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Introduction

The Cross-Entropy Method was originally developed as a
simulation method for the estimation of rare event probabilities:

Estimate P(S(X) ≥ γ)

X: random vector/process taking values in some set X .
S: real-values function on X .

The Cross-Entropy Method – p. 4/37



Introduction

The Cross-Entropy Method was originally developed as a
simulation method for the estimation of rare event probabilities:

Estimate P(S(X) ≥ γ)

X: random vector/process taking values in some set X .
S: real-values function on X .

It was soon realised that the CE Method could also be used as an
optimization method:

Determine maxx∈X S(x)
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Some Applications

Combinatorial Optimization (e.g., Travelling Salesman,
Maximal Cut and Quadratic Assignment Problems)

Noisy Optimization (e.g., Buffer Allocation, Financial
Engineering)

Multi-Extremal Continuous Optimization

Pattern Recognition, Clustering and Image Analysis

Production Lines and Project Management

Network Reliability Estimation

Vehicle Routing and Scheduling

DNA Sequence Alignment
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A Multi-extremal function
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A Maze Problem

The Optimal Trajectory
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A Maze Problem

Iteration 1:
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A Maze Problem

Iteration 2:
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A Maze Problem

Iteration 3:
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A Maze Problem

Iteration 4:
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Example 1: Rare Event Simulation

Consider a randomly weighted graph:

BA

���
���

���

���
���

The random weights X1, . . . , X5 are independent and
exponentially distributed with means u1, . . . , u5.

Find the probability that the length of the shortest path from A to
B is greater than or equal to γ.
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Crude Monte Carlo (CMC)

Define X = (X1, . . . , X5) and u = (u1, . . . , u5). Let S(X) be
the length of the shortest path from node A to node B.
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Crude Monte Carlo (CMC)

Define X = (X1, . . . , X5) and u = (u1, . . . , u5). Let S(X) be
the length of the shortest path from node A to node B.
We wish to estimate

` = P(S(X) ≥ γ) = EI{S(X)≥γ} .
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Crude Monte Carlo (CMC)

Define X = (X1, . . . , X5) and u = (u1, . . . , u5). Let S(X) be
the length of the shortest path from node A to node B.
We wish to estimate

` = P(S(X) ≥ γ) = EI{S(X)≥γ} .

This can be done via Crude Monte Carlo: sample independent
vectors from density f(x;u) =

∏5
j=1 exp(−xj/uj)/uj , and

estimate ` via

1

N

N∑

i=1

I{S(Xi)≥γ} .
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Importance Sampling (IS)

However, for small ` this requires a very large simulation effort.
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Importance Sampling (IS)

However, for small ` this requires a very large simulation effort.

A better way is to use Importance Sampling: draw X1, . . . ,XN

from a different density g, and estimate ` via the estimator

̂̀=
1

N

N∑

i=1

I{S(Xi)≥γ} W (X i) ,

where W (X) = f(X)/g(X) is called the likelihood ratio.
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Which Change of Measure?

If we restrict ourselves to g such that X1, . . . , X5 are independent
and exponentially distributed with means v1, . . . , v5, then

W (x;u,v) :=
f(x;u)

f(x;v)
= exp

(
−

5∑

j=1

xj

(
1

uj

−
1

vj

)) 5∏

j=1

vj

uj

.

In this case the “change of measure” is determined by the
reference vector v = (v1, . . . , v5).
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Which Change of Measure?

If we restrict ourselves to g such that X1, . . . , X5 are independent
and exponentially distributed with means v1, . . . , v5, then

W (x;u,v) :=
f(x;u)

f(x;v)
= exp

(
−

5∑

j=1

xj

(
1

uj

−
1

vj

)) 5∏

j=1

vj

uj

.

In this case the “change of measure” is determined by the
reference vector v = (v1, . . . , v5).

Question: How do we find the optimal v = v∗?

Answer: Let CE find it adaptively!
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CE Algorithm

1 Define v̂0 := u. Set t := 1 (iteration counter).

2 Update γ̂t: Generate X1, . . . ,XN according to f(·; v̂t−1). Let

γ̂t be the worst of the ρ × N best performances, provided this is

less than γ. Else γ̂t := γ.

3 Update v̂t: Use the same sample to calculate, for j = 1, . . . , n,

v̂t,j =

∑N
i=1 I{S(Xi)≥γ̂t}W (X i;u, v̂t−1)Xij∑N

i=1 I{S(Xi)≥γ̂t}W (X i;u, v̂t−1)
.

THIS UPDATING IS BASED ON CE.

4 If γ̂t = γ then proceed to step 5; otherwise set t := t + 1 and

reiterate from step 2.

5 Estimate ` via the LR estimator, using the final v̂T .
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Example

Level: γ = 2. Fraction of best performances: ρ = 0.1. Sample
size in steps 2 – 4: N = 1000. Final sample size: N1 = 105.

t γ̂t v̂t

0 0.250 0.400 0.100 0.300 0.200

1 0.575 0.513 0.718 0.122 0.474 0.335

2 1.032 0.873 1.057 0.120 0.550 0.436

3 1.502 1.221 1.419 0.121 0.707 0.533

4 1.917 1.681 1.803 0.132 0.638 0.523

5 2.000 1.692 1.901 0.129 0.712 0.564
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Example (cont.)

The estimate was 1.34 · 10−5,

with an estimated relative error (that is, Std(̂̀)/Ề) of 0.03.

The simulation time was only 3 seconds (1/2 second for
table).

CMC with N1 = 108 samples gave an estimate 1.30 · 10−5

with the same RE (0.03). The simulation time was 1875
seconds.

With minimal effort we reduced our simulation time by a
factor of 625.
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Example 2: The Max-Cut Problem

Consider a weighted graph G with node set V = {1, . . . , n}.
Partition the nodes of the graph into two subsets V1 and V2 such
that the sum of the weights of the edges going from one subset to
the other is maximised.

Example
3

4

5

62

1
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Cost matrix:

C =




0 c12 c13 0 0 0

c21 0 c23 c24 0 0

c31 c32 0 c34 c35 0

0 c42 c43 0 c45 c46

0 0 c53 c54 0 c56

0 0 0 c64 c65 0




.

{V1, V2} = {{1, 3, 4}, {2, 5, 6}} is a possible cut. The cost of the
cut is

c12 + c32 + c35 + c42 + c45 + c46.
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Random Cut Vector

We can represent a cut via a cut vector x = (x1, . . . , xn), where
xi = 1 if node i belongs to same partition as 1, and 0 else.

We wish to maximise S(x) via the CE method.

The Cross-Entropy Method – p. 21/37



Random Cut Vector

We can represent a cut via a cut vector x = (x1, . . . , xn), where
xi = 1 if node i belongs to same partition as 1, and 0 else.

For example, the cut {{1, 3, 4}, {2, 5, 6}} can be represented via
the cut vector (1, 0, 1, 1, 0, 0).

We wish to maximise S(x) via the CE method.

The Cross-Entropy Method – p. 21/37



Random Cut Vector

We can represent a cut via a cut vector x = (x1, . . . , xn), where
xi = 1 if node i belongs to same partition as 1, and 0 else.

For example, the cut {{1, 3, 4}, {2, 5, 6}} can be represented via
the cut vector (1, 0, 1, 1, 0, 0).

Let X be the set of all cut vectors x = (1, x2, . . . , xn).

We wish to maximise S(x) via the CE method.

The Cross-Entropy Method – p. 21/37



Random Cut Vector

We can represent a cut via a cut vector x = (x1, . . . , xn), where
xi = 1 if node i belongs to same partition as 1, and 0 else.

For example, the cut {{1, 3, 4}, {2, 5, 6}} can be represented via
the cut vector (1, 0, 1, 1, 0, 0).

Let X be the set of all cut vectors x = (1, x2, . . . , xn).

Let S(x) be the corresponding cost of the cut.

We wish to maximise S(x) via the CE method.

The Cross-Entropy Method – p. 21/37



Random Cut Vector

We can represent a cut via a cut vector x = (x1, . . . , xn), where
xi = 1 if node i belongs to same partition as 1, and 0 else.

For example, the cut {{1, 3, 4}, {2, 5, 6}} can be represented via
the cut vector (1, 0, 1, 1, 0, 0).

Let X be the set of all cut vectors x = (1, x2, . . . , xn).

Let S(x) be the corresponding cost of the cut.

We wish to maximise S(x) via the CE method.

The Cross-Entropy Method – p. 21/37



General CE Procedure

First, cast the original optimization problem of S(x) into an
associated rare-events estimation problem: the estimation of

` = P(S(X) ≥ γ) = EI{S(X)≥γ} .

Second, formulate a parameterized random mechanism to
generate objects X ∈ X . Then, iterate the following steps:

• Generate a random sample of objects X1, . . . ,XN ∈ X (e.g.,
cut vectors).

• Update the parameters of the random mechanism (obtained via
CE minimization), in order to produce a better sample in the next
iteration.
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Generation and Updating Formulas

Generation of cut vectors: The most natural and easiest
way to generate the cut vectors is to let X2, . . . , Xn be
independent Bernoulli random variables with success
probabilities p2, . . . , pn.

Updating formulas: From CE minimization: the updated
probabilities are the maximum likelihood estimates of the ρN

best samples:

p̂t,j =

∑N

i=1 I{S(Xi)≥γ̂t} I{Xij=1}∑N

i=1 I{S(Xi)≥γ̂t}

, j = 2, . . . , n .
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Algorithm

1 Start with p̂0 = (1/2, . . . , 1/2). Let t := 1.

2 Update γ̂t: Draw X1, . . . ,XN from Ber(p̂t). Let γ̂t be

the worst performance of the ρ × 100% best

performances.

3 Update p̂t: Use the same sample to calculate

p̂t,j =

∑N
i=1 I{S(Xi)≥γ̂t} I{Xij=1}∑N

i=1 I{S(Xi)≥γ̂t}

,

j = 1, . . . , n, where X i = (Xi1, . . . ,Xin), and increase t

by 1.

4 If the stopping criterion is met, then stop;

otherwise set t := t + 1 and reiterate from step 2.
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Example

Results for the case with n = 400,m = 200 nodes are given
next.

Parameters: ρ = 0.1, N = 1000.

The CPU time was only 100 seconds (Matlab, pentium III,
500 Mhz).

The CE algorithm converges quickly, yielding the exact
optimal solution 40000 in 22 iterations.

The Cross-Entropy Method – p. 25/37



Example

Results for the case with n = 400,m = 200 nodes are given
next.

Parameters: ρ = 0.1, N = 1000.

The CPU time was only 100 seconds (Matlab, pentium III,
500 Mhz).

The CE algorithm converges quickly, yielding the exact
optimal solution 40000 in 22 iterations.

The Cross-Entropy Method – p. 25/37



Example

Results for the case with n = 400,m = 200 nodes are given
next.

Parameters: ρ = 0.1, N = 1000.

The CPU time was only 100 seconds (Matlab, pentium III,
500 Mhz).

The CE algorithm converges quickly, yielding the exact
optimal solution 40000 in 22 iterations.

The Cross-Entropy Method – p. 25/37



Example

Results for the case with n = 400,m = 200 nodes are given
next.

Parameters: ρ = 0.1, N = 1000.

The CPU time was only 100 seconds (Matlab, pentium III,
500 Mhz).

The CE algorithm converges quickly, yielding the exact
optimal solution 40000 in 22 iterations.

The Cross-Entropy Method – p. 25/37



Max-Cut
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Example: Continuous Optimization

-6 -2 2 6
0  

0.5

1  

x

S
(
x
)

S(x) = e−(x−2)2 + 0.8 e−(x+2)2
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Matlab Program

S = inline(’exp(-(x-2).^2) + 0.8*exp(-(x+2).^2)’);

mu = -10; sigma = 10; rho = 0.1; N = 100; eps = 1E-3;

t=0; % iteration counter

while sigma > eps

t = t+1;

x = mu + sigma*randn(N,1);

SX = S(x); % Compute the performance.

sortSX = sortrows([x SX],2);

mu = mean(sortSX((1-rho)*N:N,1));

sigma = std(sortSX((1-rho)*N:N,1));

fprintf(’%g %6.9f %6.9f %6.9f \n’, t, S(mu),mu, sigma)
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Numerical Result
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Cross-Entropy: Some Theory

Estimate ` := Pu(S(X) ≥ γ) = Eu I{S(X)≥γ} via

ˆ̀=
1

N

N∑

i=1

I{S(Xi)≥γ}
f(X i;u)

g(X i)
.

The best density (zero variance estimator!) is

g∗(x) :=
I{S(x)≥γ}f(x;u)

`
.

Problem: g∗ depends on the unknown `.
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Idea: choose g = f(·;v) such that the “distance” between the
densities g∗ and f(·;v) is minimal.

The Kullback-Leibler or cross-entropy distance is defined
as:

D(g, h) = Eg log
g(X)

h(X)

=

∫
g(x) log g(x) dx −

∫
g(x) log h(x) dx .

Determine the optimal v∗ from minv D(g∗, f(·;v)) .
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This is equivalent to solving

max
v

Eu I{S(X)≥γ} log f(X;v) .

Using again IS, we can rewrite this as

max
v

Ew I{S(X)≥γ} W (X;u,w) log f(X;v),

for any reference parameter w, where

W (x;u,w) =
f(x; .u)

f(x;w)
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We may estimate the optimal solution v∗ by solving the
following stochastic counterpart:

max
v

1

N

N∑

i=1

I{S(Xi)≥γ} W (X i;u,w) log f(X i;v) ,

where X1, . . . ,XN is a random sample from f(·;w).
Alternatively, solve:

1

N

N∑

i=1

I{S(Xi)≥γ} W (X i;u,w)∇ log f(X i;v) = 0,

where the gradient is with respect to v.
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The solution to the CE program can often be calculated
analytically.

Note that the CE program is useful only when under w the
event {S(X) ≥ γ} is not too rare, say ≥ 10−5.

Answer: use a multi-level approach.

Introduce a sequence of reference parameters {vt, t ≥ 0} and a
sequence of levels {γt, t ≥ 1}, and iterate in both γt and vt.
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Toy example 1 (continued)

Recall

f(x;v) = exp

(
−

5∑

j=1

xj

vj

)
5∏

j=1

1

vj

.

The optimal v follows from the system of equations

N∑

i=1

I{S(Xi)≥γ} W (X i;u,w)∇ log f(X i;v) = 0.

Since
∂

∂vj

log f(x;v) =
xj

v2
j

−
1

vj

,

The Cross-Entropy Method – p. 35/37



we have for the jth equation

N∑

i=1

I{S(Xi)≥γ} W (X i;u,w)

(
Xij

v2
j

−
1

vj

)
= 0 ,

whence,

vj =

∑N

i=1 I{S(Xi)≥γ}W (X i;u,w)Xij∑N

i=1 I{S(Xi)≥γ}W (X i;u,w)
,

which leads to the updating formula in step 3 of the Algorithm.
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Further research

Multi-extremal constrained continuous optimization.

Noisy optimization.

Simulation with heavy tail distributions.

Incorporating MaxEnt (MinxEnt), e.g. MCE

Multi-actor games

Convergence of CE algorithm.
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