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1 Introduction

Importance sampling is a widely used Monte Carlo technique that involves
changing the probability distribution under which simulation is performed. Im-
portance sampling algorithms have been applied to a variety of discrete estima-
tion problems, such as estimating the locations of change-points in a time series
(Fearnhead and Clifford, 2003), the permanent of a matrix (Kou and McCul-
lagh, 2009), the K-terminal network reliability (L’Ecuyer et al, 2011) and the
number of binary contingency tables with given row and column sums (Chen
et al, 2005).

Sequential importance resampling algorithms
(Doucet et al, 2001; Liu, 2001; Del Moral et al, 2006; Rubinstein and Kroese,
2017) combine importance sampling with some form of resampling. The aim of
the resampling step is to remove samples that have an extremely low importance
weight. In the case that the random variables of interest take on only finitely
many values, forms of resampling that involve without-replacement sampling
can be used (Fearnhead and Clifford, 2003).

The resulting algorithms are similar to particle-based algorithms with resam-
pling, but the sampling and resampling steps are replaced by a single without-
replacement sampling step. In the approach of Fearnhead and Clifford (2003),
the authors use what we characterize as a probability proportional to size sam-
pling design. These ideas have recently been incorporated into quasi Monte
Carlo (Gerber and Chopin, 2015), as sequential quasi Monte Carlo. The stochas-
tic enumeration algorithm of Vaisman and Kroese (2015) is another without-
replacement sampling method, based on simple random sampling.

Use of without-replacement sampling has a number of advantages. This type
of sampling tends to automatically compensate for deficiencies in the importance
sampling density. If the importance sampling density wrongly assigns high
probability to some values, then the consequence of this mistake is limited,
as those values can still only be sampled once. This type of sampling can in
principle reduce the effect of sample impoverishment (Gilks and Berzuini, 2001),
as there is a lower limit to the number of distinct particles.

The first contribution of this paper is to highlight the links between the field
of sampling theory and sequential Monte Carlo, in the discrete setting. In par-
ticular, we view the use of without-replacement sampling as an application of
the famous Horvitz–Thompson estimator (Horvitz and Thompson, 1952), un-
equal probability sampling designs (Brewer and Hanif, 1983; Tillé, 2006) and
multi-stage sampling. The links between these fields have received limited at-
tention in the literature (Fearnhead, 1998; Carpenter et al, 1999; Douc et al,
2005), and the link with the Horvitz-Thompson estimator has not been made
previously.

Our application of methods from sampling theory would likely be consid-
ered unusual by practitioners in that field. For example, in the Monte Carlo
context, physical data collection is replaced by computation, so huge sample
sizes become quite feasible. Also, it has traditionally been unusual to apply
multi-stage methods with more than three stages of sampling, but in the Monte
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Carlo context we apply such methods with thousands of stages.
The second contribution of this paper is to describe a new method of without-

replacement sampling, using results from sampling theory. Specifically, we use
the Pareto design (Rosén, 1997a,b) as a computationally efficient unequal prob-
ability sampling design. Our use of the Pareto design relies on results from
Bondesson et al (2006).

The rest of this paper is organized as follows. Section 2 describes impor-
tance sampling and related particle algorithms. Section 3 gives an overview of
sampling theory. Section 4 introduces the new sequential Monte Carlo method
incorporating sampling without replacement, and lists some advantages and
disadvantages of the proposed methodology. Section 5 gives some numerical
examples of the effectiveness of without-replacement sampling. Section 6 sum-
marizes our results and gives directions for further research.

2 Sequential Importance Resampling

2.1 Importance Sampling

Let Xd = (X1, . . . , Xd) be a random vector in Rd, having density f with respect
to a measure µ, e.g., the Lebesgue measure or a counting measure. Let Xt =
(X1, . . . , Xt) be the first t components of Xd. We wish to estimate the value of
` = Ef [h (Xd)], for some real-valued function h.

The crude Monte Carlo approach is to simulate n iid copies X1
d, . . . ,X

n
d

according to f , and estimate ` by n−1
∑n
i=1 h

(
Xi
d

)
. However, there is no par-

ticular reason to use f as the sampling density. For any other density g such
that g (x) = 0 implies h (x) f (x) = 0,

` =

∫
h (xd)

f (xd)

g (xd)
g (xd) dµ (xd) =

∫
h (xd)w (xd) g (xd) dµ (xd) ,

where w (xd)
def
= f(xd)

g(xd)
is the importance weight. If

X1
d, . . . ,X

n
d are iid with density g, then the estimator

̂̀
ub = n−1

n∑
i=1

h
(
Xi
d

)
w
(
Xi
d

)
(1)

is unbiased. This estimator is known as an importance sampling estimator
(Marshall, 1956), with g being the importance density.

The quality of the importance sampling estimator depends on a good choice
for the importance density. If h is a non-negative function, then the optimal
choice is

g (x) ∝ h (x) f (x) , (2)

and the estimator has zero variance.
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If the normalizing constant of f is unknown, then we can replace the weight

function w with the unnormalized version wr (x) = cf(xd)
g(xd)

, where cf is a known

function but c and f are unknown individually. In that case we use the asymp-
totically unbiased ratio estimator

̂̀
ratio =

∑n
i=1 h

(
Xi
d

)
wr

(
Xi
d

)∑n
i=1 wr

(
Xi
d

) . (3)

The central limit theorem (CLT) implies that if ` <∞ and Varg (h (Xd)w (Xd)) <

∞, then
√
n
(̂̀

ub − `
)

converges to a normal distribution as n → ∞. By the

strong law of large numbers, 1
n

∑n
i=1 wr

(
Xi
d

) a.s.−−→ c. By Slutsky’s theorem

and the asymptotic normality of ̂̀ub,
√
n
(̂̀

ratio − `
)

also converges to a normal

distribution and is asymptotically unbiased.
Another context in which importance sampling can be applied is the estima-

tion of the constant c =
∫
cf (x) dx. Importance sampling can still be applied

if it is unclear how to simulate from f , and an unbiased estimator of c is

ĉ = n−1
n∑
i=1

wr

(
Xi
d

)
.

2.2 Sequential Importance Sampling

Let xt = (x1, . . . , xt). We adopt Bayesian notation, so that the interpreta-
tion of f (· · ·) depends on its arguments, e.g., f (x3 | x2) is the density of X3

conditional on X2 = x2. It can be difficult to directly specify an importance
density on a high-dimensional space. The simplest method is often to build
the distributions of the components sequentially. We first specify g (x1), then
g (x2 | x1) , g (x3 | x2), etc. If g is then used as an importance density, the im-
portance weight is

w (x) =
f (x1) f (x2 | x1) · · · f (xd | xd−1)

g (x1) g (x2 | x1) · · · g (xd | xd−1)
.

Early applications of this type of sequential build-up include Hammersley and
Morton (1954) and Rosenbluth and Rosenbluth (1955). More recent uses include
Kong et al (1994); Liu and Chen (1995). See Liu et al (2001) for further details.

It is often convenient to calculate the importance weights recursively as

u1 (x1) = f(x1)
g(x1)

and

ut (xt) = ut−1 (xt−1)
f (xt | xt−1)

g (xt | xt−1)
, t = 2, . . . , d. (4)

It is clear that ud (xd) = w (xd). Note that computing ut requires the fac-
torization of f (xt) in order to compute f (xt | xt−1), which can be difficult.

An alternative is to use a family {ft (xt)}dt=1 of auxiliary densities, where it is
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required that fd = f . Using these densities we can compute the importance

weights as v1 = f1(x1)
g(x1)

and

vt (xt) =
vt−1 (xt−1) ft (xt)

ft−1 (xt−1) g (xt | xt−1)
, t = 2, . . . , d. (5)

Note that ud (xd) = vd (xd) = w (xd). We obtain ut as a special case of vt,
where the auxiliary densities are the marginals of f . As vt is more general, we
use it to define our importance weights (unless otherwise stated). If the auxiliary
densities are only known up to constant factors, then the unnormalized version

of (5) involves setting v1 (x1) = c1f1(x1)
g(x1)

and

vt (xt) =
vt−1 (xt−1) ctft (xt)

ct−1ft−1 (xt−1) g (xt | xt−1)
, t = 2, . . . , d, (6)

where the functions {ctft (xt)} are known, but the normalized functions {ft (xt)}
may be unknown.

If cd = 1 it is possible to evaluate fd, and we can use the estimator ̂̀ub
defined in (1), regardless of whether ct 6= 1 for t < d. Otherwise, if fd is

known only up to a constant factor, we must use ̂̀ratio. The variance of the
corresponding importance sampling estimator is independent of the choice of
auxiliary densities and of the constants {ct}, but dependent on g. This will
change in Section 2.3 with the introduction of resampling steps.

Sequential importance sampling can be performed by simulating all d com-
ponents of Xd and repeating this process n times. Alternatively, we can simulate
the first component of all n copies of Xd. Then we simulate the second compo-
nents conditional on the first, and so on. We adopt the second approach, as it
leads naturally to sequential importance resampling.

2.3 Sequential Importance Resampling

It is often clear before all d components have been simulated that the final
importance weight will be small. Samples with a small final importance weight
will not contribute significantly to the final estimate. It makes sense to remove
these samples before the full d components have been simulated. One way of
achieving this is by resampling from the set of partially observed random vectors.
In this context the partially observed vectors are known as particles.

Let
{
Xi
t

}n
i=1

be the set of particles for a sequential importance sampling

algorithm, and let W i
t = vt

(
Xi
t

)
be the importance weights in Section 2.2.

Let
{
Yi
t

}n
i=1

be a sample of size n chosen with replacement from
{
Xi
t

}n
i=1

with probabilities proportional to
{
W i
t

}n
i=1

, and let W t = n−1
∑n
i=1W

i
t . We

can replace the variables
{(

Xi
t,W

i
t

)}n
i=1

by
{(

Yi
t,W t

)}n
i=1

and continue the
sequential importance sampling algorithm. This type of resampling is called
multinomial resampling. The most famous use of multinomial resampling is
in the bootstrap filter (Gordon et al, 1993). There are numerous other types
of resampling, such as splitting or enrichment (Wall and Erpenbeck, 1959),
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stratified resampling and residual resampling (Liu and Chen, 1995; Carpenter
et al, 1999). See Liu et al (2001) for a recent overview.

3 Sampling Theory

Sampling theory aims to provide estimates about a finite population by exam-
ining a randomly chosen set of elements of the population, known as a sample.
The population consists of N different objects known as units, denoted by the
numbers 1, 2, . . . , N . We will assume that the size N of the population is known.

We assume that for each unit i ∈ {1, . . . , N} there is a fixed scalar value
y (i). These values are known only for the units selected in the sample. We
wish to estimate some function F (y (1) , . . . , y (N)) of the values, most often

the mean y = N−1
∑N
i=1 y (i).

In its most abstract form, sampling theory is concerned with constructing
random variables taking values in certain product sets. For example, a sam-
ple chosen with replacement corresponds to a random vector taking values in⋃∞
n=1 {1, . . . , N}

n
. A sample of fixed size n chosen with replacement corre-

sponds to a random variable taking values in {1, . . . , N}n. Define the power set
P (X) as the set of all subsets of the set X. A sample without replacement corre-
sponds to a random variable taking values in the power set P ({1, . . . , N}), and
a sample without replacement of fixed size n corresponds to a random variable
taking values in

Sn = {s ∈ P ({1, . . . , N}) : |s| = n} .

These random variables have some distribution, and these types of distribution
are known as sampling designs.

Units may be included in the sample with equal probability or unequal proba-
bility. Our focus in this section is on without-replacement sampling with a fixed
sample size n and unequal probabilities. The probability of including unit i in
the sample is called the inclusion probability of unit i, and denoted by π (i). We
assume that all the inclusion probabilities are strictly positive. The probability
that both units i and j are included in the sample is denoted by π (i, j). This
is referred to as the second-order inclusion probability.

In order to apply unequal probability sampling designs, we assume that there
are positive values {p (i)}Ni=1 (known as size variables). For reasons specific to
the application domain, these values are assumed to be positively correlated with
the values in {y (i)}Ni=1. In traditional sampling applications, {p (i)}Ni=1 might
correspond to (financially expensive) census of the population at a previous time,

or estimates of the {y (i)}Ni=1 which are easily obtainable but highly variable.

In our setting the {p (i)}Ni=1 play a similar role to the importance density in
traditional importance sampling.

Unlike the {y (i)}Ni=1, the {p (i)}Ni=1 are known before sampling is performed.

We aim to have {π (i)}Ni=1 approximately proportional to {p (i)}Ni=1, and there-

fore approximately proportional to the {y (i)}Ni=1. For these reasons unequal
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probability designs are also known as probability proportional to size (PPS)
designs. Calculation of the inclusion probabilities for these designs is often diffi-
cult. See Tillé (2006) or Cochran (1977) for further details on general sampling
theory.

3.1 The Horvitz–Thompson Estimator

Assume that we are using a without-replacement sampling design with fixed size
n, and wish to estimate the total Ny of the population values. If s ∈ Sn is the
chosen sample, then the Horvitz–Thompson estimator (Horvitz and Thompson,
1952) of the total is

ŶHT =
∑
i∈s

y (i)π (i)
−1
. (7)

3.1.1 Systematic Sampling

Assume that 0 < p (i), and let K = n−1
∑N
i=1 p (i). We assume that all the p (i)

are smaller than K. Simulate U uniformly on [0,K]. The sample contains every
unit j such that

∃ integer l ≥ 1, s. t.

j−1∑
i=1

p (i) ≤ U + lK ≤
j∑
i=1

p (i) .

We have described systematic sampling (Madow and Madow, 1944) using a fixed
ordering of units, in which case some pairwise inclusion probabilities are zero.
Systematic sampling can also be performed using a random ordering, in which
case every pairwise inclusion probability is positive.

The complexity of generating a systematic sample is O (N) (Fearnhead and
Clifford, 2003), which is asymptotically faster than generation of a Pareto sam-
ple.

3.1.2 Adjusting the Population

The existence of units with large size variables may preclude the existence of a
sampling design with sample size n, for which π (i) ∝ p (i). As

∑N
i=1 π (i) = n,

proportionality would require

π (i) =
np (i)∑N
i=1 p (i)

.

This may contradict π (i) ≤ 1.
More generally, if a population does not satisfy the conditions for a particular

design, units can be removed from the population and the sample size adjusted,
until the conditions are satisfied. For example, consider the case where the
Sampford design cannot be applied, because even though the {p (i)}Ni=1 are
positive, they cannot be rescaled to satisfy the conditions in Section ??. We
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iteratively remove the units with the largest size variable from the population,
until the Sampford design can be applied with sample size n− k, where k is the
number of units removed. The k removed units are deterministically included
in the sample, and the Sampford design is applied to the remaining units, with
sample size n− k.

4 Sequential Monte Carlo for Finite Problems

Our aim in this section is to develop a new sequential Monte Carlo technique
that uses sampling without replacement. The algorithms we develop are based
on the Horvitz–Thompson estimator and can be interpreted as an application
of multistage sampling methods from the field of sampling theory.

We begin in Section 4.1 by describing our new sequential Monte Carlo tech-
nique without reference to any specific sampling design. In Section 4.2 we argue
for the use of the Pareto design, with the inclusion probabilities being approx-
imated by the inclusion probabilities of a related Sampford design. Section
4.5 gives some advantages and disadvantages of without-replacement sampling
methods.

4.1 Sequential Monte Carlo Without Replacement

Assume that Xd = (X1, . . . , Xd) is a random vector in Rd, taking values in the
finite set Sd and having density f with respect to the counting measure on Sd.
We wish to estimate the value of

` = Ef [h (Xd)] =
∑

xd∈Sd

h (xd) f (xd) .

Let Si be a subset of the support of Xi = (X1, . . . , Xi). For d ≥ t > i ≥ 1,
define St (Si) as

St (Si)
def
=

⋃
xi∈Si

Support (f (xt | xi)) = Support (Xt | Xi ∈ Si) .

That is, St (Si) is the set of all extensions of a vector in Si to a possible value
for Xt. For any value xi of Xi, let

St (xi) = Support (Xt | Xi = xi) .

It will simplify our algorithms to define

S1 (∅) = S1 = Support (X1) .

We begin by drawing a without-replacement sample from the set of all pos-
sible values of the first coordinate, X1. That is, we select a sample S1 (of fixed
or random size) from S1 according to a sampling design. For any x1 ∈ S1

let π1 (x1) be the inclusion probability for element x1 under this design. The
specific choice of the sampling design is deferred to Section 4.2.

8



We now repeat this sampling process by drawing a without-replacement
sample from the possible values of X2, conditional on the value of X1 being
contained in S1. That is, we select a without-replacement sample S2 from
S2 (S1) according to a second sampling design. If x2 ∈ S2 (S1), let π2 (x2) be
the inclusion probability of element x2 under this second design, and so on.

In general, we draw a without-replacement sample St from St (St−1) ac-
cording to a sampling design, and calculate the inclusion probabilities πt (xt).
This process continues until a sample from Sd (Sd−1) is generated.

Algorithm 1: Sequential Monte Carlo without replacement

input : Density f , function h, sampling designs
output: Estimate of `

1 S0 ← ∅
2 for t = 1 to d do
3 St ← Sample from St (St−1) according to some design
4 ∀xt ∈ St compute the inclusion probability

πt (xt) of xt

5 return
∑

xd∈Sd
h (xd) f (xd)

∏d
t=1 π

t (xd)
−1

Abusing notation slightly, if x is a vector of dimension greater than t, then
πt (x) will be interpreted as applying πt to the first t coordinates. The only
way for (x1, . . . , xd) to be selected as a member of Sd is if x1 is contained in
S1, (x1, x2) is contained in S2, (x1, x2, x3) is contained in S3, etc. The final
sample Sd is generated by a sampling design, for which the inclusion probability
of xd ∈ Sd is

∏d
t=1 π

t (xd). The Horvitz–Thompson estimator (See (7)) of ` is
therefore

̂̀=
∑

xd∈Sd

h (xd) f (xd)︸ ︷︷ ︸
y(i)

(
d∏
t=1

πt (xd)

)−1
︸ ︷︷ ︸

π(i)−1

. (8)

Computation of this estimator is described in Algorithm 1. The inclusion prob-
abilities πt depend on the sampling designs at the intermediate steps and the
chosen samples. So the estimator is a function of the final set Sd and implicitly
a function of S1, . . . ,Sd−1. Appendix 7 shows that this estimator is unbiased.
In practice, Algorithm 1 is implemented by maintaining a weight for each parti-

cle, and updating the particle weights by multiplying by f(xt | xt−1)
πt(xt)

every time

sampling is performed. That is,

f (xt)∏t
i=1 π

i (xt)︸ ︷︷ ︸
new weight

=
f (xt−1)∏t−1
i=1 π

i (xt)︸ ︷︷ ︸
old weight

f (xt | xt−1)

πt (xt)︸ ︷︷ ︸
new term

. (9)

Note the similarities between (9) and (4). The only difference is that the inclu-
sion probabilities replace the importance density in the formula.
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Example 1. To illustrate this methodology, assume that d = 3, that X3 is a
random vector in {0, 1, 2}3 with density f and that all our sampling designs
select exactly two units. One possible realization of our proposed algorithm is
shown in Figure 1. There are three possible values of X1, and there are three
possible samples of size 2. We select a sample S1 according to some sampling
design. Assume that units 0 and 1 are chosen. So the initial sample S1 from S1

will be S1 = {0, 1}. We compute the inclusion probabilities π1 (0) and π1 (1) of
each of these units being contained in the sample S1.

Conditional on these values of X1 there are six possible values of X2, which
are

S2 (S1) = {(0, 0) , (0, 1) , (0, 2) , (1, 0) , (1, 1) , (1, 2)} .

The next step is to select a sample S2 of size 2 from these six units, according to
some sampling design. Assume that the units (0, 1) and (1, 1) are chosen. We
compute the inclusion probabilities π2 (0, 1) and π2 (1, 1) of each of these units
being contained in the sample S2.

The final step is to sample X3 conditional on X2 being one of the values in
S2. In this case S3 (S2) is

{(0, 1, 0) , (0, 1, 1) , (0, 1, 2) , (1, 1, 0) , (1, 1, 1) , (1, 1, 2)} .

Assume that the sample of size 2 chosen is

S3 = {(0, 1, 1) , (1, 1, 1)} ,

and compute the inclusion probabilities π3 (0, 1, 1) and π3 (1, 1, 1).
The overall inclusion probabilities of the two units in S3 are

π1 (0)π2 (0, 1)π3 (0, 1, 1)

and
π1 (1)π2 (1, 1)π3 (1, 1, 1) .

In this case the Horzitz–Thompson estimator of ` is therefore

h (0, 1, 1) f (0, 1, 1)
(
π1 (0)π2 (0, 1)π3 (0, 1, 1)

)−1
+ h (1, 1, 1) f (1, 1, 1)

(
π1 (1)π2 (1, 1)π3 (1, 1, 1)

)−1
. �

We refer to the elements of the sets S1, . . . ,Sd as particles. A particle refers
to an object that is chosen in a sampling step. We refer to elements of the sets
S1, . . . ,Sd (Sd−1) as units to distinguish them from the particles. The term
“unit” is traditional in survey sampling to refer to an element of a population,
from which a sample is drawn.

If h is a non-negative function and

d∏
t=1

πt (xd) ∝ h (xd) f (xd) , ∀xd ∈ Sd,
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0 1 2

0, 0 0, 1 0, 2 1, 0 1, 1 1, 2

0, 1, 0 0, 1, 1 0, 1, 2 1, 1, 0 1, 1, 1 1, 1, 2

X1

X2

X3

S1

S2 (S1)

S3 (S2)

Figure 1: Illustration of the without-replacement sampling methodology, in the
case that d = 3 and X3 is a random vector in {0, 1, 2}3. The marked subsets of
X1,X2 and X3 are S1, S2 and S3.

we find that the estimator has zero variance. This formula is similar to the
zero-variance importance sampling density given in (2). An alternative method
of obtaining a zero–variance estimator is to choose the d sampling designs,
such that at every sampling step, with probability 1 all the possible units are
sampled. In this case the estimator corresponds to exhaustive enumeration of
all the possible values of Xd.

We can generalize to the case where cf (xd) is known but the normalizing
constant c is unknown, and the aim is to estimate c. The final estimator returned
by Algorithm 1 should be changed to∑

xd∈Sd

cf (xd)

d∏
t=1

πt (xd)
−1
.

If the aim is to estimate Ef [hd (Xd)] but only cf (xd) is known for some
unknown constant c, then as in standard sequential Monte Carlo, we use the
estimator( ∑

xd∈Sd

h (xd) cf (xd)

d∏
t=1

πt (xd)
−1

)( ∑
xd∈Sd

cf (xd)

d∏
t=1

πt (xd)
−1

)−1
. (10)

This estimator is no longer unbiased.

4.2 Choice of Sampling Design

So far we have not discussed the choice of the sampling design. Our preferred
choice is to simulate from the Pareto design, due to the ease of simulation. The
inclusion probabilities are difficult to calculate, but we use the connections to
the Sampford design, for which the inclusion probabilities are easy to calculate,
to avoid this problem.

The pdfs of the Sampford and Pareto designs (Equations (??) and (??))
differ only in the last term of the product. Bondesson et al (2006) shows that if

D =

N∑
i=1

p (i) (1− p (i)) is large and

N∑
i=1

p (i) = n, (11)
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then the constants c (i) in (??) are approximately equal to 1−p (i), which is the
corresponding term in (??). This implies that the Pareto and Sampford designs
are almost identical in this case. The condition that D be large is generally
equivalent to requiring that n and N − n are not small. More importantly, if
(11) holds then the inclusion probabilities of the Pareto design are approximately

{p (i)}Ni=1.
We normalize the size variables to sum to n, simulate directly from the

Pareto design and assume that the inclusion probabilities are the normalized
size variables. This choice has very significant computational advantages. It
allows for fast sampling and fast computation of the inclusion probabilities.

In theory this approximation to the inclusion probabilities will introduce
bias into our algorithms, but empirically this bias is found to be negligible.
We emphasize that it is the approximation of the inclusion probabilities that is
important. The fact that the designs themselves are almost identical is only a
means of obtaining this approximation for the inclusion probabilities.

In general the condition

N∑
i=1

p (i) = n, and 0 < p (i) < 1, ∀1 ≤ i ≤ N (12)

required by the Sampford design will not hold, and this cannot always be fixed
by rescaling the {p (i)}. In these cases we take the approach outlined in Section
3.1.2. We deterministically select the unit corresponding to the largest size
variable p (i). If the {p (i)} for the remaining units (suitably rescaled to sum
to n − 1) lie between 0 and 1 then the remaining n − 1 units are selected
according to the Pareto design. Otherwise, units are chosen deterministically
until these conditions are met, and the design can be applied. The units chosen
deterministically will have inclusion probability 1.

Example 2. We let N = 1000 and simulated the size variables {p (i)}Ni=1 uni-
formly on [0, 1]. For a fixed value of n, these size variables were rescaled to
sum to n and used as the size variables for Pareto and Sampford designs. The

inclusion probabilities
{
πPareto
n (i)

}N
i=1

of the Pareto design were computed. Re-

calling that the inclusion probabilities of the Sampford design are {p (i)}Ni=1, we
calculated

max
1≤i≤N

∣∣p (i)− πPareto
n (i)

∣∣
πPareto
n (i)

. (13)

This was repeated for different values of n, and the results are shown in Figure 2.
It is clear that the inclusion probabilities for the Pareto design and the Sampford
design are extremely close. Calculating the Pareto inclusion probabilities out to
n = 200 required 1000 base-10 digits of accuracy. As a result these calculations
were extremely slow. �

It remains to specify the size variables {p (i)} for the design. If we wish to use
an importance sampling density g to specify the size variables, then for sampling
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50 100 150 200
n

9.×10-7

9.5×10-7

1.×10-6

1.05×10-6

1.1×10-6

Relative Error

Figure 2: Maximum relative error (as measured by (13)) when approximating

the Pareto inclusion probabilities by {p (i)}Ni=1. The x-axis is the sample size n.

at step t we propose (with a slight abuse of notation) to use size variables

p (xt) =
g (xt)∏t−1

i=1 π
i (xt−1)

. (14)

The size variables can also be written recursively as

p (xt) = p (xt−1)
g (xt | xt−1)

πt−1 (xt−1)
. (15)

Equation (15) is similar to (4).
These size variables give a straightforward method for converting an impor-

tance sampling algorithm into a sequential Monte Carlo without replacement
algorithm, shown in Algorithm 2. For simplicity, Algorithm 2 omits the details
relating to the deterministic inclusion of some units if (12) fails to hold. If the
sample size n is greater than the number N of units, then the entire population
is sampled and every inclusion probability is 1.

4.3 Merging of Equivalent Units

When applying without-replacement sampling algorithms, there are often mul-
tiple values which will have identical contributions to the final estimator. Let
h∗ (xt) = E [h (Xd) | Xt = xt]. That is, when the sample is taken on Line
3 of Algorithm 1, there may be values xt and x′t in St (St−1), for which
h∗t (x′t) = h∗t (xt). In such a case the units can be merged, reducing the set
of units to which the sampling design is applied. Before continuing, we give a
short example illustrating how this idea works.

Example 3. Consider again the example shown in Figure 1 of a random vec-
tor taking values in {0, 1, 2}3. For simplicity we use the conditional Poisson

13



Algorithm 2: Sequential Monte Carlo without replacement, using an ap-
proximate Sampford design and an importance density

input : Density f , function h, importance density g, sample size n
output: Estimate of `

1 S0 ← ∅
2 for t = 1 to d do
3 Compute {p (xt) : xt ∈ St (St−1)} and

normalize to sum to n
4 St ← Pareto sample of min {n, |St (St−1)|}

from St (St−1) with size variables {p (xt)}
// The approx. inclusion probability of

// xt ∈ St is πt (xt) = p (xt) or πt (xt) = 1

5 return
∑

xd∈Sd
h (xd) f (xd)

∏d
t=1 π

t (xd)
−1

0 1 2

0, 0 0, 2 0, 1 + 1, 1 1, 0 1, 2

0, 0, 0 0, 0, 1 0, 0, 2 0, 1, 0 0, 1, 1 0, 1, 2

X1

X2

X3

S1

S2 (S1)

S3 (S2)

Figure 3: Illustration of merging of units in Example 3. Here d = 3 and X3 is a
random vector in {0, 1, 2}3. The merged unit is represented by (0, 1), but could
also be represented by (1, 1). The marked subsets of X1,X2 and X3 are S1, S2

and S3.
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sampling design. Let

h (0, 1, 0) = 6, h (0, 1, 1) = h (0, 1, 2) = 0.1,

h (1, 1, 0) = 2, h (1, 1, 1) = h (1, 1, 2) = 2.1,

and let h be equal to 2 for all other values of X3. Assume that f is the uniform
density on {0, 1, 2}3, so that the value we aim to estimate is 2.015. Let g (x1) =
1
3 , g (x2) = 1

9 and g (x3) = 1
27 . This implies that the inclusion probabilities at

iteration t = 1 are 2
3 , and the inclusion probabilities of all the units in S2 (S2)

are 1
3 .

At iteration t = 2 the sampling design is applied to S2 (S2), which includes
(0, 1) and (1, 1). In this example we have

h∗3 (0, 1) = h∗3 (1, 1) =
62

30
.

Both units have the same expected contribution to the final estimator, and if
this was known, we could replace the pair of units by a single unit (0, 1)+(1, 1),
where the merged unit is represented by (0, 1) or (1, 1). After the merging we
have the situation shown in Figure 3, where we have chosen to represent the
merged unit as (0, 1). We could choose to represent the merged unit by (1, 1),
in which case the units underneath the merged unit would be (1, 1, 0), (1, 1, 1)
and (1, 1, 2). The value of the size variable for the merged unit is

g (0, 1)

π1 (0)
+
g (1, 1)

π1 (1)
=

1

3
.

We must also double the contribution of the merged unit to the final estimator,
as it represents two units.

If units (0, 1, 0) and (0, 1, 1) are chosen in the third step, the value of the
estimator is

12

27

(
π1 (1)π2 ((0, 1) + (1, 1))π3 (0, 1, 0)

)−1
+

0.2

27

(
π1 (1)π2 ((0, 1) + (1, 1))π3 (0, 1, 0)

)−1
.

The bolded values are 2h (0, 1, 0) f (0, 1, 0) and
2h (0, 1, 1) f (0, 1, 1), where the factor of 2 accounts for the merging.

Assume that units 0 and 1 are initially selected. If no merging is performed,
then the variance of estimator is 0.52. If the merging step is performed, and the
merged unit is represented by (0, 1), then the variance of the estimator is 1.04.
If the merged unit is represented by (1, 1), then the variance of the estimator is
0.0048. �

As in Section 4.2, let g be the importance function, for simplicity assumed
to be normalized. In order to formalize the idea of merging equivalent units,
we add additional information to all the sample spaces and the samples chosen
from them. The new units will be triples, where the first entry xt represents
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the value of the unit, the second entry w can be interpreted as the importance
weight, and the third entry p can be interpreted as the size variable.

With slight abuse of notation, we redefine the sets S0, . . . ,Sd to account for
this extra structure. Let

T1 = T1 (∅) = {(x1, f(x1), g(x1)) : x1 ∈ S1} .

The initial sample S0 is chosen from T1, with probability proportional to the
third component. Assume that sample St−1 has been chosen, and let

Tt (St−1) =

{(
xt, w

f (xt | xt−1)

πt−1 (xt−1)
, p
g (xt | xt−1)

πt−1 (xt−1)

)
:

(xt−1, w, p) ∈ St−1,xt ∈ Support (Xt | Xt−1 = xt−1)

}
. (16)

Note that (16) incorporates the recursive equations in (9) and (15). Using these
definitions, we can sample S2 from T2 (S1), S3 from T3 (S2), etc. We can now
state Algorithm 3. If the merging step on Line 4 is omitted, then this algorithm
is in fact a restatement of Algorithm 1 using different notation. The merging
rule on Line 4 is given in Proposition 4.1.

Algorithm 3: Sequential Monte Carlo without replacement, with merging

input : Density f , function h, sampling designs
output: Estimate of `

1 S0 ← ∅
2 for t = 1 to d do
3 U ← Tt (St−1)
4 Modify U by merging pairs according to Proposition 4.1
5 St ← Sample from U according to some design, with size variables

{p : (xt, w, p) ∈ U}
6 ∀xt ∈ St compute the inclusion probability

πt (xt) of xt

7 return
∑

(xd,w,p)∈Sd

h(xd)w
πd(xd)

Proposition 4.1. If units (xt, w, p) and (x′t, w
′, p′) in

Tt (St−1) satisfy h∗ (xt) = h∗ (x′t), they can be removed and replaced by the unit

(xt, w + w′, p+ p′) or (x′t, w + w′, p+ p′) .

The final estimator is still unbiased.

Proof. See Appendix 8.

The value p+p′ in the third component of the merged unit can be replaced by
any positive value, without biasing the resulting estimator. We gave an example
of this type of merging in Example 3. Example 3 is unusual, as it merges units
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for which the function h takes very different values. A more common way for
h∗ (xt) = h∗ (x′t) to occur is if

h (Xd) | Xt = xt
d
= h (Xd) | Xt = x′t . (17)

Example 4. We now continue Example 3, using the new definitions of T1 and
Tt (St−1). As shown in Figure 3, the six units in T2 (S1) become five after the
merging step. Of these, two units are chosen to be in S2; these units are(

(0, 0) ,
f (0, 0)

π1 (0)
,
g (0, 0)

π1 (0)

)
=

(
(0, 0) ,

1

6
,

1

6

)
and (

(0, 1) ,
f (0, 1)

π1 (0)
+
f (1, 1)

π1 (1)
,
g (0, 1)

π1 (0)
+
g (1, 0)

π1 (1)

)
=

(
(0, 1) ,

1

3
,

1

3

)
.

The other possible value for the merged unit is
(
(1, 1) , 13 ,

1
3

)
. �

Algorithm 3 does not specify a sampling design. We suggest the use of a
Pareto design, with the inclusion probabilities being approximated by those of
a Sampford design, as discussed in Section 4.2. However, these types of merging
step can applied with any sampling design, including the systematic sampling
suggested in Fearnhead and Clifford (2003).

4.4 Links with the work of Fearnhead and Clifford (2003)

Carpenter et al (1999) and Fearnhead and Clifford (2003) propose a resampling
method which they name “stratified sampling”. This method is systematic
sampling (Section 3.1.1) with probability proportional to size, with large units
included deterministically. This method has a long history in sampling theory
(Madow and Madow, 1944; Madow, 1949; Hartley and Rao, 1962; Iachan, 1982).
That large units must be included deterministically in a PPS design is well
known in the sampling theory literature (Sampford, 1967; Rosén, 1997b; Aires,
2000).

From a sampling theory point of view, the optimality result of Fearnhead
and Clifford (2003) can be paraphrased as “sampling with probability propor-
tional to size is optimal”. As the optimality criteria relates only to the inclusion
probabilities, the Sampford design satisfies this condition just as well as system-
atic sampling. The conditional Poisson and Pareto designs will approximately
satisfy this condition, especially when n is large.

In the approach of Fearnhead and Clifford (2003), units with large weights
are included deterministically, and their weights are unchanged by the sampling
step. All other units are selected stochastically, and are assigned the same
weight if they are chosen.

This can be interpreted as an application of the Horvitz–Thompson estima-
tor. With these observations, the approach of Fearnhead and Clifford (2003)
can be interpreted as an application of Algorithm 1 using systematic sampling.
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0 1 2

0, 0 0, 1 1, 0 1, 1 1, 2 2, 0 2, 1 2, 2

X1

X2

h (X2) 3 3 2 2 2 2 2 2

Figure 4: A pathological example, where increasing the sample size from 1 to 2
increases the variance.

4.5 Advantages and Disadvantages

Like many methods that involve interacting particles (e.g., multinomial resam-
pling algorithms), the sample size used to generate the estimator is fixed at the
start and cannot be increased without recomputing the entire estimator. By
contrast, additional samples can be added to an importance sampling estimator
and some sequential Monte Carlo estimators (Brockwell et al, 2010; Paige et al,
2014), if a lower variance estimator is desired.

Without–replacement sampling allows the use of particle merging steps,
which can dramatically improve the variance of the resulting estimators, while
also lowering the simulation effort required. Such merging steps are not possible
with more classical types of resampling.

If particle merging is used then the resulting estimator is specialized to the
particular function h, as the units that can be merged depend on the function h.
By contrast the weighted sample generated by an importance sampling estimator
can, in theory, be used to estimate the expectation of a different function h. In
practice, even importance sampling estimators can be optimized by discarding
particles as soon as they are known to make a contribution of zero to the final
estimator. In such cases even the importance sampling algorithm is specialized
to the function h.

The choice of the sample size is far more complicated than for traditional
importance sampling algorithms. A large enough sample size will return a zero–
variance estimator, but this sample size is generally impractical. However, it
is unclear whether the variance of the estimator must decrease as n decreases.
This is particularly true when merging steps are added to the algorithm. The
following simple example illustrates this.

Example 5. Take the example shown in Figure 4, where X2 takes on eight
values and the values of h (x2) are as given. Assume that f (x2) = 1

8 for each
of these values. Let the size variables be p (x1) = p (x2) = 1. if n = 1 the
estimator has zero variance. However with n = 2 the estimator has non-zero
variance; the value to be estimated is 18

8 , but if units (0, 0) and (0, 1) are selected,
the estimator is 2.8125 6= 18

8 . So increasing the sample size has increased the
variance from zero to some non-zero value.

Despite the previous remarks about choice of sample size, in practice the
variance of the estimator decreases as n increases. As the variance of the es-
timator will reach 0 for finite n, it must be possible to observe a better than
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n−1 decay in the variance of the estimator. This is in some sense a trivial
statement, as there exists a sample size k, such that the estimator has non-zero
variance with this sample size, but for sample size k + 1 the estimator has zero
variance. However, we observe more rapid decreases in practical applications of
these types of estimators. For an example see the simulation results in Section
5.2.

5 Examples

In our examples we compare estimators using their work-normalized variance,
defined as

WNV
(̂̀) = TVar

(̂̀) ,
where T is the simulation time to compute the estimator. In practice the terms
in the definitions of WNRV are replaced by their estimated values.

5.1 Change Point Detection

We consider the discrete-time change-point model used in the example in Section
5 of Fearnhead and Clifford (2003). In this model there is some underlying real-
valued signal {Ut}∞t=1. At each time-step, this signal may maintain its value
from the previous time, or change to a new value. The observations {Yt}∞t=1

combine {Ut}∞t=1 with some measurement error. This measurement error will
sometimes generate outliers, in which case Yt is conditionally independent of
Ut. This model is a type of hidden Markov model.

Let Xt = (Ct, Ot) be the underlying Markov chain, where both Ct and Ot
take values in {1, 2}, and let {Vt}∞t=1 and {Wt}∞t=1 be independent sequences of
standard normal random variables. Let

Ut =

{
Ut−1 if Ct = 1,

µ+ σVt if Ct = 2.

If Ct = 2, the signal changes to a new value, distributed according to N
(
µ, σ2

)
.

Otherwise, the signal maintains the previous value. Let

Yt =

{
Ut−1 + τ1Wt if Ot = 1,
ν + τ2Wt if Ot = 2.

If Ot = 2, the observed value is an outlier and is distributed according to
N
(
ν, τ22

)
. Otherwise, the measurement reflects the underlying signal, with error

distributed according to N
(
0, τ21

)
.

It remains to specify the distribution of the Markov chain {Xt}∞t=1. In the
example given in Fearnhead and Clifford (2003), the {Ct}∞t=1 are assumed iid,
and {Ot}∞t=1 is a Markov chain, with

P (Ot = 2 | Ot = 2) = 0.75,P (Ot = 2 | Ot = 1) = 1/250

P (Ct = 2) = 1/250.
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Figure 5: The well-log data from Ó Ruanaidh and Fitzgerald (1996).

In this example there is some integer d > 1, and the aim is to estimate the
marginal distributions of {Ct}dt=1 and {Ot}dt=1, conditional on Yd = {Yt}dt=1.

For the purposes of this example we apply a version of Algorithm 3 that
involves some minor changes. See Appendix 9 for further details. The final
algorithm is given as Algorithm 6 in Appendix 9. This algorithm contains
the merging steps outlined in Fearnhead and Clifford (2003), which operate on
principles similar to those described in Section 4.3.

For this example we used the well-log data from Ó Ruanaidh and Fitzgerald
(1996); Fearnhead and Clifford (2003), and aimed to estimate the posterior
probabilities

P (Ct = 2 | Yd = yd) and P (Ot = 2 | Yd = yd) ,

which are the posterior probabilities that there is a change or an outlier at time
t, respectively. For this dataset d = 4050. The data are shown in Figure 5.

We applied two methods to this problem. The first was the method of
Fearnhead and Clifford (2003), and the second was our without-replacement
sampling method, using a Pareto design as an approximation to the Sampford
design. Both of these methods can be viewed as specializations of Algorithm 6,
where the method of Fearnhead and Clifford (2003) uses systematic sampling.
Both methods were applied 1000 times with n = 100. Each run of either method
produces 4050 outlier probability estimates and 4050 change-point probability
estimates, so we provide a summary of the results. Note that the sample size
required to produce a zero-variance estimator is on the order of 24050 in this
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Figure 6: The variances of the estimated posterior outlier probabilities, using
both methods.

case, which is clearly infeasible.
For the 4050 outlier probabilities, our method had a lower variance for 1656

estimates, and a higher variance for 2393 estimates. For the 4050 change-point
estimates, our method had a lower variance for 1915 estimates, and a higher
variance for 2121. This suggests that systematic sampling performs better than
our approximation. Figure 6 shows the variances of every outlier probability
estimate, under both methods. This plot suggests that if systematic sampling
performs better, the improvement is small. The results for the change-points
are similar.

Recall from Section 4.5 that the optimality condition of Fearnhead and Clif-
ford (2003) can be paraphrased as “sampling with probability proportional to
size is optimal”. So, to the extent that the approximation for the inclusion
probabilities of the Pareto design (See Section 4.2) holds, we expect that both
methods should have similar performance. This is reflected in the simulation
results. There is some discrepancy for estimates of the outlier probabilities,
where systematic sampling performs slightly better. This may be due to the
somewhat small sample size.

Fearnhead and Clifford (2003) also applied the mixture Kalman filter (Chen
and Liu, 2000) and a multinomial resampling algorithm. They showed that
the without-out replacement sampling approach significantly outperformed the
alternatives. As our approach has equivalent performance to the method of
Fearnhead and Clifford (2003), we do not consider these alternatives further.

21



5.2 Network Reliability

5.2.1 Without Particle Merging

We now give an application of without-replacement sampling to the K-terminal
network reliability estimation problem. Assume we have some known graph G
with m edges, which are enumerated as e1, . . . , em. We define a random sub-
graph X of G , with the same vertex set. Let X1, . . . , Xm be independent binary
random variables representing the states of the edges of G . With probability θi
variable Xi = 1, in which case edge ei of G is included in X. For a fixed set
K = {v1, . . . , vk} of vertices of G , the K-terminal network unreliability is the
probability ` that these vertices are not connected; that is, they do not all lie
in the same connected component of X. As computation of this quantity is in
general #P complete, it often cannot be computed and must be estimated. If
the probabilities {θi} are close to 1 then the unreliability is close to zero, and
the problem is one of estimating a rare-event probability.

One of the best methods currently available for estimating the unreliability `
is approximate zero–variance importance sampling (L’Ecuyer et al, 2011). This
method is based on mincuts. In the K-terminal reliability context a cut of a
graph g is a set c of edges of g such that the vertices in K do not all lie in the
same component of g \ c. A mincut is a cut c such that no proper subset of c
is also a cut.

In L’Ecuyer et al (2011) the states of the edges are simulated sequentially
using state-dependent importance sampling. Assume that the values x1, . . . , xt
of X1, . . . , Xt are already known. Let G (x1, . . . , xt) be the subgraph of G ob-
tained by removing all edges ei where i ≤ t and xi = 0. Let C (x1, . . . , xt) be
the set of all mincuts of G (x1, . . . , xt) that do not contain edges e1, . . . , et. Let
E (·) be the event that a set of edges is missing from X. Define

γ+ = max {P (E (c)) : c ∈ C (x1, . . . , xt, 1)} ,
γ− = max {P (E (c)) : c ∈ C (x1, . . . , xt, 0)} .

Under the importance sampling density, Xt+1 = 1 with probability

θt+1γ
+

θt+1γ+ + (1− θt+1) γ−
,

instead of θt+1 under the original distribution. We add a without-replacement
resampling step to this importance sampling algorithm by implementing Al-
gorithm 2. We refer to this algorithm as WOR. As this algorithm is a fairly
straightforward specialization of Algorithm 2 we do not describe the details of
the algorithm here.

5.2.2 With Particle Merging

In order to apply Algorithm 3, we only need to specify the particle merging step.
We do this by marking some of the missing edges in each unit as present, once
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it has been determined that this change makes no difference to the connectivity
properties of the graph.

An example of this situation is shown in Figure 7. In this case edge {3, 8} is
known to be missing, but vertices 3 and 8 are already known to be connected.
So whether edge {3, 8} is present or absent cannot change the connectivity
properties of the final graph, regardless of the states of the remaining edges.
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Figure 7: Example of the merging approach for network reliability. Thick edges
are known to be present. Dashed edges are known to be absent. The states of
all other edges are unknown.

Assume that we have some unit (xt, w, p), and for some 1 < i < t, xi = 0.
Let {v, v′} = ei. Assume that v and v′ are in the same connected component
of G (x1, . . . , xt), so that these vertices are already connected by a path that
does not include edge ei. Regardless of the states xt+1, . . . , xm of the remaining
edges, setting xi = 1 will never change whether the vertices in K to lie in the
same connected component. So if

x′i = (x1, . . . , xi−1, 1, xi+1, . . . , xt) ,

it can be shown that h∗ (xt) = h∗ (x′t). This observation leads to the particle
merging step in Algorithm 4.

It is interesting to note that this algorithm is in some sense similar to the
turnip (Lomonosov, 1994), which is a variation on permutation Monte Carlo
(Elperin et al, 1991). In the case of the turnip, the states of some edges are
ignored. In our case the merging step also tends to ignore the states of certain
edge.

5.2.3 Results

We performed a simulation study to compare four different methods, all based
on the importance sampling scheme of L’Ecuyer et al (2011). This importance
sampling scheme by itself is method IS. Adding without-replacement sampling
(Algorithm 2) is method WOR. Adding without-replacement sampling and par-
ticle merging (Algorithm 3) is method WOR-Merge. Adding the resampling
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Algorithm 4: Merging step for network reliability example.

input : Set U of units of the form (xt, w, p).
output: Set M of merged units

1 W,M ← ∅
2 for (xt, w, p) ∈ U do
3 for i = 1 to t do
4 {v, v′} ← ei
5 if xi = 0 and v, v′ are in the same component of G (x1, . . . , xt)

then
6 xi ← 1 // Modify entry i of xt

7 Add (xt, w, p) to W // Store modified values

8 W ′ ← {xt : (xt, w, p) ∈W} // Extract unique values of the first component

9 for xt ∈W ′ do
10 w ←

∑
(x′t,w

′,p′)∈W,x′t=xt
w′

11 p←
∑

(x′t,w
′,p′)∈W,x′t=xt

p′

12 Add (xt, w, p) to M

method of Fearnhead and Clifford (2003) is method Fearnhead. We used sam-
ple sizes 10, 20, 100, 1000 and 10000.

We also implemented a residual resampling method (Carpenter et al, 1999).
However, this method was found to perform uniformly worse than vanilla impor-
tance sampling on all the network reliability examples tested. The resampling
step has the affect of “negating” the importance sampling scheme. The results
for this method are not shown in the figures for this section, as they cannot
reasonably be shown on the same scale.

The first graph tested was the dodecahedron graph (Figure 8a), with K =
{1, 20} and θi = 0.99. Results are given in Figure 8c. In this case the true value
of ` is known to be 2.061891×10−6. All the without-replacement sampling meth-
ods have the property that the WNRV decreases as the sample size increases.
Method WOR-Merge clearly outperforms the other methods. Application of a
residual resampling algorithm to this problem resulted in an estimator with a
work normalized variance on the order of 10−9, many orders of magnitude worse
than the results for the other four methods.

The second graph tested was a modification of the 9× 9 grid graph (Figure
8b), where K contains the highlighted vertices. The modified grid graph is
a somewhat pathological case for this importance sampling density, as in the
limit as p → 1 one of the 9 minimum cuts has a very low probability of being
selected. Results in Figure 8d show that the WOR-Merge estimator significantly
outperforms the other estimators.

The third graph tested was three dodecahedron graphs arranged in parallel
(Figure 9), with θi = 0.9999. Simulation results are shown in Figure 10. It is
interesting to see that the performance of method WOR-Merge does not change
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(a) Dodecahedron graph

(b) Modified 9 × 9 grid graph. The
vertices in K are highlighted.
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(c) Work normalized variance results
for the dodecahedron graph, with edge
reliability θi = 0.99.
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(d) Work normalized variance results
for the modified 9 × 9 grid graph with
edge reliability θi = 0.99.

significantly when increasing the sample size from 20 to 100, or from 1000 to
10000.

The fourth graph tested was three dodecahedron graphs arranged in series
(Figure 11), with θi = 0.9999. Simulation results are given in Figure 12.

6 Concluding Remarks

This article has described the incorporation of ideas from sampling theory into
sequential Monte Carlo methods. Taking a sampling theory approach provides a
new perspective on the use of without-replacement sampling methods. It shows
how the inclusion probabilities of the sampling designs take the place of the
importance density in a standard importance resampling algorithm.
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Figure 9: Three dodecahedron graphs arranged in parallel. The vertices in K

are highlighted.

This article shows that the sampling method of Fearnhead and Clifford
(2003) is systematic sampling, and that the optimality result of Fearnhead and
Clifford (2003) relates to probability proportional to size sampling. The stochas-
tic enumeration algorithm of Vaisman and Kroese (2015) is also a special case
of the methods described in this paper. It uses simple random sampling without
importance sampling, and introduces some merging ideas, which they term tree
reductions.

Adding a resampling step to an importance sampling algorithm has the
potential to increase the variance of the resulting estimator. If the importance
sampling density is sufficiently different from the zero–variance density, adding a
without-replacement resampling step can result in significant improvement. We
illustrated this with reference to the K-terminal network reliability problem,
and a hidden Markov model.

In the case of the network reliability example, adding a without-replacement
sampling step improved the variance of the importance sampling estimator
proposed by L’Ecuyer et al (2011) by an order of magnitude. The without-
replacement algorithms have the property that the work-normalized variance
decreases as the sample size increases; the importance sampling algorithm on
which they are based do not have this property. In our experience the impor-
tance sampling estimator was (previously) the best known estimation method
for this problem.

We also applied a residual resampling method to the network reliability
example, and found that its performance was an order of magnitude worse
than the original importance sampling scheme. This is because in this case
the resampling step tends to “negate” the importance sampling step. This
highlights an important distinction between the without-replacement sampling
methods we describe, and more traditional forms of resampling. In the methods
we propose, the true density f does not enter into the resampling step. This
works extremely well, where the importance density is well designed. The true
density could be incorporated into the sampling step by changing the definition
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Figure 10: Work normalized variance results for three dodecahedron graphs in
parallel, with edge reliability θi = 0.9999.

Figure 11: Three dodecahedron graphs arranged in series. The vertices in K

are highlighted.

of the size variables.
In this article we suggested the use of a Pareto sampling design, where the

inclusion probabilities are approximated by those of a Sampford design. This
results in a design which is easy to simulate from, and which has inclusion
probabilities which are easy to calculate. In this sense the proposed design is
similar to systematic sampling. The performance of the Pareto approximation
to the Sampford design is found to be similar to the systematic sampling design
suggested by Fearnhead and Clifford (2003).

The approximation we suggest has the advantage that the joint inclusion
probability of every pair of units is positive. This condition is known to be
desirable in the sampling design literature, as it allows the estimation of the
variance of the Horvitz–Thompson estimator. In future, this may allow the es-

27



10−51

10−42

10−33

10−24

10 100 1000 10000
Sample size

W
N

V

Method
Fearnhead
IS
WOR
WOR−Merge

Figure 12: Work normalized variance results for three dodecahedron graphs in
series, with θi = 0.9999.

timation of the variance of the without-replacement sampling estimator, without
the need to construct independent estimates.

Caution is potentially needed when applying an approximation within an
iterative procedure, as it is possible that approximation errors will accumulate.
Our numerical results suggest that such an accumulation of errors is not signifi-
cant. Ultimately, such concerns must be balanced against the advantages of the
proposed methods. Further work in the field of sampling design may make the
use of approximations unnecessary.

When using without-replacement sampling, the merging of equivalent units
can significantly reduce the variance of the resulting estimators. However, this
also has disadvantages. When equivalent units are merged, it becomes even
less certain that the variance of the resulting estimator always decreases as n
increases. Merging also specializes the resulting algorithm to the function h; in
general, it is not possible to use the final sample generated by the algorithm to
estimate the expectation of a different function.

Particle merging is a way of incorporating problem-specific information into
a particle filtering algorithm, in a way that is similar to the design of an im-
portance sampling density. Proposition 4.1 is not the only way this can occur.
Another possibility is that h∗ (xt) = m (xt)h

∗ (x′t), where m (xt) is some known
function, but both h∗ (xt) and h∗ (x′t) are unknown.

Our examples also illustrated the extreme flexibility of without-replacement
sampling algorithms; the importance density, sampling design and merging steps
can all be changed. In both our examples, this allowed us to use problem-specific
information in the resulting algorithm. The downside is that customizing these
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algorithms to this extent is non-trivial; it essentially requires the design of an
entirely new algorithm every for every application.

The sampling theory approach is a promising direction for future work on
without-replacement sampling methods; there is a large literature which prob-
ably contains many more relevant ideas. As an example, recall that in order to
apply these types of methods, it must be possible to enumerate all the possible
values of the particles at the next step. In some cases this set may so large
that this is impractical. In the field of sampling theory, this is referred to as
a case where the sampling frame (set of all possible units) is missing. These
types of problems have been studied in the relevant literature, so solutions to
this problem may already exist.

The sampling theory approach also provides some insight into the optimality
result of Fearnhead and Clifford (2003). The optimality result is given for only
a single sampling step. When multiple such resampling steps are performed,
the variance of the resulting estimator will depend in a complicated way on the
joint inclusion probabilities of the sampling designs which are applied. These
joint inclusion probabilities do not enter into the optimality result. While the
result of Fearnhead and Clifford (2003) is the strongest statement that can be
made in the general case, there may be specific cases where sampling designs
that do not satisfy the optimality condition result in a lower variance estimator.

Appendix

7 Unbiasedness of Sequential Without-Replacement
Monte Carlo

Let h∗ (xt) = E [h (Xd) | Xt = xt]. Note that∑
xt∈St(xt−1)

h∗ (xt) f (xt) = h∗ (xt−1) f (xt−1) .

Consider the expression ∑
xt∈St

h∗ (xt) f (xt)∏t
i=1 π

i (xt)
, (18)

where 1 ≤ t < d. Let I (xt) be a binary variable, where I (xt) = 1 indicates the
inclusion of element xt of St (St−1) in St. We can rewrite (18) as∑

xt∈St(St−1)

It (xt)
h∗ (xt) f (xt)∏t

i=1 π
i (xt)

. (19)
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Recall that E [It (xt) | St−1] = πt (xt). So the expectation of (19) conditional
on S1, . . . ,St−1 is∑

xt∈St(St−1)

h∗ (xt) f (xt)∏t−1
i=1 π

i (xt)
=

∑
xt−1∈St−1

∑
xt∈St(xt−1)

h∗ (xt) f (xt)∏t−1
i=1 π

i (xt−1)

=
∑

xt−1∈St−1

h∗ (xt−1) f (xt−1)∏t−1
i=1 π

i (xt−1)
.

So

E

[ ∑
xt∈St

h∗ (xt) f (xt)∏t
i=1 π

i (xt)

∣∣∣∣∣ S1, . . . ,St−1

]
=

∑
xt−1∈St−1

h∗ (xt−1) f (xt−1)∏t−1
i=1 π

i (xt−1)
(20)

Applying equation (20) d times to

̂̀=
∑

xd∈Sd

h (Xd) f (Xd)∏d−1
i=1 π

i (Xd)
=
∑

xd∈Sd

h∗ (Xd) f (Xd)∏d−1
i=1 π

i (Xd)
.

shows that E
[̂̀] = `.

8 Unbiasedness of Sequential Without-Replacement
Monte Carlo, with merging

The proof is similar to Appendix 7. In this case all the sample spaces and
samples are sets of triples. Consider any expression of the form∑

(xt,w,p)∈Tt(St−1)

h∗ (xt)w. (21)

It is clear that if the proposed merging rule is applied to Tt (St−1), then the
value of (21) is unchanged. Using the definition of Tt (St−1), equation (21) can
be written as ∑

(xt−1,w,p)∈St−1

w
∑

xt∈St(xt−1)

h∗ (xt)
f (xt | xt−1)

πt−1 (xt−1)

=
∑

(xt−1,w,p)∈St−1

E [h∗ (Xt) | Xt−1 = xt−1]w

πt−1 (xt−1)

=
∑

(xt−1,w,p)∈St−1

h∗ (xt−1)w

πt−1 (xt−1)
. (22)

The expectation of (22) conditional on St−2 is∑
(xt−1,w,p)∈Tt−1(St−2)

h∗ (xt−1)w. (23)
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So

E

 ∑
(xt,w,p)∈Tt(St−1)

h∗ (xt)w

∣∣∣∣∣∣ St−2
 =

∑
(xt−1,w,p)∈Tt−1(St−2)

h∗ (xt−1)w. (24)

Applying equation (24) d− 1 times to

E
[̂̀∣∣∣ Sd−1] =

∑
(xd,w,p)∈Td(Sd−1)

h∗ (xd)w

shows that ̂̀ is unbiased.

9 Without-replacement sampling for the change
point example

We now give the details of the application of without-replacement sampling to
the change-point example in Section 9. Recall that Xd = {Xt}dt=1 is a Markov

chain and Yd = {Yt}dt=1 are the observations. Let f be the joint density of Xd

and Yd. Note that

f (xt | yt) = ctf (xt−1 | yt−1) f (xt | xt−1) f (yt | xt) , (25)

f (x1 | y1) = c1f (x1) f (y1 | x1) , (26)

for some unknown constants {ct}dt=1. Define the size variables recursively as

p (xt) = p (xt−1)
f (xt | xt−1) f (yt | xt)

πt−1 (xt−1)
, (27)

p (x1) = f (x1) f (y1 | x1) . (28)

This updating rule is slightly different from that given in (15). Equations (28)
and (25) require an initial distribution for X1 = (C1, O1), which we take to be

P (C1 = 2, O1 = 2) =
1

250
,P (C1 = 2, O1 = 2) =

249

250
.

Define

U1 = U1 (∅) = {(x1, f (x1) f (y1 | x1)) : x1 ∈ S1} ,

and let S1 be a sample chosen from U1, with probability proportional to the
last component. Assume that sample St−1 has been chosen, and let

Ut (St−1) =

{(
xt, w

f (xt | xt−1) f (yt | xt)
πt−1 (xt−1)

)
:

(xt−1, w) ∈ St−1,xt ∈ Support (Xt | Xt−1 = xt−1)} .

We account for the unknown normalizing constants in (25) by using an estimator
of the form (10). This results in Algorithm 5.
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Algorithm 5: Sequential Monte Carlo without replacement, for the
change-point problem

input : Density f , function h, sampling designs
output: Estimate of E [h (Xd) | Yd]

1 S0 ← ∅
2 for t = 1 to d do
3 St ← Sample from Ut (St−1) according to some design, with size

variables {w : (xt, w) ∈ Ut (St−1)}
4 ∀xt ∈ St compute the inclusion probability

πt (xt) of xt

5 return
(∑

(xd,w)∈Sd

h(xd)w
πd(xd)

)(∑
(xd,w)∈Sd

w
πd(xd)

)−1

Proposition 9.1. The set Sd generated by Algorithm 5 has the property that

E

 ∑
(xd,w)∈Sd

h (xd)w

πd (xd)

 = E (h (Xd) | Yd)

d∏
t=1

c−1t .

Proof. Define

H (xt) =
E [h (Xd) | Xt = xt,Yd = yd] f (xt | yd)

f (xt | yt)
∏d
i=t+1 ci

.

Using (25), ∑
xt∈St(xt−1)

H (xt) f (xt | xt−1) f (yt | xt)

=
∑

xt∈St(xt−1)

E [h (Xd) | Xt = xt,Yd = yd] f (xt | yd)
f (xt−1 | yt−1)

∏d
i=t ci

=
E [h (Xd) | Xt−1 = xt−1,Yd = yd] f (xt−1 | yd)

f (xt−1 | yt−1)
∏d
i=t ci

= H (xt−1) .

Consider any expression of the form∑
(xt,w)∈Ut(St−1)

H (xt)w. (29)

Equation (29) can be written as∑
(xt−1,w)∈St−1

∑
xt∈St(xt−1)

H (xt)w
f (xt | xt−1) f (yt | xt)

πt−1 (xt−1)

=
∑

(xt−1,w)∈St−1

wH (xt−1)

πt−1 (xt−1)
. (30)
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The expectation of (30) conditional on St−2 is∑
(xt−1,w)∈Ut−1(St−2)

H (xt−1)w.

So

E

 ∑
(xt,w)∈Ut(St−1)

H (xt)w

∣∣∣∣∣∣ St−2
 =

∑
(xt−1,w)∈Ut−1(St−2)

H (xt−1)w. (31)

Applying equation (31) d− 1 times to

E

 ∑
(xd,w)∈Sd

h (xd)w

πd (xd)

∣∣∣∣∣∣ Sd−1
 =

∑
(xd,w)∈Ud(Sd−1)

h (xd)w

=
∑

(xd,w)∈Ud(Sd−1)

H (xd)w.

completes the proof. �

We now describe the merging step outlined in Fearnhead and Clifford (2003),
applied to the estimation of the posterior change-point probabilities

{P (Ct = 2 | Yd = yd)}dt=1 .

The method we describe here can be extended fairly trivially to also estimate
{P (Ot = 2 | Yd = yd)}dt=1.

In order to perform this merging, we must add more information to all the
sample spaces and the samples chosen from then. The extended space will
have xt as the first entry, the particle weight w as the second entry, and a
vector mt of t values as the third entry. The last entry will be an estimate of
{P (Ci = 2 | yt)}ti=1. Let

V1 = {(x1, f (x1) f (y1 | x1) ,P (C1 = 2 | x1)) : x1 ∈ S1} .

Note that the third component of every element of V1 is either 0 or 1. Let S1 be
a sample drawn from V1, with probability proportional to the second element.
Assume that sample St−1 has been chosen, and let Vt (St−1) be{(

xt, w
f (xt | xt−1) f (yt | xt)

πt−1 (xt−1)
, (mt−1,P (Ct = 2 | Xt = xt,Yd = yd))

)
:

(xt−1, w,mt−1) ∈ St−1,xt ∈ St (xt−1)

}
.

We can now define Algorithm 6, which uses the merging step outlined in Propo-
sition 9.3.
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Algorithm 6: Sequential Monte Carlo without replacement, for the
change-point problem, for the marginal distributions of {Ct}dt=1.

input : Density f , function h, sampling designs
output: Estimate of {P (Ct = 2 | yd)}dt=1.

1 S0 ← ∅
2 for t = 1 to d do
3 U ← Vt (St−1)
4 Merge elements in U according to Proposition 9.3
5 St ← Sample from Vt (St−1) according to some design, with size

variables {w : (xt, w) ∈ Vt (St−1)}
6 ∀xt ∈ St compute the inclusion probability

πt (xt) of xt

7 return
(∑

(xd,w,md)∈Sd

mdw
πd(xd)

)(∑
(xd,w,md)∈Sd

w
πd(xd)

)−1

Proposition 9.2. If the merging step is omitted, then the set Sd generated by
Algorithm 6 has the property that

E

 ∑
(xd,w,md)∈Sd

mdw

πd (xd)

 =
{P (Ct = 2 | Yd = yd)}dt=1∏d

t=1 ct
.

Proof. Define

G (xt,mt) = (mt,P (Ct+1 = 2 | Xt = xt,Yd = yd) , . . . ,P (Cd = 2 | Xt = xt,Yd = yd))

× f (xt | yd)
f (xt | yt)

∏d
i=t+1 ci

.

It can be shown that∑
xt∈St(xt−1)

G (xt, (mt−1,P (Ct = 2 | Xt = xt,Yd = yd))) f (xt | xt−1) f (yt | xt)

= G (xt−1,mt−1) .

Consider any expression of the form∑
(xt,w,mt)∈Vt(St−1)

G (xt,mt)w. (32)

Equation (32) can be written as∑
(xt−1,w,mt−1)∈St−1

w
∑

xt∈St(xt−1)

G (xt, (mt−1,P (Ct = 2 | Xt = xt,Yd = yd)))

× f (xt | xt−1) f (yt | xt)
πt−1 (xt−1)

=
∑

(xt−1,w,mt−1)∈St−1

w
G (xt−1,mt−1)

πt−1 (xt−1)
. (33)
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The expectation of (33) conditional on St−2 is∑
(xt−1,w,mt−1)∈Vt−1(St−2)

wG (xt−1,mt−1) .

So

E

 ∑
(xt,w,mt)∈Vt(St−1)

G (xt,mt)w

∣∣∣∣∣∣ St−2
 =

=
∑

(xt−1,w,mt−1)∈Vt−1(St−2)

wG (xt−1,mt−1) . (34)

Applying equation (34) d− 1 times to

E

 ∑
(xd,w,md)∈Sd

mdw

πd (xd)

∣∣∣∣∣∣ Sd−1
 =

∑
(xd,w,md)∈Vd(Sd−1)

wG (xd,md)

completes the proof. �

Proposition 9.3. Assume we have two units (xt, w,mt) and (x′t, w
′,m′t), both

corresponding to paths of the Markov chain with Ct = 2 and Ot = 2. Then we
can remove these units, and replace them with the single unit(

xt, w + w′,
wmt + w′m′t

w + w′

)
.

This rule also applies if both units correspond to Ct = 2 and Ot = 1.

Proof. Under the specified conditions on xt and x′t,

P (Ci = 2 | Xt = xt,Yd = Yd) = P (Ci = 2 | Xt = x′t,Yd = Yd) , ∀t+ 1 ≤ i ≤ d,
f (xt | yt) = f (xt | yd) , ∀t+ 1 ≤ i ≤ d,
f (x′t | yt) = f (x′t | yd) , ∀t+ 1 ≤ i ≤ d.

This shows that

(w + w′)G

(
xt,

wmt + w′m′t
w + w′

)
= wG (xt,mt) + w′G (x′t,m

′
t) .

So replacement of this pair of units by the specified single unit does not bias
the resulting estimator.
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