The Cross-Entropy Method

A Unified Approach to Rare Event Simulation and
Stochastic Optimization
*Dirk P. Kroese Reuven Y. Rubinstein
*Department of Mathematics, The University of Queensland, Australia Faculty of Industrial Engineering and Management, Technion, Israel

Contents

1. Introduction
2. CE Methodology
3. Application: Max-Cut Problem, etc.
4. Some Theory on CE
5. Conclusion

CE Matters

Book: R.Y. Rubinstein and D.P. Kroese. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte Carlo Simulation and Machine Learning, Springer-Verlag, New York, 2004.

CE Matters

Book: R.Y. Rubinstein and D.P. Kroese. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte Carlo Simulation and Machine Learning, Springer-Verlag, New York, 2004.

Special Issue: Annals of Operations Research (Jan 2005).

CE Matters

Book: R.Y. Rubinstein and D.P. Kroese. The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte Carlo Simulation and Machine Learning, Springer-Verlag, New York, 2004.

Special Issue: Annals of Operations Research (Jan 2005).
The CE home page:

http://www.cemethod.org

Introduction

The Cross-Entropy Method was originally developed as a simulation method for the estimation of rare event probabilities:

Estimate $\mathbb{P}(S(\boldsymbol{X}) \geq \gamma)$
\boldsymbol{X} : random vector/process taking values in some set \mathcal{X}.
S : real-values function on \mathcal{X}.

Introduction

The Cross-Entropy Method was originally developed as a simulation method for the estimation of rare event probabilities:

Estimate $\mathbb{P}(S(\boldsymbol{X}) \geq \gamma)$
\boldsymbol{X} : random vector/process taking values in some set \mathcal{X}.
S : real-values function on \mathcal{X}.

It was soon realised that the CE Method could also be used as an optimization method:

Determine $\max _{\boldsymbol{x} \in \mathcal{X}} S(\boldsymbol{x})$

Some Applications

\square Combinatorial Optimization (e.g., Travelling Salesman, Maximal Cut and Quadratic Assignment Problems)

■ Noisy Optimization (e.g., Buffer Allocation, Financial Engineering)

- Multi-Extremal Continuous Optimization
- Pattern Recognition, Clustering and Image Analysis
- Production Lines and Project Management
- Network Reliability Estimation
- Vehicle Routing and Scheduling
- DNA Sequence Alignment

A Multi-extremal function

A Maze Problem

The Optimal Trajectory

A Maze Problem

Iteration 1:

A Maze Problem

Iteration 2:

Iteration 3:

Iteration 4:

Example 1: Rare Event Simulation

Consider a randomly weighted graph:

The random weights X_{1}, \ldots, X_{5} are independent and exponentially distributed with means u_{1}, \ldots, u_{5}.

Example 1: Rare Event Simulation

Consider a randomly weighted graph:

The random weights X_{1}, \ldots, X_{5} are independent and exponentially distributed with means u_{1}, \ldots, u_{5}.

Find the probability that the length of the shortest path from A to B is greater than or equal to γ.

Crude Monte Carlo (CMC)

Define $\boldsymbol{X}=\left(X_{1}, \ldots, X_{5}\right)$ and $\boldsymbol{u}=\left(u_{1}, \ldots, u_{5}\right)$. Let $S(\boldsymbol{X})$ be the length of the shortest path from node A to node B.

Crude Monte Carlo (CMC)

Define $\boldsymbol{X}=\left(X_{1}, \ldots, X_{5}\right)$ and $\boldsymbol{u}=\left(u_{1}, \ldots, u_{5}\right)$. Let $S(\boldsymbol{X})$ be the length of the shortest path from node A to node B.
We wish to estimate

$$
\ell=\mathbb{P}(S(\boldsymbol{X}) \geq \gamma)=\mathbb{E} I_{\{S(\boldsymbol{X}) \geq \gamma\}}
$$

Crude Monte Carlo (CMC)

Define $\boldsymbol{X}=\left(X_{1}, \ldots, X_{5}\right)$ and $\boldsymbol{u}=\left(u_{1}, \ldots, u_{5}\right)$. Let $S(\boldsymbol{X})$ be the length of the shortest path from node A to node B.
We wish to estimate

$$
\ell=\mathbb{P}(S(\boldsymbol{X}) \geq \gamma)=\mathbb{E} I_{\{S(\boldsymbol{X}) \geq \gamma\}}
$$

This can be done via Crude Monte Carlo: sample independent vectors from density $f(\boldsymbol{x} ; \boldsymbol{u})=\prod_{j=1}^{5} \exp \left(-x_{j} / u_{j}\right) / u_{j}$, and estimate ℓ via

$$
\frac{1}{N} \sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}}
$$

Importance Sampling (IS)

However, for small ℓ this requires a very large simulation effort.

Importance Sampling (IS)

However, for small ℓ this requires a very large simulation effort.

A better way is to use Importance Sampling: draw $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$ from a different density g, and estimate ℓ via the estimator

$$
\widehat{\ell}=\frac{1}{N} \sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}} W\left(\boldsymbol{X}_{i}\right),
$$

where $W(\boldsymbol{X})=f(\boldsymbol{X}) / g(\boldsymbol{X})$ is called the likelihood ratio.

Which Change of Measure?

If we restrict ourselves to g such that X_{1}, \ldots, X_{5} are independent and exponentially distributed with means v_{1}, \ldots, v_{5}, then
$W(\boldsymbol{x} ; \boldsymbol{u}, \boldsymbol{v}):=\frac{f(\boldsymbol{x} ; \boldsymbol{u})}{f(\boldsymbol{x} ; \boldsymbol{v})}=\exp \left(-\sum_{j=1}^{5} x_{j}\left(\frac{1}{u_{j}}-\frac{1}{v_{j}}\right)\right) \prod_{j=1}^{5} \frac{v_{j}}{u_{j}}$.
In this case the "change of measure" is determined by the reference vector $\boldsymbol{v}=\left(v_{1}, \ldots, v_{5}\right)$.

Which Change of Measure?

If we restrict ourselves to g such that X_{1}, \ldots, X_{5} are independent and exponentially distributed with means v_{1}, \ldots, v_{5}, then
$W(\boldsymbol{x} ; \boldsymbol{u}, \boldsymbol{v}):=\frac{f(\boldsymbol{x} ; \boldsymbol{u})}{f(\boldsymbol{x} ; \boldsymbol{v})}=\exp \left(-\sum_{j=1}^{5} x_{j}\left(\frac{1}{u_{j}}-\frac{1}{v_{j}}\right)\right) \prod_{j=1}^{5} \frac{v_{j}}{u_{j}}$.
In this case the "change of measure" is determined by the reference vector $\boldsymbol{v}=\left(v_{1}, \ldots, v_{5}\right)$.

Question: How do we find the optimal $\boldsymbol{v}=\boldsymbol{v}^{*}$?

Which Change of Measure?

If we restrict ourselves to g such that X_{1}, \ldots, X_{5} are independent and exponentially distributed with means v_{1}, \ldots, v_{5}, then
$W(\boldsymbol{x} ; \boldsymbol{u}, \boldsymbol{v}):=\frac{f(\boldsymbol{x} ; \boldsymbol{u})}{f(\boldsymbol{x} ; \boldsymbol{v})}=\exp \left(-\sum_{j=1}^{5} x_{j}\left(\frac{1}{u_{j}}-\frac{1}{v_{j}}\right)\right) \prod_{j=1}^{5} \frac{v_{j}}{u_{j}}$.
In this case the "change of measure" is determined by the reference vector $\boldsymbol{v}=\left(v_{1}, \ldots, v_{5}\right)$.

Question: How do we find the optimal $\boldsymbol{v}=\boldsymbol{v}^{*}$?

Answer: Let CE find it adaptively!

CE Algorithm

1 Defi ne $\hat{\boldsymbol{v}}_{0}:=\boldsymbol{u}$. Set $t:=1$ (iteration counter).

CE Algorithm

1 Defi ne $\hat{\boldsymbol{v}}_{0}:=\boldsymbol{u}$. Set $t:=1$ (iteration counter).
2 Update $\hat{\gamma}_{t}$: Generate $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$ according to $f\left(\cdot ; \hat{\boldsymbol{v}}_{t-1}\right)$. Let $\hat{\gamma}_{t}$ be the worst of the $\rho \times N$ best performances, provided this is less than γ. Else $\hat{\gamma}_{t}:=\gamma$.

CE Algorithm

1 Defi ne $\hat{\boldsymbol{v}}_{0}:=\boldsymbol{u}$. Set $t:=1$ (iteration counter).
2 Update $\hat{\gamma}_{t}$: Generate $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$ according to $f\left(\cdot ; \hat{\boldsymbol{v}}_{t-1}\right)$. Let $\hat{\gamma}_{t}$ be the worst of the $\rho \times N$ best performances, provided this is less than γ. Else $\hat{\gamma}_{t}:=\gamma$.

3 Update $\hat{\boldsymbol{v}}_{t}$: Use the same sample to calculate, for $j=1, \ldots, n$,

$$
\hat{v}_{t, j}=\frac{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \hat{\boldsymbol{v}}_{t-1}\right) X_{i j}}{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \hat{\boldsymbol{v}}_{t-1}\right)} .
$$

THIS UPDATING IS BASED ON CE.

CE Algorithm

1 Defi ne $\hat{\boldsymbol{v}}_{0}:=\boldsymbol{u}$. Set $t:=1$ (iteration counter).
2 Update $\hat{\gamma}_{t}$: Generate $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$ according to $f\left(\cdot ; \hat{\boldsymbol{v}}_{t-1}\right)$. Let $\hat{\gamma}_{t}$ be the worst of the $\rho \times N$ best performances, provided this is less than γ. Else $\hat{\gamma}_{t}:=\gamma$.

3 Update $\hat{\boldsymbol{v}}_{t}$: Use the same sample to calculate, for $j=1, \ldots, n$,

$$
\hat{v}_{t, j}=\frac{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \hat{\boldsymbol{v}}_{t-1}\right) X_{i j}}{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \hat{\boldsymbol{v}}_{t-1}\right)} .
$$

THIS UPDATING IS BASED ON CE.

4 If $\hat{\gamma}_{t}=\gamma$ then proceed to step 5; otherwise set $t:=t+1$ and reiterate from step 2.

CE Algorithm

1 Defi ne $\hat{\boldsymbol{v}}_{0}:=\boldsymbol{u}$. Set $t:=1$ (iteration counter).
2 Update $\hat{\gamma}_{t}$: Generate $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$ according to $f\left(\cdot ; \hat{\boldsymbol{v}}_{t-1}\right)$. Let $\hat{\gamma}_{t}$ be the worst of the $\rho \times N$ best performances, provided this is less than γ. Else $\hat{\gamma}_{t}:=\gamma$.

3 Update $\hat{\boldsymbol{v}}_{t}$: Use the same sample to calculate, for $j=1, \ldots, n$,

$$
\hat{v}_{t, j}=\frac{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \hat{\boldsymbol{v}}_{t-1}\right) X_{i j}}{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \hat{\boldsymbol{v}}_{t-1}\right)} .
$$

THIS UPDATING IS BASED ON CE.

4 If $\hat{\gamma}_{t}=\gamma$ then proceed to step 5; otherwise set $t:=t+1$ and reiterate from step 2.

5 Estimate ℓ via the LR estimator, using the fi nal $\hat{\boldsymbol{v}}_{T}$.

Example

Level: $\gamma=2$. Fraction of best performances: $\rho=0.1$. Sample size in steps $2-4: N=1000$. Final sample size: $N_{1}=10^{5}$.

t	$\widehat{\gamma}_{t}$	$\widehat{\boldsymbol{v}}_{t}$				
0		0.250	0.400	0.100	0.300	0.200
1	0.575	0.513	0.718	0.122	0.474	0.335
2	1.032	0.873	1.057	0.120	0.550	0.436
3	1.502	1.221	1.419	0.121	0.707	0.533
4	1.917	1.681	1.803	0.132	0.638	0.523
5	2.000	1.692	1.901	0.129	0.712	0.564

Example (cont.)

\square The estimate was $1.34 \cdot 10^{-5}$,

Example (cont.)

\square The estimate was $1.34 \cdot 10^{-5}$,

- with an estimated relative error (that is, $\operatorname{Std}(\widehat{\ell}) / \mathbb{E} \widehat{\ell})$ of 0.03.

Example (cont.)

\square The estimate was $1.34 \cdot 10^{-5}$,

- with an estimated relative error (that is, $\operatorname{Std}(\widehat{\ell}) / \mathbb{E} \widehat{\ell})$ of 0.03 .
- The simulation time was only 3 seconds ($1 / 2$ second for table).

Example (cont.)

- The estimate was $1.34 \cdot 10^{-5}$,
- with an estimated relative error (that is, $\operatorname{Std}(\widehat{\ell}) / \mathbb{E} \widehat{\ell})$ of 0.03 .
- The simulation time was only 3 seconds ($1 / 2$ second for table).
\square CMC with $N_{1}=10^{8}$ samples gave an estimate $1.30 \cdot 10^{-5}$ with the same RE (0.03). The simulation time was 1875 seconds.

Example (cont.)

- The estimate was $1.34 \cdot 10^{-5}$,
- with an estimated relative error (that is, $\operatorname{Std}(\widehat{\ell}) / \mathbb{E} \widehat{\ell})$ of 0.03.
- The simulation time was only 3 seconds ($1 / 2$ second for table).
\square CMC with $N_{1}=10^{8}$ samples gave an estimate $1.30 \cdot 10^{-5}$ with the same RE (0.03). The simulation time was 1875 seconds.
- With minimal effort we reduced our simulation time by a factor of 625 .

Example 2: The Max-Cut Problem

Consider a weighted graph G with node set $V=\{1, \ldots, n\}$.
Partition the nodes of the graph into two subsets V_{1} and V_{2} such that the sum of the weights of the edges going from one subset to the other is maximised.

Example

Cost matrix:

$$
C=\left(\begin{array}{llllll}
0 & c_{12} & c_{13} & 0 & 0 & 0 \\
c_{21} & 0 & c_{23} & c_{24} & 0 & 0 \\
c_{31} & c_{32} & 0 & c_{34} & c_{35} & 0 \\
0 & c_{42} & c_{43} & 0 & c_{45} & c_{46} \\
0 & 0 & c_{53} & c_{54} & 0 & c_{56} \\
0 & 0 & 0 & c_{64} & c_{65} & 0
\end{array}\right)
$$

$\left\{V_{1}, V_{2}\right\}=\{\{1,3,4\},\{2,5,6\}\}$ is a possible cut. The cost of the cut is

$$
c_{12}+c_{32}+c_{35}+c_{42}+c_{45}+c_{46}
$$

Random Cut Vector

We can represent a cut via a cut vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i}=1$ if node i belongs to same partition as 1 , and 0 else.

Random Cut Vector

We can represent a cut via a cut vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i}=1$ if node i belongs to same partition as 1 , and 0 else.

For example, the cut $\{\{1,3,4\},\{2,5,6\}\}$ can be represented via the cut vector $(1,0,1,1,0,0)$.

Random Cut Vector

We can represent a cut via a cut vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i}=1$ if node i belongs to same partition as 1 , and 0 else.

For example, the cut $\{\{1,3,4\},\{2,5,6\}\}$ can be represented via the cut vector $(1,0,1,1,0,0)$.

Let \mathcal{X} be the set of all cut vectors $\boldsymbol{x}=\left(1, x_{2}, \ldots, x_{n}\right)$.

Random Cut Vector

We can represent a cut via a cut vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i}=1$ if node i belongs to same partition as 1 , and 0 else.

For example, the cut $\{\{1,3,4\},\{2,5,6\}\}$ can be represented via the cut vector $(1,0,1,1,0,0)$.

Let \mathcal{X} be the set of all cut vectors $\boldsymbol{x}=\left(1, x_{2}, \ldots, x_{n}\right)$.
Let $S(\boldsymbol{x})$ be the corresponding cost of the cut.

Random Cut Vector

We can represent a cut via a cut vector $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$, where $x_{i}=1$ if node i belongs to same partition as 1 , and 0 else.

For example, the cut $\{\{1,3,4\},\{2,5,6\}\}$ can be represented via the cut vector $(1,0,1,1,0,0)$.

Let \mathcal{X} be the set of all cut vectors $\boldsymbol{x}=\left(1, x_{2}, \ldots, x_{n}\right)$.
Let $S(\boldsymbol{x})$ be the corresponding cost of the cut.
We wish to maximise $S(\boldsymbol{x})$ via the CE method.

General CE Procedure

First, cast the original optimization problem of $S(\boldsymbol{x})$ into an associated rare-events estimation problem: the estimation of

$$
\ell=\mathbb{P}(S(\boldsymbol{X}) \geq \gamma)=\mathbb{E} I_{\{S(\boldsymbol{X}) \geq \gamma\}}
$$

Second, formulate a parameterized random mechanism to generate objects $\boldsymbol{X} \in \mathcal{X}$. Then, iterate the following steps:

General CE Procedure

First, cast the original optimization problem of $S(\boldsymbol{x})$ into an associated rare-events estimation problem: the estimation of

$$
\ell=\mathbb{P}(S(\boldsymbol{X}) \geq \gamma)=\mathbb{E} I_{\{S(\boldsymbol{X}) \geq \gamma\}}
$$

Second, formulate a parameterized random mechanism to generate objects $\boldsymbol{X} \in \mathcal{X}$. Then, iterate the following steps:

- Generate a random sample of objects $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N} \in \mathcal{X}$ (e.g., cut vectors).

General CE Procedure

First, cast the original optimization problem of $S(\boldsymbol{x})$ into an associated rare-events estimation problem: the estimation of

$$
\ell=\mathbb{P}(S(\boldsymbol{X}) \geq \gamma)=\mathbb{E} I_{\{S(\boldsymbol{X}) \geq \gamma\}}
$$

Second, formulate a parameterized random mechanism to generate objects $\boldsymbol{X} \in \mathcal{X}$. Then, iterate the following steps:

- Generate a random sample of objects $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N} \in \mathcal{X}$ (e.g., cut vectors).
- Update the parameters of the random mechanism (obtained via CE minimization), in order to produce a better sample in the next iteration.

Generation and Updating Formulas

Generation of cut vectors: The most natural and easiest way to generate the cut vectors is to let X_{2}, \ldots, X_{n} be independent Bernoulli random variables with success probabilities p_{2}, \ldots, p_{n}.

Generation and Updating Formulas

Generation of cut vectors: The most natural and easiest way to generate the cut vectors is to let X_{2}, \ldots, X_{n} be independent Bernoulli random variables with success probabilities p_{2}, \ldots, p_{n}.

Updating formulas: From CE minimization: the updated probabilities are the maximum likelihood estimates of the ρN best samples:

$$
\hat{p}_{t, j}=\frac{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}} I_{\left\{X_{i j}=1\right\}}}{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}}}, \quad j=2, \ldots, n .
$$

Algorithm

1 Start with $\hat{\boldsymbol{p}}_{0}=(1 / 2, \ldots, 1 / 2)$. Let $t:=1$.

Algorithm

1 Start with $\hat{\boldsymbol{p}}_{0}=(1 / 2, \ldots, 1 / 2)$. Let $t:=1$.
2 Update $\hat{\gamma}_{t}$: Draw $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$ from $\operatorname{Ber}\left(\hat{\boldsymbol{p}}_{t}\right)$. Let $\hat{\gamma}_{t}$ be the worst performance of the $\rho \times 100 \%$ best performances.

Algorithm

1 Start with $\hat{\boldsymbol{p}}_{0}=(1 / 2, \ldots, 1 / 2)$. Let $t:=1$.
2 Update $\hat{\gamma}_{t}$: Draw $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$ from $\operatorname{Ber}\left(\hat{\boldsymbol{p}}_{t}\right)$. Let $\hat{\gamma}_{t}$ be the worst performance of the $\rho \times 100 \%$ best performances.

3 Update \hat{p}_{t} : Use the same sample to calculate

$$
\hat{p}_{t, j}=\frac{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}} I_{\left\{X_{i j}=1\right\}}}{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}}},
$$

$j=1, \ldots, n$, where $\boldsymbol{X}_{i}=\left(X_{i 1}, \ldots, X_{i n}\right)$, and increase t by 1 .

Algorithm

1 Start with $\hat{\boldsymbol{p}}_{0}=(1 / 2, \ldots, 1 / 2)$. Let $t:=1$.
2 Update $\hat{\gamma}_{t}$: Draw $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$ from $\operatorname{Ber}\left(\hat{\boldsymbol{p}}_{t}\right)$. Let $\hat{\gamma}_{t}$ be the worst performance of the $\rho \times 100 \%$ best performances.

3 Update \hat{p}_{t} : Use the same sample to calculate

$$
\hat{p}_{t, j}=\frac{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}} I_{\left\{X_{i j}=1\right\}}}{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \hat{\gamma}_{t}\right\}}},
$$

$j=1, \ldots, n$, where $\boldsymbol{X}_{i}=\left(X_{i 1}, \ldots, X_{i n}\right)$, and increase t by 1 .

4 If the stopping criterion is met, then stop; otherwise set $t:=t+1$ and reiterate from step 2.

Example

- Results for the case with $n=400, m=200$ nodes are given next.

Example

- Results for the case with $n=400, m=200$ nodes are given next.
- Parameters: $\rho=0.1, N=1000$.

Example

- Results for the case with $n=400, m=200$ nodes are given next.
- Parameters: $\rho=0.1, N=1000$.
- The CPU time was only 100 seconds (Matlab, pentium III, 500 Mhz).

Example

- Results for the case with $n=400, m=200$ nodes are given next.
- Parameters: $\rho=0.1, N=1000$.
- The CPU time was only 100 seconds (Matlab, pentium III, 500 Mhz).
- The CE algorithm converges quickly, yielding the exact optimal solution 40000 in 22 iterations.

Max-Cut

The Cross-Entropy Method - p. 26/37

Example: Continuous Optimization

Matlab Program

```
S = inline('exp(-(x-2).^2) + 0.8*exp(-(x+2). `2)');
mu = -10; sigma = 10; rho = 0.1; N = 100; eps = 1E-3;
t=0; % iteration counter
while sigma > eps
    t = t+1;
    x = mu + sigma*randn(N,1);
    SX = S(x); % Compute the performance.
    sortSX = sortrows([x SX],2);
    mu = mean(sortSX((1-rho)*N:N,1));
    sigma = std(sortSX((1-rho)*N:N,1));
    fprintf('%g %6.9f %6.9f %6.9f \n', t, S(mu),mu, sigma
```


Numerical Result

The Cross-Entropy Method - p. 29/37

Cross-Entropy: Some Theory

Estimate $\ell:=\mathbb{P}_{\boldsymbol{u}}(S(\boldsymbol{X}) \geq \gamma)=\mathbb{E}_{\boldsymbol{u}} I_{\{S(\boldsymbol{X}) \geq \gamma\}}$ via

Cross-Entropy: Some Theory

Estimate $\ell:=\mathbb{P}_{\boldsymbol{u}}(S(\boldsymbol{X}) \geq \gamma)=\mathbb{E}_{\boldsymbol{u}} I_{\{S(\boldsymbol{X}) \geq \gamma\}}$ via

$$
\hat{\ell}=\frac{1}{N} \sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}} \frac{f\left(\boldsymbol{X}_{i} ; \boldsymbol{u}\right)}{g\left(\boldsymbol{X}_{i}\right)}
$$

Cross-Entropy: Some Theory

Estimate $\ell:=\mathbb{P}_{\boldsymbol{u}}(S(\boldsymbol{X}) \geq \gamma)=\mathbb{E}_{\boldsymbol{u}} I_{\{S(\boldsymbol{X}) \geq \gamma\}}$ via

$$
\hat{\ell}=\frac{1}{N} \sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}} \frac{f\left(\boldsymbol{X}_{i} ; \boldsymbol{u}\right)}{g\left(\boldsymbol{X}_{i}\right)}
$$

The best density (zero variance estimator!) is

$$
g^{*}(\boldsymbol{x}):=\frac{I_{\{S(\boldsymbol{x}) \geq \gamma\}} f(\boldsymbol{x} ; \boldsymbol{u})}{\ell} .
$$

Cross-Entropy: Some Theory

Estimate $\ell:=\mathbb{P}_{\boldsymbol{u}}(S(\boldsymbol{X}) \geq \gamma)=\mathbb{E}_{\boldsymbol{u}} I_{\{S(\boldsymbol{X}) \geq \gamma\}}$ via

$$
\hat{\ell}=\frac{1}{N} \sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}} \frac{f\left(\boldsymbol{X}_{i} ; \boldsymbol{u}\right)}{g\left(\boldsymbol{X}_{i}\right)} .
$$

The best density (zero variance estimator!) is

$$
g^{*}(\boldsymbol{x}):=\frac{I_{\{S(\boldsymbol{x}) \geq \gamma\}} f(\boldsymbol{x} ; \boldsymbol{u})}{\ell} .
$$

Problem: g^{*} depends on the unknown ℓ.

Cross-Entropy: Some Theory

Estimate $\ell:=\mathbb{P}_{\boldsymbol{u}}(S(\boldsymbol{X}) \geq \gamma)=\mathbb{E}_{\boldsymbol{u}} I_{\{S(\boldsymbol{X}) \geq \gamma\}}$ via

$$
\hat{\ell}=\frac{1}{N} \sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}} \frac{f\left(\boldsymbol{X}_{i} ; \boldsymbol{u}\right)}{g\left(\boldsymbol{X}_{i}\right)} .
$$

The best density (zero variance estimator!) is

$$
g^{*}(\boldsymbol{x}):=\frac{I_{\{S(\boldsymbol{x}) \geq \gamma\}} f(\boldsymbol{x} ; \boldsymbol{u})}{\ell} .
$$

Problem: g^{*} depends on the unknown ℓ.

Idea: choose $g=f(\cdot ; \boldsymbol{v})$ such that the "distance" between the densities g^{*} and $f(\cdot ; \boldsymbol{v})$ is minimal.

Idea: choose $g=f(\cdot ; \boldsymbol{v})$ such that the "distance" between the densities g^{*} and $f(\cdot ; \boldsymbol{v})$ is minimal.

The Kullback-Leibler or cross-entropy distance is defined as:

$$
\begin{aligned}
& \mathcal{D}(g, h)=\mathbb{E}_{g} \log \frac{g(\boldsymbol{X})}{h(\boldsymbol{X})} \\
& =\int g(\boldsymbol{x}) \log g(\boldsymbol{x}) d \boldsymbol{x}-\int g(\boldsymbol{x}) \log h(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

Idea: choose $g=f(\cdot ; \boldsymbol{v})$ such that the "distance" between the densities g^{*} and $f(\cdot ; \boldsymbol{v})$ is minimal.

The Kullback-Leibler or cross-entropy distance is defined as:

$$
\begin{aligned}
& \mathcal{D}(g, h)=\mathbb{E}_{g} \log \frac{g(\boldsymbol{X})}{h(\boldsymbol{X})} \\
& =\int g(\boldsymbol{x}) \log g(\boldsymbol{x}) d \boldsymbol{x}-\int g(\boldsymbol{x}) \log h(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

Determine the optimal \boldsymbol{v}^{*} from $\min _{\boldsymbol{v}} \mathcal{D}\left(g^{*}, f(\cdot ; \boldsymbol{v})\right)$.

This is equivalent to solving

$$
\max _{\boldsymbol{v}} \mathbb{E}_{\boldsymbol{u}} I_{\{S(\boldsymbol{X}) \geq \gamma\}} \log f(\boldsymbol{X} ; \boldsymbol{v})
$$

Using again IS, we can rewrite this as

$$
\max _{\boldsymbol{v}} \mathbb{E}_{\boldsymbol{w}} I_{\{S(\boldsymbol{X}) \geq \gamma\}} W(\boldsymbol{X} ; \boldsymbol{u}, \boldsymbol{w}) \log f(\boldsymbol{X} ; \boldsymbol{v}),
$$

for any reference parameter \boldsymbol{w}, where

$$
W(\boldsymbol{x} ; \boldsymbol{u}, \boldsymbol{w})=\frac{f(\boldsymbol{x} ; \boldsymbol{u})}{f(\boldsymbol{x} ; \boldsymbol{w})}
$$

We may estimate the optimal solution \boldsymbol{v}^{*} by solving the following stochastic counterpart:

$$
\max _{\boldsymbol{v}} \frac{1}{N} \sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \boldsymbol{w}\right) \log f\left(\boldsymbol{X}_{i} ; \boldsymbol{v}\right)
$$

where $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{N}$ is a random sample from $f(\cdot ; \boldsymbol{w})$.
Alternatively, solve:

$$
\frac{1}{N} \sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \boldsymbol{w}\right) \nabla \log f\left(\boldsymbol{X}_{i} ; \boldsymbol{v}\right)=\mathbf{0}
$$

where the gradient is with respect to \boldsymbol{v}.

- The solution to the CE program can often be calculated analytically.
- The solution to the CE program can often be calculated analytically.
- Note that the CE program is useful only when under \boldsymbol{w} the event $\{S(\boldsymbol{X}) \geq \gamma\}$ is not too rare, say $\geq 10^{-5}$.
- The solution to the CE program can often be calculated analytically.
- Note that the CE program is useful only when under \boldsymbol{w} the event $\{S(\boldsymbol{X}) \geq \gamma\}$ is not too rare, say $\geq 10^{-5}$.

Question: how to choose \boldsymbol{w} so that this is indeed the case?

- The solution to the CE program can often be calculated analytically.
- Note that the CE program is useful only when under \boldsymbol{w} the event $\{S(\boldsymbol{X}) \geq \gamma\}$ is not too rare, say $\geq 10^{-5}$.

Question: how to choose \boldsymbol{w} so that this is indeed the case?
Answer: use a multi-level approach.

- The solution to the CE program can often be calculated analytically.
- Note that the CE program is useful only when under \boldsymbol{w} the event $\{S(\boldsymbol{X}) \geq \gamma\}$ is not too rare, say $\geq 10^{-5}$.

Question: how to choose \boldsymbol{w} so that this is indeed the case?
Answer: use a multi-level approach.
Introduce a sequence of reference parameters $\left\{\boldsymbol{v}_{t}, t \geq 0\right\}$ and a sequence of levels $\left\{\gamma_{t}, t \geq 1\right\}$, and iterate in both γ_{t} and \boldsymbol{v}_{t}.

Toy example 1 (continued)

Recall

$$
f(\boldsymbol{x} ; \boldsymbol{v})=\exp \left(-\sum_{j=1}^{5} \frac{x_{j}}{v_{j}}\right) \prod_{j=1}^{5} \frac{1}{v_{j}} .
$$

The optimal \boldsymbol{v} follows from the system of equations

$$
\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \boldsymbol{w}\right) \nabla \log f\left(\boldsymbol{X}_{i} ; \boldsymbol{v}\right)=\mathbf{0}
$$

Since

$$
\frac{\partial}{\partial v_{j}} \log f(\boldsymbol{x} ; \boldsymbol{v})=\frac{x_{j}}{v_{j}^{2}}-\frac{1}{v_{j}},
$$

we have for the j th equation

$$
\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \boldsymbol{w}\right)\left(\frac{X_{i j}}{v_{j}^{2}}-\frac{1}{v_{j}}\right)=0
$$

whence,

$$
v_{j}=\frac{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \boldsymbol{w}\right) X_{i j}}{\sum_{i=1}^{N} I_{\left\{S\left(\boldsymbol{X}_{i}\right) \geq \gamma\right\}} W\left(\boldsymbol{X}_{i} ; \boldsymbol{u}, \boldsymbol{w}\right)},
$$

which leads to the updating formula in step 3 of the Algorithm.

Further research

- Multi-extremal constrained continuous optimization.

Further research

- Multi-extremal constrained continuous optimization.
- Noisy optimization.

Further research

- Multi-extremal constrained continuous optimization.
- Noisy optimization.
- Simulation with heavy tail distributions.

Further research

- Multi-extremal constrained continuous optimization.
- Noisy optimization.
- Simulation with heavy tail distributions.
- Incorporating MaxEnt (MinxEnt), e.g. MCE

Further research

- Multi-extremal constrained continuous optimization.
- Noisy optimization.
- Simulation with heavy tail distributions.
- Incorporating MaxEnt (MinxEnt), e.g. MCE
- Multi-actor games

Further research

- Multi-extremal constrained continuous optimization.
- Noisy optimization.
- Simulation with heavy tail distributions.
- Incorporating MaxEnt (MinxEnt), e.g. MCE
- Multi-actor games
\square Convergence of CE algorithm.

