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Abstract—A fault diagnosis procedure is proposed
based on consensus in a group of local agents/experts.
Local models are represented by Markov chains and
modelling consensus as a mixture of these allows es-
timation of optimal ratings using an EM framework.
To deal with the unobservable case the procedure
is extended to accommodate Hidden Markov models
(HMMs).

Index Terms—Fault diagnosis, consensus algorithm,
mixtures of Markov chains, the EM algorithm, Hidden
Markov Models (HMM), multi-agent systems.

I. Introduction

Fault diagnosis is a procedure for recognising unwanted
behaviour in monitored systems. It comprises three se-
quential steps (known as the fundamental tasks of fault
diagnosis [1]). The first, fault detection, is deciding whether
the characteristics of the system in question are outside
permissible limits. The second, fault identification, is de-
termining which subsystems contain a fault of a particular
type and the time when it occurred. Finally, fault analysis

provides insight into the time-varying characteristics of the
fault and the scale of disturbance that occurred.

To detect changes in relevant system characteristics
it is necessary to have an adequate reference model. In
the existing literature on fault diagnosis ([1], [2], [3], [4],
[5]), there are three well-known approaches to system
modelling. In the model-based approach, the relationship
between system inputs and outputs is described by a pa-
rameterized mathematical model. In the knowledge-based

approach, causal relationships between system events, ob-
served symptoms and faults are modelled. And, in the
data-based approach, probabilistic signal models are used.
The choice depends on the problem at hand, and the task
is usually not simple, particularly for distributed systems,
where there are many interrelated and interconnected
parts.

The theory of automatic control suggest simplifying the
model by decomposing the system into a number of sub-
systems. Whether the decomposition is deterministic [6]
or probabilistic [7], it is assumed that each subsystem is
equipped with its own local observations and a set of local
models that describe different working conditions. Regard-
less of which technique used, the assumptions that local
measurements in each subsystem are taken independently
and the subsystems evolve independently, give rise to the

following two problems that need addressed: cooperation
between subsystems, in particular, modelling interaction
between neighbouring subsystems, and making a decision
in a group of neighbouring subsystems.

We consider here only probabilistic models and assume
that the operating modes, either normal or faulty, of any
subsystem can be described by a Markov chain [8]. We
propose a consensus-based approach to address problems
of cooperation and group decision. For consensus, we
determine a common distribution in a group of agents
(or experts), an idea that goes back to the early sixties,
when Stone [9] introduced pooling of opinions to determine
a group decision. Stone assumed that each opinion was
modelled by a continuous probability distribution, and
the opinion pool as a mixture of distributions. However,
he considered only equal weights. DeGroot [10] extended
this idea in two ways: first, by introducing an iterative
approach whereby each agent revises its own subjective
probability distribution based on changes in other group
members opinions, and second, by allowing the possibility
of distinct weights and specifying convergence conditions
for the iteration. The convergence conditions were gener-
alized further by Chatterjee and Seneta [11]. We follow
DeGroot’s approach by applying an iterative algorithm to
determine a common distribution, but we extended this
using Markov chains instead of continuous distributions.
Additionally, we propose a procedure for optimally select-
ing weights using an EM framework.

The proposed fault diagnosis algorithm consist of the
following set of tasks. The subsystems, obtained by de-
composition, comprise the group of agents. All share
information, including observations and the most likely
parameters of the consensus distribution, each member
estimating this distribution. Assuming that the conditions
for convergence of the consensus algorithm are satisfied,
members of the group come to consensus (an identical
consensus distribution). Once consensus is achieved, im-
plementation of the fundamental tasks of fault diagnosis
can commence. To decide whether there is a fault, each
group member compares its local distribution (model)
with a consensus distribution. More precisely, the “dis-
tance” between two distributions is measured; if it is
greater than 0, a fault is recorded. Thus, we assume that
normal operating conditions are described by a single
model and that there are a number of models indicating a
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fault. An essential assumption is that each subsystem can
detect its own fault, based on changes in a selected local
model.

Once it is established that there are one or more faulty
subsystems in the group, the next step is to determine
which subsystems are faulty and what type of fault is
present. There are two scenarios. In the first a subsystem
identifies its own fault, and checks if there are group
members affected by the same fault (the agent compares
its own local model with other local models in the group
by measuring the distance between corresponding distri-
butions). In the second, if the subsystem has no fault then
the faulty subsystems can be detected in the same manner
by measuring the distance between distributions. The
existence of different distance values indicates multiple
faults.

In the existing literature on fault diagnosis in dis-
tributed systems, the consensus algorithm was applied
in the work of Franco et al. [12] and Ferrari et al. [13].
Although they used a consensus-based approach, it differs
from ours in that first and second order moments only
were used, rather than the entire distribution as we do
here. Petri Nets are used extensively in fault diagnosis
in distributed systems [14]. Particularly interesting is the
work of Benveniste et al. [15], who introduced a proba-
bilistic extension of Petri Nets for distributed and con-
current systems (components that evolve independently)
and applied this to fault diagnosis. However, they did not
consider the problem of fault diagnosis within a consensus
framework. Our work is motivated by the need to diagnose
faults in electrical power systems. Accordingly, we mention
work of Kato et al. [16] and Garza et al. [17]. In [16] a
multi-agent approach was suggested to locate and isolate
fault zones. In [17] this problem was considered within a
probabilistic framework using dynamic Bayesian networks.
Our approach is different in that we use a consensus
framework for fault diagnostics.

The rest of this paper is organized as follows. The
problem is formulated in Section II and this is followed by
Section III, where the likelihood function for our mixture
of Markov chains and the EM procedure for selecting
optimal weights are derived. In Section IV an extension to
the case of unobserved Markov chains is proposed. Finally,
simulation results are presented in Section V.

II. Problem Formulation

In the proposed consensus-based fault diagnosis al-
gorithm for subsystems’ modelling, Markov chains are
employed. The terms subsystem and agent will be used
interchangeably. It is assumed that each agent has local
observations and a local model is represented by a transi-
tion probability matrix. Furthermore, agents can exchange
information over a computer network; specifically, each
agent can know other agents’ observations and transition
matrices. The idea is to modify the probability distri-
butions within a group of agents in such a way that,

under certain conditions, those of all agents in the group
converge [11] to a common distribution. Since the proposed
algorithm is designed for fault diagnosis in decentralized
systems, this alone does not imply that information about
the group is collected and processed by a single preselected
group member. A common distribution is obtained by ex-
changing information (messages) and negotiation between
group members; this negotiation is effected by an iterative
procedure [10] for updating the transition probabilities.

Starting from iteration τ = 1, agent i updates its transi-
tion matrix by taking a weighted sum of the other agents’
matrices and its own. Explicitly, the updated transition
matrix for agent i at iteration τ ≥ 1 is given by

P
(τ)
i =

K
∑

j=1

ψijP
(τ−1)
j , i = 1, . . . ,K, (1)

where ψij is a coefficient assigned by agent i to agent j to

rate influence of agent j on agent i. P
(τ)
i is the updated

transition matrix of agent i at iteration τ and P
(τ−1)
j is

a transition matrix of agent j from the previous iteration
participating in the revision of transition matrix of agent i.
The transition matrices P

(0)
j at iteration τ = 0 denote

initially pooled transition matrices. An essential postulate
is that all Markov chains have the same state space S =
{1, 2, ..., N}.

It is assumed that Ψ = [ψij ] (K × K) is an ergodic
stochastic matrix with strictly positive entries. The updat-
ing procedure at iteration τ is represented for all agents
in a group by
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where IN is N × N identity matrix. Define the group
transition matrix at iteration τ to be the block matrix
P(τ) = [P

(τ)
1 |P

(τ)
2 |...|P

(τ)
K ]T , where T denotes transpose.

Then, equation (2) can be expressed compactly as P(τ) =
[Ψ⊗ IN ]P(τ−1), or equivalently

P(τ) = [Ψ ⊗ IN ](τ)P(0), (3)

where ⊗ is the Kronecker product [18] and P(0) =

[P
(0)
1 |P

(0)
2 |...|P

(0)
K ]T is the block matrix consisting of the

initial transition matrices participating in the algorithm.
Convergence of (2) is assured under the condition that
Ψ⊗ IN is a contraction, that is, ‖Ψ⊗ IN‖ ≤ 1. We exploit
the following properties of the Kronecker product [18], [19]:

Lemma 1: If A is an mA × nA matrix and B is an
mB × nB matrix, then, for all ‖ · ‖p-norms,

‖A⊗B‖ = ‖A‖‖B‖.

Lemma 2: If A and B are square matrices, then

(A⊗B)n = An ⊗Bn.
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Since ‖Ψ‖∞ = 1 and ‖IN‖∞ = 1, applying Lemma 1 to
Ψ⊗ IN shows that ‖Ψ⊗ IN‖ ≤ 1. Furthermore, applying
Lemma 2 to the group transition matrix P(τ), given by (3),
we obtain

P(τ) = [Ψ(τ) ⊗ I
(τ)
N ]P(0). (6)

As τ goes to infinity P(τ) approaches to the group consen-
sus matrix Pc defined by
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where π
Ψ

= [π
Ψ1
π

Ψ2
. . . π

ΨK
] is the the limiting distribu-

tion of the stochastic matrix Ψ.
It follows that, for the iterative procedure (6) to con-

verge, the weights must be chosen so that Ψ is ergodic
[11]. It remains to specify how to estimate entries of our
stochastic matrix in the first iteration of the algorithm.
Since the right-hand side of (1) is a mixture of transition
matrices [20], [21], the weights ψij of agent i can be
interpreted as the distribution of a latent variable.

In the next section we derive the likelihood function for
our Markov chain mixture, which is used in the subse-
quent EM framework to estimate our weights (consensus
ratings). Once the optimal ratings are estimated and the
corresponding Ψ is formed, its stationary distribution (de-
noted by π

Ψ
) can be evaluated. From that and the initially

pooled transition matrices P(0), a consensus distribution
Pc and corresponding stationary distribution πc can be
determined.

III. Estimation of Optimal Ratings in the
Consensus Problem

To estimate weights in our algorithm we must deter-
mine a likelihood function for the linear combination of
transition matrices involved in the consensus scheme

Pi = ψi1P1 + ψi2P2 + · · ·+ ψiKPK =

K
∑

j=1

ψijPj (8)

where Pi, Pj and ψij refer to the ith agent in (2) for
τ = 1 (the iteration indices are omitted). In a group
of agents it is assumed that each has observed its own
state sequence and corresponding transition matrix. When
a particular agent i revises its own transition matrix,
it invites the other agents to transmit theirs. Agent i

will then adapt its own transition matrix based on the
information received. We will explain how these weights
depend on state sequences and corresponding transition
probabilities of each of the agents in the group. In a slight
abuse of notation, ψij will be replaced by ψj , meaning
that agent i changes its distribution under the influence of
information coming from agent j (the index i is omitted).
We follow an approach of Anderson and Goodman [22],
but extended this to Markov chain mixtures.

It is assumed that the state sequence {Xt, 0 ≤ t ≤ T }
of agent i is driven by (8). Transitions in this sequence
can come from one of K agents in the group. Since each
agent k is weighted by some value ψj , the probability of
a particular transition at time t, from state xi−1 to state
xi, can be modelled as the product of two probabilities:
the probability of a transition from one state to another
and the probability that the transition itself is caused
by agent k. Consequently, the probability of the state
sequence x0, . . . , xT is

ψ(x0x1)k
p(x0x1)k

ψ(x1x2)k
p(x1x2)k

...ψ(xT−1xT )
k
p(xT−1xT )

k
(9)

Expression (9) can be further extended by introducing a
random process (Zt) to model random selection of the
source k of a particular transition from xi−1 to xi. Since
this transition at time t can come from only one source, an
indicator I{Zt=k} of this source is introduced. In that case,
the weight ψ(xi−1xi)k

can be interpreted as the probability
that a particular transition probability p(xi−1xi)k

comes
from agent k, denoted as P (Zt = k). Thus, for each
transition from xi−1 to xi, expression (9) is modified to
obtain
K
∏

k=1

{ψ(x0x1)
k
p(x0x1)

k
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k
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· · ·
K
∏
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k
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k
}I{ZT=k}
. (10)

The next step towards calculating (9) requires counting
the number of transitions, from xi−1 to xi for agent k
until time t on the entire sequence, as follows:

∏
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k
, (11)

or, more compactly,

T
∏

t=1

N
∏

i,j=1

K
∏

k=1

{P (Zt=k)×

×P (Xt=j|Xt−1=i, Zt=k)}I{Zt=k}Nt(Xt−1=i,Xt=j)k (12)

To simplify notation, P (Zt = k) will be denoted as ψk, the
transition probability P (Xt = j|Xt−1 = i, Zt = k) will be
given in the shortened form Pt(i, j)k and the number of
transitions by time t for a particular agent k by Nt(i, j)k:

T
∏

t=1

N
∏

i,j=1

K
∏

k=1

{ψkPt(i, j)k}
I{Zt=k}Nt(i,j)k (13)

It is apparent from (13) that the random variable Zt
is not directly observable. However, this incomplete-data
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problem can be converted to a complete-data problem;
if the problem is extended to find the likelihood of the
sequence {(Xt, Zt), 0 ≤ t ≤ T } instead, it opens up the
possibility of using the EM framework [23].

As previously discussed, the expression (13) is a like-
lihood function of the complete-data vector whose loga-
rithm is given by

logP (XT0 ,Z
T
1 )=

T
∑

t=1

N
∑

i,j=1

K
∑

k=1

I{Zt=k}Nt(i, j)k×

×{logPt(i, j)k + logψk} (14)

The EM algorithm is a two-step iterative procedure. In the
first step, called the E-step, the Q function is calculated,
which is the mathematical expectation of (14) given ob-
servations {Xt, 0 ≤ t ≤ T }: Q = E{logP (XT0 ,Z

T
1 )|XT0 }.

Its evaluation is reduced to computing the mathematical
expectations of indicator functions, because the transition
probabilities Pt(i, j)k, counts Nt(i, j)k and initial mixing
proportions ψk are known in advance. By Bayes’ theorem

P (A|B ∩ C)=
P (B|A ∩ C)P (A|C)

P (B|C)
(15)

Furthermore, assuming that Xt depends only on Xt−1

and I{Zt=k}, as well as presuming that I{Zt=k} and Xt−1

are independent, the mathematical expectation of the
indicator function is given as follows:

E{I{Zt=k}|X
t
0}

=
P (Xt=j|Xt−1 = i, I{Zt=k}=1)P (I{Zt=k}=1)

P (Xt=j|Xt−1 =j)

=
P (Xt=j|Xt−1 = i, I{Zt=k}=1)P (I{Zt=k}=1)

∑K

h=1 P (Xt=j|Xt−1 = i, I{Zt=h}=1)P (I{Zt=h}=1)

=
ψkPt(i, j)k

∑K

h=1 ψhPt(i, j)h
= ϕt(i, j)k (16)

Finally an expression for Q is given by

Q =

T
∑

t=1

N
∑

i,j=1

K
∑

k=1

ϕt(i, j)kNt(i, j)k{logPt(i, j)k + logψk}

(17)
In the second step of the EM algorithm, called the M-step,
previously assumed parameters are optimized based on
the expectation of the log likelihood. Applying Lagrange’s
method to (17), with the constraint

∑K
k=1 ψk = 1, the

following expression is obtained:

Q=

T
∑

t=1

N
∑

i,j=1

K
∑

k=1

ϕt(i, j)kNt(i, j)k×

×{logPt(i, j)k + logψk} − λ

(

K
∑

k=1

ψk − 1

)

. (18)

After taking the derivative of Q with respect to ψk we get

∂Q

∂ψk
=

∑T

t=1

∑N

i,j=1 ϕt(i, j)kNt(i, j)k

ψk
− λ = 0 (19)

Rearranging (19) and using the constraint we obtain

λ = −

K
∑

h=1

T
∑

t=1

N
∑

i,j=1

ϕt(i, j)hNt(i, j)h.

Finally, the updated equation for ψk is given by

ψk =

∑T
t=1

∑N
i,j=1 ϕt(i, j)kNt(i, j)k

∑K

h=1

∑T

t=1

∑N

i,j=1 ϕt(i, j)hNt(i, j)h
. (20)

The previously described procedure is the first step of the
EM algorithm: ι = 0. By altering the E-step and M-step,
in each iteration ι, the function Q(ι) is calculated and the
parameters are optimized. From an implementation point
of view there are two ways to halt the procedure. The
first is when the difference in the value of Q is below some
threshold Θ assumed in advance, that is, Q(ι) −Q(ι−1) ≤
Θ. The second is to specify in advance the total number
of iterations Υ and stop when ι ≥ Υ.

IV. Extension to Unobservable Markov Chains

In the previous section, observable Markov chains were
considered, where each state of the system corresponds to
an observable discrete event. This is not realistic, as states
are not usually directly observable, if for no other reason
than because of measurement noise. So, we must extend
our algorithm to the case where the states are hidden:
Hidden Markov Models (HMM).

In order to apply HMM [24], [25] methods here, it
will be necessary to establish a link with the solutions
of the three essential problems of HMMs described by
Rabiner [24]. The basic elements of a HMM are the number
of states N , the number of distinct observation symbols
(discrete observations) O={o1, o2, . . . , oM}, or the number
of mixture components (continuous observations) M , and,
the state transition probabilities A=[aij ]N×N , where

aij ≡ P (Xt = j|Xt−1 = i), 1≤i, j≤N. (21)

The next element is an observation probability defined as
a matrix B=[bj(yt)]N×1, where bj(yt) is a probability of
a particular observation. For discrete observations,

bj(yt) ≡ P (Yt = om|Xt = j), 1≤j≤N, 1≤m≤M. (22)

A general representation of a continuous observation pro-
cess is via a finite mixture of the form

bj(yt) ≡

M
∑

k=1

αjkf(yt; Θjk), 1≤j≤N, 1≤m≤M. (23)

The final element is the initial state distribution Π =
[πk]N×1. We use the following compact notation:

λ = (A,B,Π), (24)

where N and M are defined implicitly.
The elements of a HMM are connected through the three

basic problems identified by Rabiner [24].
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Problem 1 : The efficient computation of the probabil-
ity P (Y |λ) of the observed sequence Y =
Y1, Y2, ..., YT , given the model λ = (A,B,Π)

Problem 2 : Estimation of the hidden state sequence
X = X1, X2, ..., XT , given the observation
sequence Y = Y1, Y2, . . . , YT and a model
λ = (A,B,Π)

Problem 3 : Estimation of the parameters of the model
λ = (A,B,Π), to maximize P (Y |λ).

To solve Problem 1 we used the forward-backward proce-
dure, which is a recursive method for efficient calculation
of the probability of the observed sequence. To maximize
the probability of a hidden state sequence for given ob-
servations, the Viterbi algorithm is used for Problem 2.
Problem 3 is addressed using the Baum-Welch algorithm.

The algorithm described in Sections II and III is as-
sociated with the HMM in the following way. Suppose
that each agent i in the group has an identical set of
HMM models Λi = {λi(Θ1) . . . λi(ΘR)}, where λi(Θk)
is model (24) and Θk is the vector of the parameters
of a model k. It is assumed that the R models in Λi

fully describe local behaviour in that normal and faulty
regimes are modelled by this set. Also, as previously
introduced, each agent i has its own set of observations
Y it ={yi1, y

i
1, . . . , y

i
T }.

The Baum-Welch algorithm is applied to get the models
for normal and faulty working regimes in Λi. The forward-
backward procedure is used to select the most likely model
for given observations. Finally, the Viterbi algorithm is
used to estimate the hidden sequence X it={x

i
1, x
i
2, ..., x

i
T }

corresponding to the observations Y it ={yi1, y
i
2, ..., y

i
T }.

To summarize, for each agent i in the group, once
the most likely model λi(Θk) for given observations Y it
is determined and the hidden sequence X it is estimated,
the methodology introduced in Sections II and III can be
applied directly.

V. Simulation Results

We illustrate the method using a hypothetical sys-
tem that can be decomposed into three subsystems,
the corresponding agents labelled 1, 2 and 3. In ad-
dition it is supposed that there are three possible
agent working regimes, each modelled by two-state
Markov chains. Two Markov chains (transition matri-
ces A1 and A2) represent faulty modes, and the third
(A3) models normal operating mode; they are speci-
fied in Table I. The corresponding stationary distribu-

TABLE I
Transition probabilities of operating modes

A1 A2 A3

0.4745 0.5255 0.8343 0.1657 0.5009 0.4991

0.1357 0.8643 0.5601 0.4399 0.4899 0.5101

tions [26] are π
A1

=[0.2052 0.7948], π
A2

=[0.7717 0.2283]

and π
A3

=[0.4953 0.5047], respectively. As indicated ear-
lier, part of our fault diagnosis scheme is based on mea-
suring the distance between distributions. To measure the
distance between the stationary distributions, π1 and π2,
we use the L2-norm:

δ(π1, π2)=

N
∑

i=1





i
∑

j=1

π1(j)−

i
∑

j=1

π2(j)





2

, (25)

where N is a number of discrete states. Using (25) a fault
table (dictionary) can be created. This is available to all
agents; once an agent determines its own operating mode,
it is used to uniquely identify the mode of the other agents
in the group relative to its own. Table II shows the fault
table for our example. Since it is symmetric, the total

TABLE II
The Fault Table (Dictionary)

δ(π1, π2) π
A1

π
A2

π
A3

π
A1

0 0.3209 0.0842

π
A2

0.3209 0 0.0764

π
A3

0.0842 0.0764 0

number of different values, as a function of the number of
operation modes n, is 2−1(n2 − n).

Suppose further that for each Markov chain the state
sequences are given on interval t ∈ [1, T ] with T = 100 (see
Fig. 1), denoted as X1(t), X2(t) and X3(t), respectively.
The total number of transitions from states i to j is

Fig. 1. State sequences X1(t),X2(t) and X3(t)

counted in order to determine matrices Nt(i, j)k, for k =
1, . . . ,K and t = 1, . . . , T , as given in Table III. To start

TABLE III
Number of transitions in state sequence

N1 N2 N3

16 11 63 12 28 25

10 62 12 12 25 21
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the EM algorithm, entries in ΨEM0 were randomly chosen.
After the EM algorithm is halted, Ψ is formed based on
estimated values of mixture proportions. For the resulting
Ψ, the stationary distribution π

Ψ
is computed. Using this,

a consensus Pc is determined, and, once estimated, its
stationary distribution πc can be calculated. Finally, by
applying (25), any discrepancy between the consensus
stationary distribution and stationary distribution of the
present operation mode can be detected, as discussed in
Section I and summarized in Algorithm 1 below.

Algorithm 1 Fault Diagnosis - agent i

if δ(πc, πP (0)
i

) > 0 then

for all j ∈ K\{i} do

if δ(π
P

(0)
i

, π
P

(0)
j

) > 0 then

Search the fault table to identify the model P
(0)
j

associated with agent j
end if

end for

end if

A. One faulty agent in the group

Suppose that one of the agents, for example agent 1,
has a fault, modelled by A1. In that case P

(0)
1 =A1,

P
(0)
2 =A3 and P

(0)
3 =A3 are the initially pooled transition

matrices. The results of the estimation procedure are
summarized in Tables IV and V. Once the stationary

TABLE IV
Optimal ratings in a group of Markov chains

ΨEM
0

Ψ πT
Ψ

0.3084 0.3833 0.3083 0.5182 0.2670 0.2148 0.5182

0.4198 0.1264 0.4538 0.5182 0.1050 0.3768 0.2484

0.6548 0.2576 0.0876 0.5182 0.3596 0.1222 0.2334

distribution πc of the consensus matrix is determined, Al-

gorithm 1 is applied. Since δ(πc, πP (0)
1

)=0.0285 (> 0) and

δ(πc, πP (0)
2

)=δ(πc, πP (0)
3

)=0.0147 (> 0), each agent will de-

tect that a fault has occurred in the system. In the second
step, each agent compares the distance between the sta-
tionary distribution of its operating mode with stationary
distributions of the other agents in the group. Since each
agent has a same fault table, a simple search allows each to
identify the working conditions of others. Since the esti-

TABLE V
Consensus matrix and its stationary distribution

Pc πTc

0.4872 0.5128 0.3740

0.3064 0.6936 0.6260

mated distances are δ(π
P

(0)
1

, π
P

(0)
2

)=δ(π
P

(0)
1

, π
P

(0)
3

)=0.0842

and δ(π
P

(0)
2

, π
P

(0)
3

)=0, this implies an operating mode of

A1 for agent 1 and A3 for agents 2 and 3.

B. Identical agents in the group

When the transition matrices are identical, (16) depends
only on the initial weights. That is, ϕt(i, j)k = ψk(0) for
all i and j. Since all state sequences have a same length
∑T

t=1

∑N

i,j=1 Nt(i, j)k = T−1, the updating equation (20)
is ψk(1) = ψk(0) for all k = 1, ...,K. Since ψk stays
unchanged after the first iteration, the EM algorithm
stops. Similarity is detected and computation time saved.
This occurs when all agents are non faulty or when all are
effected by a same fault type.

VI. Discussion

A fault diagnosis scheme is proposed for distributed
systems, in which subsystems are represented by agents.
Operating modes of agents are modelled by Markov chains.
The agents form a group, whose common (consensus)
transition matrix is estimated. Change in consensus within
the group is monitored and, once a change is detected, the
distances between the stationary distributions of operating
modes are estimated in order to identify the new condition
of the system. Future work includes the practical imple-
mentation of our algorithm to fault diagnosis in power
systems. To be fully applicable it will be necessary to
extend the HMM to continuous observation schemes in
order to deal with a broad class of nonlinear time series.
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