case that deterministic approximations (see, for example,
Pollett and Roberts (1990)) or diffusion approximations (see, for example, Parsons
and Pollett (1987), Pollett (1990, 1992) and Pollett and Vassallo (1992)) can be

used to provide accurate estimates of the quasistationary distribution.

Birth and death processes. These are widely used in modelling stochastic
systems which arise in engineering, the information sciences and biology. Van
Doorn (1991) has given a complete treatment of questions concerning the existence
of quasistationary distributions for absorbing birth and death processes in cases
when the probability of absorption is 1. I shall explain how his conditions for
the existence of quasistationary distributions arise in the context of Proposition 3.
The g-matrix of an absorbing birth and death process is of the form

s, ifj=1+1,
L —()\i—l—,ui), if 7 =1,
S R ifj=i—1,
0 otherwise,

~

Ai, p; > 0, forz > 1, and Ag = pop = 0. Thus, 0 is an absorbing state and
C =1{1,2,...} is an irreducible class.

The classical Karlin and McGregor theory of birth and death processes in-
volves the recursive construction of a sequence of orthogonal polynomials (see van

Doorn (1991)). Define (¢;(-), ¢ > 1), where ¢; : R - R, by ¢1(z) =1,

Ada(z) = A1 + p1 — z,
Aigiri(z) — (Xi + pi)di(2) + pidi—1(z) = —2¢i(z),  i>2.
Now define 7 = (m;, ¢ > 1) by m; =1 and

where the birth rates, (A;, 2 > 0), and the death rates, (u;, ¢ > 0), satisfy

mo= [ X /win 122,
j=2

and let m; = m¢;(z). It can be shown (van Doorn (1991)) that ¢;(z) > 0 for
z in the range 0 < z < A, where A (> 0) is the decay parameter of C (see
Kingman (1963)). Since 7 is a subinvariant measure for @, that is

Y migi; <0,  jE€S,
i€s



it follows, from Theorem 4.1 b(ii) of Pollett (1988), that, for each fixed z in the
above range, m = (m;, ¢ > 1) is an z-invariant measure on C for @, that is,
m satisfies (3) with g = z. Indeed, m is uniquely determined up to constant

multiples. Proposition 3 tells us that if m can be normalized to produce a proper
distribution on C, that is, if

Z 71'1(,251(%) < 00,
=1

then the normalized m will be a quasistationary distribution if and only if

O

(8) T’L(m) =1,

=1

where 7;(z) = p; ' mzdi(z), a conclusion reached by van Doorn using direct meth-
ods. Van Doorn’s Theorem 3.2 can then be used to determine all the values of z
for which (8) holds, at least under the condition

©) > =
i=1 '

[

which ensures, not only that ) is regular, but that absorption occurs with proba-
bility 1. If, in addition, the series

(10) Z

diverges then (8) holds for all z in (0,)], while if it converges then (8) holds
if and only if # = A. Proposition 3 then tells us that, in either case, r(z) =
(ri(z), 2 > 1) is a quasistationary distribution. Indeed, because m is uniquely
determined for each z, all quasistationary distributions have been obtained under
(9); if the series (10) converges, then there is only one, namely »(A), while if (10)
diverges, (r(z), 0 < # < X) comprises a one-parameter family of quasistationary
distributions.

[o o}
2. ™

1
ATt j=it1

The birth, death and catastrophe process. The introduction of a catastrophe
component allows greater flexibility in modelling. The g-matrix of the birth, death
and catastrophe process is given by

gii+1 = agi, 12> 0,
qii = — ¢, 12> 0,
%ii—k = Gibs, i>2, k=1,2...1 -1,

O
Gio =) bk, i>1,
k=i



where g =0, ¢; > 0, forz > 1, a > 0, b; > 0 for at least one value of 2 > 1 and

a—l—ibz =1.
i=1

Thus, at a jump time, a birth occurs with probability a, or otherwise a catastrophe
occurs, the size of which is determined by the probabilities b;, © > 1. Clearly, 0
is an absorbing state and C = {1,2,...} is an irreducible class. It is usual to
set g; = pt, where p > 0, so that jumps occur at a constant “per capita” rate p.
Notice that if, of the b;’s, only b; is positive, then we recover the simple linear
birth and death process. It is well known, and easy to prove (see, for example,
Pakes (1987)), that the probability of absorption, starting in state 4, is 1 if and

only if D, given by
D=a-) ib=1-) (i+1)b,
1€C e

is less than or equal to 0. D can be thought of as the drift, and, accordingly, the
process is said to be subcritical, critical or supercritical according as D is negative,
zero or positive. In a way that is analogous to the theory of Markov branching
processes (see for example, Athreya and Ney (1972)), an important role is played
by the probability generating function, f, given by

fs)=a+> b, s <1,

1€C

and the related function, b, given by b(s) = f(s) — s. In identifying the quasi-
stationary distribution, we shall need the following facts from branching process
theory: that f is convex on [0,1], that b(s) = 0 has a unique solution, o, on this
interval, that ¢ =1 or 0 < 0 < 1 according as D > 0 or D < 0, and, that b(s) >0
on [0,0].

On substituting the transition rates in equation (3), we get

—(p—p)ma + ) kpbr_1my =0,

k=2

(7 —Dpamj—1 — (jo — wymj + Y kpbp_jmp =0,  j>2.
k=j+1

If we try a solution of the form m; = 7, the first equation tells us that p = —pb'(%),
of necessity, and, on substituting both of these quantities in the second equation,
we find that b(¢) = 0. Hence, we may set ¢ = o, thus providing a positive solution,
m = (mj, j € C), to (3), such that Zjec m; < oo whenever ¢ < 1. Under this
latter condition, we also have

ijqj = Z O'jjp < 0.
jec jec

Thus, by Corollary 1, we have the following result, which is implicit in the proof
of Theorem 5.1 of Pakes (1987):



Proposition 4. The subcritical linear birth, death and catastrophe process has
a geometric quasistationary distribution, m = (m;, j € C), given by

mj:(l—a)aj_l, j e,
where o is the unique solution to b(s) = 0 on the interval [0, 1].

4. COMPUTATIONAL METHODS FOR
EVALUATING QUASISTATIONARY DISTRIBUTIONS.

If the quasistationary distribution cannot be exhibited explicitly, or if the form
of the quasistationary distribution is not amenable to numerical evaluation, one is
forced to use a direct computational approach based on determining the dominant
left eigenvector of the g-matrix restricted to C, the set of transient states. If the
state space is infinite, we may truncate the restricted ¢g-matrix to an n X n matrix,
Q(™), and then obtain a sequence, {m(™}, such that m{™ is the left eigenvector of
Q(™) associated with the eigenvalue with maximum real part. Then, one estimates
the quasistationary distribution by taking successively larger truncations until the
difference in the normalized eigenvectors is as small as desired; some appropriate
computational algorithm should be used to evaluate the members the sequence
{m(™}. For a detailed account of truncation procedures, see Seneta (1973) and
Tweedie (1973).

In what follows, we shall suppose that one is given a sparse n X n matrix, @,
which, for simplicity of notation, now refers to the restrictzon of the g-matrix
to the transient class C; if C is infinite, we shall suppose that @) is a specified
n X n truncation of this matrix. The task is to determine the left eigenvector
associated with the eigenvalue with smallest (in modulus) real part. Since it is the
custom in the computational mathematics literature, I shall describe the algorithm
as 1t relates to the determination of right eigenvectors of a sparse g-matrix; the
corresponding left eigenvector can be evaluated by applying the method to the
transpose of ). It should be noted, at this point, that right eigenvectors do play
an important role in the theory, though, for brevity and simplicity of exposition,
I did not mentioned this earlier. They arise both in connection with the so-called
Type-II quasistationary distribution (see, for example, Flaspohler (1974)), and
in determining absorption probabilities, which are of interest in their own right,
but are needed in the present context to evaluate quasistationary distributions
for “supercritical” models, where absorption occurs with probability less than 1

(again see Flaspohler (1974)).

An iterative Arnoldi algorithm. The method I shall describe was developed
previously by David Stewart and I; further details can be found in (Pollett and
Stewart (1994)). It is a variant of the Arnoldi Algorithm, which itself is similar
to the more familiar Lanczos Method for finding eigenvalues and eigenvectors of
large, sparse symmetric matrices (see, for example, Golub and van Loan (1989),
Pages 475-493); an assumption that the g-matrix is symmetric would clearly be
far too restrictive for practical purposes.

On each iteration of the algorithm, the “basic” Arnoldi Method is used. This
involves constructing an m X m matrix, H,,, where m is smaller (usually much



smaller) than n. The eigenvectors of this matrix are then determined by some
efficient dense-matrix method and these are used to provide estimates of the ex-
tremal eigenvalues of (). The method starts with an arbitrary “seed” vector, v,
from which a sequence, v1,vs,..., of orthonormal vectors is constructed as fol-
lows. First, the vector w; = Qv is computed. Then, the components of w; in the
direction of v; are subtracted to give a “residual”, r; = w; — 'vlT'wl v1. This vector
is normalized, using the Euclidean norm, || - ||2, to form vy: vy = r1/||r1]|2. In the
next cycle ws = Qs is computed and then the components of ws in the directions
of v; and vy are subtracted to give the second residual, r5. This is normalized to
give vs, and so on. The procedure described gives

wj; = Quj,
_ T
T =wj — E v; wj vi,
=1

and
viy1 = 75/|rjll2-
If the procedure is halted at say j = m, then we shall have that
L .
Q’U' o { zi—l hij'vi, for 1< m,
i= .
S hijvi+ v, for j =m,

where H,, = (h;j) is an m X m upper-Hessenberg matrix given by

'wJT'vi, for1 =1,2,...,7,
hij = § llrill, fori=j+1,
0 otherwise.
Thus, if we denote by V,, the matrix with columns v;,vs,...,v,, we shall have
that
(11) QVin = VinHp + rmel,

where e,, is the unit vector with a 1 as its m'® entry, and so, since the columns
of V,,, are orthonormal and r,, is orthogonal to each of them, we may deduce that
VT?;QVm = H,,. The idea which is the key to the Arnoldi Method is that if z,, is
an eigenvector of H,,, then, for m sufficiently large, Vi, 2., should be close to an
eigenvector of (). To make this statement more precise, suppose that z,, satisfies

Hmzm = szma
for some j\m, and let z,, = Vin2zm. Then, on multiplying (11) by z,,, we obtain

Qmm = Vm(Hmzm) + Tm(zm)m

= Vm(Amzm) + Tm(zm)m

= immm + Tm(zm)m-



Thus )

where E,, is given by
rm(zm)mmzrl

(e

Epm =

It follows, from standard sensitivity analysis (see, for example, Section 7.2 of
Golub and van Loan (1989)), that the error in the eigenvalue can be estimated
by ||Pm||2 |(z2m)m|/||Tm||2. Hence, if the residual vector, 7.,, is small or |(zm )m|
is small, then the approximation will be good. The eigenvalues of H,, can be
computed by means of a Schur decomposition and then inverse iteration, since
H,, is a (relatively) small matrix. In this way approximations to eigenvalues and
eigenvectors of large, sparse matrices can be found in a reasonable time. A more
detailed discussion of the basic Arnoldi Method can be found on Pages 501-502 of
Golub and van Loan (1989).

One problem with the basic method is that, in order to guarantee an accurate
estimate of the required eigenvector of ), namely the one corresponding to the
eigenvalue with smallest (in modulus) real part, m might need to be reasonably
large. Stewart and I address this problem by fixing m to be small and adopting
an iterative approach, at each stage of which, the basic Arnoldi Method is used.
Since m is small, the evaluation of the eigenvectors of H,, at each step is relatively
inexpensive. The iteration begins with v; specified as an initial estimate of the
required eigenvector. The matrices H,, and V,, are computed as above and the
eigenvalues of H,, are determined. Then, ) is set to be the eigenvalue of smallest
real part, if it is real, and zero otherwise. The system (H,, — S\I)ul =z is
solved for u; with z chosen at random for each cycle and this vector is used to
produce a new estimate, v, of the required eigenvector, in preparation for the next
cycle: v = Viu1/||Vimuil|2. The cycles continue until |Qv; — vy ||2 is sufficiently
small. In this way, ) is at least an eigenvalue of a slightly perturbed matrix, with
perturbation of the same size as ||Quv; — vy I|2-

It may appear that solving (H,, —S\I)ul = z will result in a large numerical error
in uq as the matrix H,, — M will be ill-conditioned if ) is an accurate estimate of an
eigenvalue of H,,. Indeed, there will be a large numerical error in u;. Nonetheless,
the normalized vector uy /||u1 ||z will be close to a corresponding eigenvector of H,,
provided the equations are solved using a standard factorize-and-solve method
such as Gaussian elimination. The reason is that the computed 4; is an exact
solution of a perturbed system,

(Hp + E — X)iiy = z,

where ||E||2 = cppu||Hpm — 5\I||2, {em} is a sequence of constants that grows slowly
and u is the “machine epsilon” or “unit roundoftf” for the arithmetic used; see
Pages 104-107 and Pages 123-124 of Golub and van Loan (1989). Since ) is close
to an eigenvalue of H,,+ E (the error in )is O(emul|Hyp,||2) for a simple eigenvalue)
it follows that wu;/||uy||2 is close to an eigenvector of H,,.

Another part of the algorithm that may be vulnerable to roundoff error is the
inner Arnoldi iteration when ||7j41|| is very small. This can occur, for example,



when v; is close to an eigenvector of Q. If ||rj41]|| & u then v;;; is largely error
and the Arnoldi Method essentially restarts. Note that the v; are no longer nearly
orthogonal. However, since H,, is Hessenberg and hj j1+1 = ||7j+1|| & u, Hp, de-
couples, and, apart from the multiplicity of the eigenvalues, the eigenvalues are not
perturbed by more than approximately one machine epsilon; similar behaviour has
been observed by Cullum and Willoughby (1978) in connection with the Lanczos
Algorithm for symmetric matrices.

One has a certain amount of freedom in prescribing the value, m, which deter-
mines the size of the Hessenberg matrix H,,. This value is perhaps best determined
by experimentation. If m is chosen too large or too small, then the algorithm will
be slow. If too large, the time taken to evaluate the eigenvectors of H,, will be pre-
dominant, while, if too small, the number of outer iterations might be prohibitively
large.

Implementation and results. I shall illustrate the algorithm by evaluating the
quasistationary distributions of model which is an example of the general epidemic
model studied by Ridler-Rowe (1967). The state at time ¢ consists of two entries,
S(t) and I(t), being, respectively, the numbers of susceptibles and infectives at
time t. The transition rates are given as follows: if ¢ = (z,y), then

Bry ifj=(z—-1,y+1),
vy  ifj=(z,y—-1),
ifj=(z+1,y),

0 otherwise.

gij =

The model thus allows for the immaigration of new susceptibles, at rate a > 0, the
removal of infectives, at per-capita rate v > 0, and the spread of the infection, the
per-encounter infection rate being § > 0. The state space is

S={(z,y) 12,y =0,1,2,...},

and 1t is clear, from the form of the transition rates, that C, given by

C=A{(z,y):2=0,1,...;y =1,2,... },

is an irreducible transient class. Moreover, once the process leaves C' it becomes
trapped on the z-axis; all infectives have been removed from the population and
it grows without bound at rate a. The state diagram for the Ridler-Rowe (1967)
epidemic model is illustrated in Figure 1.

Ridler-Rowe showed that the process is regular (non-explosive) and that even-
tual departure from C' occurs with probability 1. This and related models have
been studied extensively; see, for example, Bartlett (1956, 1958), Kendall (1956)
and the other references contained in Ridler-Rowe (1967). Various methods have
been proposed for studying the long-term behaviour of the population, and, in
particular, to explain why over any reasonable time scale the epidemic appears
not to die out. For example, one can write down a diffusion approximation which
is asymptotically valid in the limit as a becomes large. This provides an approxi-
mate analytical formula for the joint distribution of the numbers of infectives and
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Fig. 1. State diagram for the Ridler-Rowe epidemic model.

susceptibles. It is a bivariate normal distribution centred at the stable equilibrium
point of the analogous deterministic model. In contrast, no analytical expression
is available for the quasistationary distribution and, although one would expect
this to be more accurate than the diffusion approximation, apparently it has not
previously been examined.

Suppose that we truncate C to

Cn=A{(z,y):2=0,1,...,N -1,y =1,2,...,N},

thus placing an upper limit on the numbers of infectives and susceptibles. One
can then employ the transformation ¢ = # + N(y — 1) to convert the truncated
g-matrix into an n x n matrix, @ = (gj, 3,7 = 0,1,...,n — 1), where n = N2.
For N reasonably large, this matrix is large and sparse However, although @ is
banded, its bandwidth is of order \/n (= N) and so direct banded-matrix methods
are impracticable.

The Iterative Arnoldi Method was applied to QT with m set to 20, and termi-
nated according to the following convergence criterion:

1Qv1 — Jos oo

[o1 0

< tol,



where tol, the prescribed tolerance, was 107%. Starting with a random v;, where
(v1); was chosen at random between zero and one, and n = N? =~ 1002, the
method took around 120 to 170 outer iterations and 7 to 15 CPU minutes on a Sun
SPARC 10 to achieve acceptance of the solution at the prescribed tolerance. Note
that the size of entries of the g-matrix for the epidemic model with n = N? ~ 1002
may be as large as BN? =~ 1002. This means that the error relative to ||Q] o is
about 10719,

Of course, the computed eigenvector, when suitably normalized, can be inter-
preted as a quasistationary distribution. Each entry should therefore have the
same sign. There is nothing in the numerical algorithm, bar the error tolerance,
to guarantee this. Nevertheless, the method seems to provide very good results:
for n ~ 1002, min;(vy); was less than zero for the computed eigenvector v;, but
| min;(v1);| < 107'?||v1]|eo. This is remarkable when it is realized that, in the
double precision arithmetic used, u ~ 107'® and that some of the positive entries
were of size ~ 10735, Why it should work so well is not clearly understood;
however, see below. In addition, some numerical experiments were performed in
order to determine, roughly, the optimum value of m, the number of Arnoldi steps
per major cycle. It seems that m ~ 20 is about the best, at least for n ~ 1002.
Setting m = 10 for n = 100% reduced the time per major cycle by about half, but
the number of major cycles required jumped to over 450. For m = 30 the number
of major cycles required was reduced to only about 140, with an increase of time
per major cycle of about 50%.

Figure 2 shows a mesh plot of the quasistationary distribution of the epidemic
process with reflection at the truncation boundary, while Figure 3 shows the cor-
responding contour plot, together with contours of the stationary distribution of
the approximating diffusion. The latter was obtained as follows, using the meth-
ods described in Section 3 of Pollett (1990): Take N to be the index (“size of the
system”) and set o' = a/N, ' = BN and v’ = v to obtain “size-independent”
quantities (in the numerical experiments these were taken to be &' =1, ' = 4 and
' = 2). In this way the epidemic model can be regarded as being asymptotically
density dependent in the limit as a becomes large. If we then set

we can show that the corresponding deterministic model for X is

dX
— =FX
dt ( )’

F(ml,mz) — (_ﬁ’mlmz + a' ) ‘

1 1
Blzizy — 2o

where

This model has a unique equilibrium point,

zo = (v'/B',2 /7).
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Fic. 2. View of the quasistationary distribution of the (truncated) epidemic
model with reflection at the truncation boundary and with parameters N = 100,

a = 100, 8 = 0.04 and v = 2. The origin is the nearest corner, the z-axis is to the

right of the origin and the y-axis is to its left.
It follows, from Theorem 3.2 of Pollett (1990), that v/N(Xn(:) — #o) converges

weakly in the space of all sample paths on any given finite time interval to a stable

Ornstein-Uhlenbeck process with local drift matrix, B, given by
g (B =
alﬁl/,yl O b

and with local covariance matrix, G, given by
20 —a'
G = (—a’ 2a' ) ’

It has, therefore, a bivariate normal stationary distribution with zero mean and

covariance matrix, %, which satisfies

BY + BT - _@.

It can be shown that

o= (F5) )
_A g Yoo )
7//3 ﬁl—l_,yl'



Fig. 3. Contours of the quasistationary distribution (solid) of the epidemic
model with reflection at the truncation boundary and with parameters N = 100,
a = 100, 8 = 0.04 and v = 2, together with those of the diffusion approximation
(dashed).

It 1s useful to consider the contours in Figure 2 as forming two groups. The first,
comprising levels 1.78 x 1073, 1.6 x 1073, 1.4 x 1073, 1.2 x 1073, 1073, 8 x 1074,
6x107% 4 x107* and 2 x 10™*, account for most of the mass of the distribution.
The second group of outer contours, at levels 1073, 107¢, 107, 1078, 10~°, 10~°,
10711, account for the extremal behaviour of the epidemic process. Here one would
not expect the diffusion approximation to be accurate.

The convergence of the Iterative Arnoldi Method. Figure 4 shows a plot
of the value of the standardized residual norm, ||Qv; — Ay lloo/||v1]| 0o, against the
number of outer iterations. Notice that, after each iteration, there may be an
increase in this norm, but that, overall, there is a decrease which is approximately
log-linear in the number of outer iterations. Observe, also, that the convergence
rate per outer iteration increases with m. This is to be expected, because the larger
the value of m, the more that the “basic” Arnoldi Method dominates. However, it
should be emphasized that, for large m, the “basic” method is slow; as explained
above, m = 20 appears to provide the fastest overall convergence.

Short of convincing empirical evidence exemplified in Figure 4, it remains an
open problem to demonstrate, analytically, why the method works so well. Cer-
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Tterative Arnoldi Method applied to the epidemic model with parameters N = 100,
a = 100, 8 = 0.04 and v = 2. The parameter m is the size of the matrix to which
the “basic” Arnoldi Method is applied.

tainly neither Stewart nor I have been able to do this. However, we can at least
provide some positive rationale based on variational theory which is valid in the
case when () is symmetric. Suppose, then, that ) is symmetric. Its smallest eigen-
value is the minimum value of ¢(v) = vTQuv/vTv over v # 0 and the minimum
eigenvalue of H,, is the minimum eigenvalue of ¢(v) over non-zero v in span(V,,),
the span of the columns of V,,. If V,,, is generated using vy, then, since the v; €
span(V,,), the minimum eigenvalue of H,, must be less than or equal to g(v1).
If 91 is the vector computed by one iteration of the basic Arnoldi Method, then
07 minimizes g(v) over v in span(V,,). So, clearly, ¢(v1) < g(v1), with equality
only if v; i1s already an eigenvector. However, one must be certain that the suc-
cessive estimates, v;, don’t converge to the wrong eigenvector. This can’t happen
if the original (starting) v; has a component in that direction. To see this, put
vy = Z?:l ajz;j, where Qz; = Ajz; and ||z;]| = 1 for j = 1,2,...,n; note that
the z;’s are orthogonal as () is assumed to be symmetric. Then, every vector, v,
in span(V,,) has the form Zj a;p(Aj)z; for some polynomial, p, of degree < m.



Thus,
q(v) = Z aip(X;)°X;/ Z a;p(A;)*.

The minimizing polynomial will have to satisfy p(A;) > 1 > p(};), for all j, and
so the eigenvector computed will become closer to a true eigenvector.

In addition, we can offer some further evidence based on the work of
Saad (1980). If u is the eigenvector corresponding to the smallest eigenvalue, A,
of @ (now, not necessarily symmetric), then Theorem 2.1 of Saad (1980) implies
that

[(@m — Alull < (JAl + [[QIDIT — 7m Jul],

where 7, is the orthogonal projection operator onto the space span(V,,), and
Qm = T™mQ7m. Proposition 2.1 of Saad (1980) implies that if v; can be represented
as v1 = y_, a;Z;, where, as above, ©1,%s,... are the eigenvectors of (), normalized
to have unit length, then

(I = mm)ull < | D Jejl/]es]| | minmax|p(A;)],
i p J#1

where the minimization is taken over all polynomials, p, of degree < m with
p(A1) = 1; note that z; = w and A; = A. This result strongly suggests that, for m
sufficiently large, the computed &; should be less than a;. This would establish
the required convergence.

Other methods and extensions. The Arnoldi Method was chosen over other
methods (such as inverse iteration) which are appropriate for finding a single
eigenvalue/eigenvector pair. One reason is that the matrices involved here are very
large. Inverse iteration would require () to be factorized. Sparse matrix techniques
would be needed since, as mentioned earlier, (), stored as a dense matrix, would
require over 400 Mbytes of storage. Even using a Markowitz type sparse matrix
factorization results in memory overflow at this size of matrix. It may be possible
to implement inverse iteration using a “nested dissection” ordering of the rows
and columns of ). If this is possible, it may be more worthwhile to apply the
iterative Arnoldi Method to Q™! to find its largest real eigenvalue, than to use
inverse iteration. The main problem with the current implementation, however, is
not time, but memory. Specifically, the (dense) matrix V,,, which certainly needs
to be stored, can be prohibitively large.

The Iterative Arnoldi Method can be modified to provide not only the smallest
eigenvalue and its eigenvector, but also a collection of eigenvalues and eigenvec-
tors, say the three most dominant eigenvalues and their eigenvectors. The eigen-
values could then be used to estimate the rate of convergence of the process to
its quasistationary state; see Pollett and Roberts (1990). To obtain a collection
of eigenvalues and eigenvectors one would first compute a value of v; which is a
linear combination of the corresponding eigenvectors of H,,. Provided the sub-
space of eigenvectors sought has dimension much less than m, the method should
be successful.



Finally, research continues, both at the University of Queensland and the Aus-
tralian National University, on developing methods for evaluating stationary and
quasistationary distributions for Markovian models. Presently, researchers at both
institutions are evaluating multigrid methods and these are currently being imple-
mented on a variety of parallel architectures, including the University of Queens-

land’s MASPAR MP-1, a 4096 (64 x 64)-processor SIMD machine.
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