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This article presents Monte Carlo techniques for estimating network reliability+ For
highly reliable networks, techniques based on graph evolution models provide very
good performance+ However, they are known to have significant simulation cost+
An existing hybrid scheme~based on partitioning the time space! is available to
speed up the simulations; however, there are difficulties with optimizing the im-
portant parameter associated with this scheme+ To overcome these difficulties, a
new hybrid scheme~based on partitioning the edge set! is proposed in this article+
The proposed scheme shows orders of magnitude improvement of performance
over the existing techniques in certain classes of network+ It also provides reliability
bounds with little overhead+
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1. INTRODUCTION

1.1. Problem Description

It is well known that, for large networks, the exact calculation of network reliability
is difficult+ Indeed, computing the probability that a graph is connected is a #P-
complete problem@2,11# +Hence, for large networks, estimating the reliability using
simulation techniques becomes necessary+ In highly reliable networks such as mod-
ern communication networks, the probability of network failure is very low+ Direct
simulation of such rare events is slow and, hence, very expensive+ Various tech-
niques have been developed to produce better estimates+ For example, Kumamoto
proposed a very simple technique calledDagger Samplingto improve the Crude
Monte Carlo simulation@8# + Fishman proposedProcedure Q, which can provide
reliability estimates as well as bounds@7# + Colbourn and Harms proposed a tech-
nique that will provide progressive bounds that will eventually converge to an exact
reliability value@3# + Easton and Wong proposed a sequential construction method
@4# + Elperin,Gertsbakh, and Lomonosov proposedEvolution Modelsfor estimating
reliability of highly reliable networks@5,6,9,10# +

For highly reliable networks such as modern communication networks, theMerge
Processproposed by Elperin et al+ provides good performance without significant
overhead@5# + However, it has a relatively high computation cost per sample+ To
combat the high complexity for the Merge Process, Lomonosov proposed a hybrid
scheme based on partitioning the time space@9# + This scheme can reduce the aver-
age simulation cost; however, the choice of a partition point in time space controls
the performance of the scheme+ Unfortunately, the optimal value for this parameter
is difficult to find+ In this article, we develop a new hybrid scheme for the Merge
Process by using a novel partitioning based on the edge set+ In certain classes of
networks, the new scheme shows orders of magnitude improvement in performance+
In addition to performance improvement, the new scheme can also provide reliabil-
ity bounds, which has, thus far, never been available using Evolution Models+

In this article,we first define network reliability in Section 1+2+ Then, the math-
ematical formulation of the Evolution Models is reviewed in Section 2+ The existing
hybrid scheme is presented in Section 3 using our mathematical formulation, fol-
lowed by the proposed new scheme in Section 4+ Experiments and results are pre-
sented in Section 5 with some discussions+

1.2. Network Reliability

Consider an undirected graph~or network! G~V,E,K !, whereV is the set ofn ver-
tices~or nodes!, E is the set ofm edges, andK # V is a set ofterminalnodes, with
6K 6$ 2+Associated with each edgee [ E is a binary random variableXe, denoting
the failure stateof the edge+ In particular, $Xe 5 1% is the event that the edge is
operational, and$Xe5 0% is the event that it has failed+We label the edges from 1 to
mand call the vectorX5 ~X1, + + + ,Xm! the~failure! state of the network, or the state
of the setE+ Let S be the set of all 2m possible states ofE+
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Notation 1: For A # E, let x 5 ~x1, + + + , xm! be the vector in$0,1%m with

xi 5 H1, i [ A

0, i Ó A+

We canidentify xwith the setA+Henceforth,we will use this identification whenever
this is convenient+

Next, we assume that the random variables$Xe, e [ E% are mutually inde-
pendent+ Let pe and qe denote the reliability and unreliability ofe [ E, respec-
tively; that is,

pe 5 P@Xe 5 1# ,

qe 5 P@Xe 5 0# 5 1 2 pe+

The reliability r ~G; p! of the network is defined as the probability ofK beingcon-
nectedby operational edges+ Further, let p 5 ~ p1, + + + , pm!+ Thus,

r ~G; p! 5 E@w~X !# 5 (
x[S

w~x!P@X 5 x# , (1)

where

w~x! 5 H1 if K is connected

0 otherwise+

This is the standard formulation of the reliability of unreliable systems~networks!;
see, for example, @1# +The functionw is called thestructure functionof the unreliable
system+ Note that the reliability of the network is completely determined by the
individual edge reliabilities since we do not consider node failures+

In the rest of this article, whenG andp are assumed to be understood, we will
write r instead ofr ~G; p!+ For highly reliable networks, it is sometimes more useful
to analyze or estimate the system unreliability

Tr 5 12 r+

1.3. Crude Monte Carlo Simulation

The easiest way to estimater ~or Tr ! is to use Crude Monte Carlo~CMC! simulation+
Let X ~1!, + + + ,X ~N! be independent and identically distributed~i+i+d+! random vectors
with the same distribution asX+ Then,

[r 5
1

N (
i51

N

w~X ~i ! !
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is an unbiased estimator forr+ An important measure for the “efficiency” of any
estimator is itsrelative error+ The relative error for[r is given by

re~ [r ! 5 ! Var~ [r !

~E@ [r # !2 5 ! r ~12 r !0N

r 2 5 ! 12 r

Nr
+

Similarly, the relative error for[Tr is

re~ [Tr ! 5 ! 12 Tr
N Tr
+

This shows that for smallTr ~which is typical in communication networks!, a large
sample size is needed to estimateTr accurately+ When Tr is small, the event that the
terminal nodes are not connected is arare event+ In the next section, we discuss
methods to increase the accuracy of simulation procedures,which work well for rare
events+

2. PERMUTATION MONTE CARLO SIMULATION

2.1. Construction Process

First, we describe the concepts behind thePermutation Monte Carlo~p-MC! sim-
ulation~see@5# for the original description!+ Consider the networkG~V,E! in which
each edgeehas an exponential repair time with repair ratel~e! 5 2log~qe!+At time
t 5 0, all edges are failed+We assume that all repair times are independent of each
other+The state ofeat timet is denoted byXe~t ! and the state of the edge setEat time
t is given by the vectorX~t !, defined in a similar way as earlier+ Thus, ~X~t !! is a
Markov process with state space$0,1%m or, in view of Notation 1, a Markov process
on subsets ofE+This process is called theConstruction Process~CP! of the network+

LetP denote theorderin which the edges are constructed~become operational!,
and letS0,S0 1 S1, + + + ,S0 1 {{{ 1 Sm21 be the times at which those edges are con-
structed+ Hence, the Si aresojourn timesof ~X~t !!+ P is a random variable which
takes values in the space of permutations ofE+

For any permutationp 5 ~e1,e2, + + + ,em!, define

E0 5 E,

Ei 5 Ei21\$ei %, 1 # i # m2 1,

l~Ei ! 5 (
e[Ei

l~e!,

and let

b~p! 5 min
i

$w~Ei ! 5 1%

be thecritical numberof p+
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From the general theory of Markov processes, it is not difficult to see that

P@P 5 p# 5 )
j51

m l~ej !

l~Ej21!
+

Moreover, conditional on$P 5 p% , the sojourn timesS0, + + + ,Sm21 are independent
and eachSi is exponentially distributed with parameterl~Ei !, i 5 0, + + + ,m2 1+

Note that the probability of each edgee being operational at timet 51 is pe+ It
follows that thenetworkreliability at time t 5 1 is the same as in~1!+ Hence, by
conditioning onP, we have

r 5 E@w~X~1!!# 5 (
p

P@P 5 p#P@w~X~1!! 5 16P 5 p# , (2)

or

Tr 5 12 r 5 (
p

P@P 5 p#P@w~X~1!! 5 06P 5 p# + (3)

Using the definitions ofSi andb~p!, we can write the last probability in terms of
convolutions of exponential distribution functions; namely for anyt $ 0, we have

P@w~X~t !! 5 06P 5 p# 5 P@S0 1 {{{ 1 Sb~p!21 . t 6P 5 p#

5 12 Conv0#i,b~p! $12 exp@2l~Ei !t #%+ (4)

Let

gC~p! 5 P@w~X~1!! 5 06P 5 p# ,

as given in~4!+ Equation~3! can be rewritten as

Tr 5 E@gC~P!# ,

and this shows how the Permutation Monte Carlo simulation scheme works; namely
let P~1!, + + + ,P~N! be i+i+d+ random permutations, each distributed according toP+
Then,

[Tr 5
1

N (
i51

N

gC~P~i ! !

is an unbiased estimator forTr+

2.1.1. Performance of the Construction Process. The Construction Pro-
cess scheme based on generating permutationsp and computinggC~p! is charac-
terized by the variance:

VarCP 5 (
p

P@P 5 p#gC
2~p! 2 S(

p

P@P 5 p#gC~p!D2
+ (5)
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Comparing this with the variance of the Crude Monte Carlo scheme,

VarCMC 5 r ~12 r ! 5 S(
p

P@P 5 p#gC~p!DS12 (
p

P@P 5 p#gC~p!D
5 VarCP1 (

p

P@P 5 p#gC~p!~12 gC~p!!,

proved that the Construction Process scheme has a lower variance than the Crude
Monte Carlo scheme and hence greater accuracy+ However, this accuracy comes at
the expense of more complex computations+

2.2. Standard Merge Process

A closer look at the evolution of the Construction Process process reveals that many
of the above results remain valid when wemergevarious states into “superstates” at
various stages of the process+ This is known as theMerge Process+We will briefly
describe the ideas below~see@9# for a detailed description!+

To begin with, for a subsetF # E of edges, denote bys 5 $V1,V2, + + + ,Vk% the
proper partition~in connected components! of the subgraphG~V,F! ~including iso-
lated nodes, if any!+ Let Ii denote the edge set of the induced subgraphG~Vi !+ The set
Is5 I1 ø {{{ ø Ik of inneredges~i+e+, the edges within the components! is the closure
of F ~denoted bŷF&!+ Denote its complement~the intercomponentedges! by Es 5
E \ Is+ Figure 1 is an example of a complete six-node graph~K6!, a subgraph, and its
corresponding closure+

LetL~G! be the collection of all proper partitions ofG~V,E!+ It is not difficult to
see thatL~G! is alattice, ordered by the relationt a s m It , Is ~i+e+, s is obtained
by merging components oft!+

Consider the Construction Process~X~t !! of the network+ By restricting the
process~X~t !! toL~G!, we obtain another Markov process~X~t !!, called theMerge
Process~MP! of the network+ This process starts from the initial states0 of isolated
nodes and ends at the terminal statesv corresponding toG~V,E!+

Figure 2 showsL~K4!, the lattice of all regular partitions of the complete four-
node graphK4, grouped into four different levels according to the number of

Figure 1. K6, a subgraph, and its corresponding closure+
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components+ The arrows show the direct successions inL~K4!, thus forming the
transition graph of the Markov process~X~t !!+

For eachs [ L~G!, the sojourn time ins has an exponential distribution with
parameterl~s! 5 (e[Es

l~e!, independent of everything else+ Moreover, the tran-
sition probability fromt to s ~wheres is a direct successor oft! is given by

l~t! 2 l~s!

l~t!
+

Next, in analogy with the results for the Construction Process,we define atrajectory
of ~X~t !! as a sequenceu 5 ~s0,s1, + + + ,sb!, whereb5 b~u! is the first indexi such
thatsi is “up”; that is, the network is operational+ By definingw~X~t !! 5 w~X~t !!,
we have

Tr 5 P@w~X~1!! 5 0# 5 E@gM ~Q!# ,

whereQ is the random trajectory of~X~t !!+ For each outcomeu 5 ~s0, + + + ,sb! of Q,
gM~u! is given by

gM ~u! 5 P@w~X~1!! 5 06Q 5 u# 5 P@S0 1 {{{ 1 Sb~u!21 . 16Q 5 u# ,

whereSi is the sojourn time atsi + Therefore, gM~u! is given by the value

12 Conv0#i,b~u! $12 exp@2l~si !t #%,

at t 5 1+

Figure 2. State transition diagram for merge process ofK4+
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2.2.1. Performance of the Merge Process. The Merge Process scheme
based on generating permutationsu and computinggM~u! is characterized by the
variance

VarMP 5 S(
u

P@Q 5 u#gM
2 ~u!D2 S(

u

P@Q 5 u#gM ~u!D2
+ (6)

By expanding the expression for the variance of the Crude Monte Carlo, we get

VarCMC 5 r ~12 r !

5 VarMP 1 (
u

P@Q 5 u#gM ~u!~12 gM ~u!!, (7)

which shows that the Merge Process has a smaller variance than does the Crude
Monte Carlo+

To compare the Merge Process with the Construction Process,we go back to the
permutationp 5 ~e1,e2, + + + ! of the Construction Process, which produces a unique
trajectory of the Merge Process denoted by^p&+We say that permutationsp1,p2 of
the Construction Process are equivalent in the Merge Process if^p1& 5 ^p2&+ Thus,
a trajectoryu of the Merge Process represents the set of permutations of the Con-
struction Process satisfying^p& 5 u; we write it asp [ u+ For a given trajectoryu
and its corresponding permutationsp [ u, the probability of randomly choosing a
particular permutation is given by

P@P 5 p6Q 5 u# 5
P@P 5 p,Q 5 u#

P@Q 5 u#
,

and the reliability estimation functions are related by

gM ~u! 5 (
p[u

P@P 5 p6Q 5 u#gC~p!+

By the variance expansion, we get

VarCP 5 VarMP 1 (
u

P@Q 5 u#S (
p[u

P@P 5 p6Q 5 u#gC
2~p! 2 gM

2 ~u!D+ (8)

The second term on the right-hand side of~8! is the part of VarCP eliminated by the
state-space reduction when the Construction Process is transformed into the Merge
Process+ Because the term in brackets

(
p[u

P@P 5 p6Q 5 u#gC
2~p! 2 gM

2 ~u! 5 Varp[u~gC~p!! $ 0, (9)

~8! and~9! demonstrate that the Merge Process scheme has greater accuracy than the
Construction Process scheme+
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2.3. General Formulation

The above Construction Process and Merge Process simulations always start with
s0, the isolated node state+This can be generalized to start at any statey and produce
the hybrid sampling schemes described in Section 3+ In this subsection, we present
the ideas behind the Merge Process where it starts from a general statey+

Consider a continuous-time Markov process~X~t !, t $ 0! on a finite poset~par-
tially ordered set! X of states+ From each statex [ X, the Markov process can only
jump to a direct successor ofx; we say that the Markov process ismonotoneonX+
Let w be a binary monotone function onX; that is, w~x! # w~ y! wheneverx # y+
Using w we partitionX into two sets, U 5 $x : w~x! 5 1% ~up states! and D 5
$x : w~x! 5 0% ~down states!+

Assume that the states inU areabsorbing+We are interested in the probability
that the Markov process, starting from some initial stateY, is in U at a certain
time t+ We denote this byP~t !+ To avoid trivial cases, we assume that the starting
stateY [ D+

For x [ D, let

l~x! 5 (
i[x

l i

and assume 0, l~x! , `+ In other words, the sojourn time inx has an exponen-
tial distribution with parameterl~x!+ Let B be the random variable~and b its
corresponding outcome! describing the first index such that the process is inU,
and letQY 5 ~Y,X1, + + + ,XB21! be the sequence of consecutive states visited by
~X~t !! before absorption+ Denote the corresponding sojourn times byS0,S1, + + + ,SB21+
Each outcomeuy 5 ~ y, x1, + + + , xb21! of QY is a trajectory of the process starting
at y+ Conditional on$QY 5 uy% , the sojourn times are independent and exponen-
tially distributed with parametersl~ y!,l~x1!, + + + ,l~xb21!, respectively+ As a re-
sult, we have

P~t ! 5 P@w~X~t !! 5 1# 5 E@g~QY, t !# , (10)

where for eachuy 5 ~x0 5 y, x1, + + + , xb21!,

g~uy, t ! 5 P@S0 1 {{{ 1 Sb21 . t 6QY 5 uy# 5 1 2 Conv0#i,b$12 exp@2l~xi !t #%+

Hence, we may estimateP~t ! by simulatingN independent copiesQY
~1! , + + + ,QY

~N! of
QY and evaluating the estimator

ZP~t ! 5
1

N (
i51

N

g~QY
~i ! , t !+

Note that the generalization is equally applicable to any of theg~{! of evolution
models+
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3. HYBRID SAMPLING SCHEMES

The complexity of a single sample in the Merge Process, including generating a
trajectory and computing the convolution, is O~n2! ~see@5# ! as compared to al-
mostO~n! in the Crude Monte Carlo+ This complexity is acceptable as a price for
the low relative error whenTr r 0+ Lomonosov suggested a hybrid scheme~which
we call theLeap–Evolvescheme! to reduce the average complexity whenTr is not
so near zero@9# +

The scheme is based on the following observation+ Let ~X~t !! be the Construc-
tion Process or Merge Process as described earlier,with repair ratel~e!52log~qe!,
as earlier, and starting with all links down+By conditioning on the state of the system
at times [ @0,1# and the trajectoryQ of ~X~t !! after times, we find

Tr 5 P@w~X~1!! 5 0# 5 P@w~X~s!! 5 0, w~X~1!! 5 0#

5 E@E@I$w~X~s!!50% I$w~X~1!!50% 6X~s!,QX~s! ##

5 E@I$w~X~s!!50%P@w~X~1!! 5 06QX~s! ##

5 E@I$w~X~s!!50% gM ~QX~s! ,12 s!# +

Here, IA denotes the indicator function of the eventA+ Note that for fixeduy, gM~uy,
12 s! can be evaluated by applying the convolution given in Section 2+

Figure 3 shows an example of the Leap–Evolve scheme using the same lattice
as in Figure 2+ However, the Merge Process starts at times+ Depending on the out-
comeX~s!, the initial state of the Merge Process can be in any state in the lattice+

The hybrid simulation now involves partitioning the time space into two parts:
@0,s! and@s,`!+ Each simulation run consists of two steps:

Figure 3. State transition diagram for the Leap–Evolve scheme ofK4+
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1+ Leap: An outcome of the random variableX~s! is generated by indepen-
dently bringing the edges up with probabilities 12exp@2l~e!s# , e[ E+The
complexity of this step is close toO~n!+

2+ Evolution: If the outcomey of X~s! is inU, let z5 0+ If the outcomey of X~s!
is inD, generate a trajectoryQy on the interval~s,`# , starting~X~t !! in state
y at times+ For an outcomeuy of Qy, let z5 gM~uy,12 s!+ The complexity of
generatinggM~uy,12 s! is O~6y62!+

Note that by the above construction, z is indeed an outcome of the random variable
I$w~X~s!!50%gM~QX~s!,12 s!+

Hence, if Z~1!, + + + ,Z~N! are independent samples fromZ, then

[Tr 5
1

N (
i51

N

Z~i !

is an unbiased estimator ofTr+

3.1. Performance of the Leap–Evolve Scheme

The complexity of generatinggM~uy,12 s! is O~6y62!+ The mean complexity of the
evolution step of the hybrid scheme is, therefore, at most

C(
y

P@X~s! 5 y#6y62,

whereC is some constant+
In the Leap–Evolve sampling scheme, the choice ofs can be critical+ If s is

too large, X~s! may converge toU and leave no room for evolution sampling to
lower the relative error in comparison to the ordinary Crude Monte Carlo scheme+
If s is too small, then 6X~s!6 will be “close” to the initial state and will hardly
reduce the average sampling complexity in comparison to the ordinary Merge Pro-
cess+ In Section 4, we introduce an alternative hybrid scheme that avoids this
critical choice ofs+

4. TREE CUT AND MERGE ALGORITHM

4.1. Cut and Merge

A different hybrid sampling scheme is proposed here+ Instead of partitioning the
time space, we propose partitioning the edge set intoF # E and its complement
OF 5 E \F+

LetL be thelatticeof all proper partitionsof G~V,E! as described in Section 3+
For eachs [ L and edge setOF # E we define the sublatticeLs

OF of L as the set of all
successors ofs that can be obtained by mergingonly the edges in OF+ Figure 4 shows
the sublattice induced by the edge set shown in the lower left corner of the figure+
Note that, as in this example, it is possible thatLs

OF does not have an “up” state+

TREE CUT AND MERGE ALGORITHM 33

at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0269964803171021
Downloaded from https://www.cambridge.org/core. UQ Library, on 25 Jan 2022 at 02:12:13, subject to the Cambridge Core terms of use, available

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964803171021
https://www.cambridge.org/core


LetA# F+Consider a Markov process~ FX~t !! onEwith transition ratesl~e!50
for e [ F and with the edgese [ A operationalat time 0; the other transition rates
are the same as for our original edge state process~X~t !! in Section 3+ Let s be the
state inL corresponding toA+ The Markov process~ FX~t !! induces another Markov
process, ~ FX~t !! say, onLs

OF , in the same way as~X~t !! induces~X~t !! onL+
Let Q be the random trajectory of~ FX~t !! andS be the random variable describ-

ing the state inL corresponding toA # F+ For each outcomes of S andus of QS, let

gT~us! 5 P@w~ FX~1!! 5 06S 5 s,QS 5 us# +

As earlier, gT~us! can be evaluated by taking convolutions+Note thatgT Þ gM due to
the restricted sublattice+

By conditioning on bothS andQS, one has

Tr 5 P@w~X~1!! 5 0# 5 P@w~X~1!! 5 0, w~S! 5 0#

5 E@E@I$w~ FX~1!!50% I$w~S!50% 6S,QS##

5 E@I$w~S!50% gT~QS!# +

The hybrid simulation involves partitioning the edge set intoF and OF+ On the edge
setF, let XF be the random variable describing the state of all edges in F+ Each
simulation run consists of two steps:

1+ Cut: An outcome of the random variablexF is generated by independently
cutting the edgese[ F with probabilitiesqe+This also gives a corresponding
outcomes of S+ The complexity of this step isO~6F 6!+

2+ Merge: If the outcomes is such thatw~s! 51, let z5 0+ If the outcomes is
such thatw~s!50,we generate a trajectoryQs inLs

OF , starting~ FX~t !! in state

Figure 4. A sublattice of theK4 graph induced by the edge set shown in the lower
left corner+
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s+ For an outcomeus of Qs, let z5 gT~us!+ The complexity of generating
and calculating this isO~6s62!+

Note that by the above construction, z is indeed an outcome of the random variable
Z 5 I$w~S!50%gT~QS!+ Hence, if Z~1!, + + + ,Z~N! are independent samples fromZ, then

[Tr 5
1

N (
i51

N

Z~i !

is an unbiased estimator ofTr+
Figure 5 shows the sublattices of the complete four-node graphK4+ The lower

left-hand corner shows the edge set partitions withF being a spanning tree~marked
by thick lines!+Depending on the outcome of theCutstep of the algorithm, the initial
state of the Merge Process can be in any state in the sublattices marked by thick
circles+

4.2. Tree Cut and Merge with Bounds

Assume thatG is connected+ If we choose to partition the edge set into aMinimum
Spanning Tree Twith respect toqe, and its complementary setPT5 E \T, thenT will
connect the complete set of nodesV+ Furthermore, if there arek failed links inT, they
will partition the graphG~V,T ! into exactlyk11 components+ Let X be the random
state of all edges, and letXT be the random state of the edges inT+ The network
reliability can be expressed as

r 5 (
k50

n21

P@w~X ! 5 1,6XT 65 k 1 1# , (11)

Figure 5. State transition diagram for Tree Cut and Merge scheme ofK4+
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or

Tr 5 (
k50

n21

P@w~X ! 5 0,6XT 65 k 1 1# , (12)

wherek is the number of cuts in treeT+ Let Pk 5 P@6XT65 k11# be the probability
of T havingk cuts, and letrk 5 P@w~X ! 5 06 6XT65 k 1 1# be the system’s failure
probability given there arek cuts inT+ Then,

Tr 5 (
k50

n21

Pkrk+

SinceG is connected andT connectsG, r0 5 0 and, hence,

Tr 5 (
k51

n21

Pkrk

and

0 # Tr # 1 2 P0,

where

P0 5 )
i[T

pi +

Let rk1 5 (i$k ri andPk1 5 (i$k Pi +We can modify the Cut and Merge scheme to
estimater11 as follows:

1+ Tree Cut 11: An outcome of the random statexT given that there is at least
one cut is generated by sequentially cutting the edgese[ T as followed; see
Appendix A+1 for details+ For thei th edge inT:
~a! If there are no failed edges before thei th edge, modify its failure prob-

ability to

qi
' 5

qi

12 )
j$i

pj

+

~b! If there are any failed edges before thei th edge, keep its original failure
probabilityqi +

This also gives a corresponding outcomes of S+ The complexity of this step
is O~n 2 1!+

2+ Tree Merge: Since the outcomes is generated from cutting a spanning tree,
it is certain thatw~s! 5 0+ Next, we generate a trajectoryQs in Ls

PT , starting
~ FX~t !! in states+ For an outcomeus of Qs, we calculategT~s,us!+

Let z5 gT~s,us! be the outcome of each simulation run+ Then, z is the outcome of
the random variableZ 5 P@w~X ! 5 06 6XT6$ 1# +
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If we takeN independent samplesZ~1!, + + + ,Z~N! from Z, then

Zr11 5
1

N (
i51

N

Z~i !

is an unbiased estimator ofr11 , and Tr can be estimated by[Tr 5 P11 Zr11+

4.2.1. Improving the bounds. There are onlyn 2 1 edges inT and, there-
fore, n21 single cut states; as a consequence,P1 can be calculated inO~n! time+ For
each such state, there are only two components and, therefore, it takes at most one
state jump to reachU+ P1r1 can easily be evaluated without convolution and the
complexity isO~n2!+ Combiningr1 with r0, an improved bound,

P1r1 # Tr # P1r1 1 P21 ,

can be calculated in timeO~n2!+ It is obvious thatP21 51 2 P0 2 P1, and we need
only r21 to complete the estimation of network failure probability+ In modern com-
munication systems, thepe’s are typically very high in fixed cable networks~qe ,
1026!+ It means that the above simple bounds will not be useless in most cases+More
importantly, with a small amount of time invested, all of the remaining simulation
effort can be channeled to estimatingr21 as follows:

1+ Tree Cut 21: An outcome of the random variablexT given that there are at
least two cuts is generated by sequentially cutting the edgese[ T as follows
~see Appendix A+2 for details!+ For thei th edge inT:
~a! If there are no failed edges before thei th edge, modify its failure prob-

ability to

qi
' 5

qi S12 )
j.i

pjD
12S11 (

j$i

qj

pj
D)

j$i

pj

+

~b! If exactly one edge failed before thei th edge, modify its failure proba-
bility to

qi
' 5

qi

12 )
j$i

pj

+

~c! If there are two or more edges failed before thei th edge, keep its original
failure probabilityqi +

This also gives a corresponding outcomes of S+ The complexity of this step
is O~n 2 1!+

2+ Tree Merge: Since the outcomes is generated from cutting a spanning tree,
it is certain thatw~s! 5 0+ Next, we generate a trajectoryQs in Ls

PT , starting
~ FX~t !! in states+ For an outcomeus of Qs, we calculategT~us!+
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Similar to that in theTree-Cut 11 scheme, z5 gT~us! is an outcome of the random
variableZ 5 P@w~X ! 5 06 6XT6 . 2# + Hence, r21 can be unbiasedly estimated by
averagingN independent samplesZ~1!, + + + ,Z~N! from Z,

Zr21 5
1

N (
i51

N

Z~i !,

and the estimate ofTr can be obtained from[Tr 5 P1r1 1 P21 Zr21+

4.2.2. Performance of the Tree Cut and Merge (2+) scheme. The com-
plexity of cutting the tree isO~n!,and the complexity of generatinggT~us! isO~6s62!+
Therefore, the mean complexity of estimatingTr is at most

C1n 1 C2 (
s:6sT 6.2

P@S 5 s#

P21

6s62,

whereC1 andC2 are constants+

5. NUMERICAL EXPERIMENTS

In this section, the Tree Cut and Merge algorithms are compared with the Standard
Merge Process and the Leap–Evolve scheme+ TheRelative Time Varianceproduct
~RTV! is used as a metric to compare different algorithms, it is defined as the sim-
ulation time~in seconds! multiplied by the~estimated! squared relative error+ For a
large number of iterationsN, the simulation time is proportional toNand the relative
error is inversely proportional toMN + Therefore, the RTV is a number that largely
depends on the network and the performance of the algorithm being studied rather
than onN+The smaller the RTV value, the more efficient is the simulation algorithm+

An exact algorithm using the concept of connected components and exhaustive
search is also implemented to confirm that the simulations produce accurate esti-
mates+ It evaluates~12! by exhausting all of the states inX within all possible cuts in
T+A dodecahedron network~Fig+ 6! with different link reliabilities is used to test the

Figure 6. Dodecahedron network and its Minimum Spanning Tree+
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different schemes+ In each experiment, all the Monte Carlo algorithms were run for
106 iterations and their results are listed for comparison+ Table 1 lists the meaning of
the labels used in the experimental results+

Experiment 1: ALL-terminal reliability of a heterogeneous unreliable network:In
the first experiment, there are two groups of links: The first group is the minimum
spanning tree~resembling a backbone network! and the second group consists of
the remaining links with slightly lower reliability~resembling wireless backup
links!+ In particular, the backbone links have failure probabilities of 0+1%, and the
backup links have failure probabilities of 1%+ The ALL-terminal network failure
probability is to be estimated and the results are listed in Table 2+ The best per-
forming algorithm in this experiment is Tree-Merge~21!+ In fact, the RTV of the

Table 1. Descriptions of Different Labels Used

Label Explanation

Tree Exact Exact Evaluation algorithm
Standard Merge Standard Merge Process algorithm
Leap–Evolve~0+15! Leap–Evolve algorithm with a leap time of 0+15 s
Leap–Evolve~0+25! Leap–Evolve algorithm with a leap time of 0+25 s
Tree–Merge~11! Tree Cut and Merge algorithm with one or more cuts in each sample
Tree-Merge~21! Tree Cut and Merge algorithm with two or more cuts in each sample
t Total simulation time for 106 samples~in s!
QA Estimated ALL-terminal network failure probability
Q2 Estimated TWO-terminal network failure probability
re Estimated relative error
RTV Relative Time Variance product
bounds Bounds on the network failure probability calculated by the

algorithm

Table 2. ALL-Term Reliability of a Heterogeneous Unreliable Network

Scheme t QA re RTV bounds

Tree Exact 1488 7+902e27 n0a n0a n0a
Standard Merge 813 7+919e27 1+48e23 1+79e23 n0a
Leap–Evolve~0+15! 108 7+885e27 1+90e23 3+89e24 n0a
Leap–Evolve~0+25! 43 7+894e27 2+94e23 3+76e24 n0a
Tree-Merge~11! 53 7+854e27 5+98e23 1+89e23 @0,1+883e22#
Tree-Merge~21! 82 7+908e27 1+37e23 1+55e24 @6+915e27,1+698e24#
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best Leap–Evolve algorithm~a leap time of 0+2 s! is 3+1933 1024 ~not shown in
the table!, almost double that of the Tree-Merge~21!+ It shows that the Tree-
Merge ~21! algorithm is able to take advantage of the backbone network and
compress the variance significantly+

Experiment 2: TWO-terminal reliability of a heterogeneous unreliable network:The
second experiment uses the same network as in the first experiment+ This time, we
are estimating the TWO-terminal network failure probability~the two terminal nodes
are marked by thick circles in Fig+ 6!+ The results are listed in Table 3 and the best
performing algorithm is again Tree-Merge~21!+ It shows that this algorithm is per-
forming just as well in the TWO-terminal case and it is reasonable to extend this
assumption to K-terminal cases+

Experiment 3: ALL-terminal reliability of a heterogeneous reliable network:The
third experiment is the same as the first experiment except the backbone network is
much more reliable; the link failure probability is 1026, which is more realistic in
shielded cable networks+ The results are listed in Table 4 and the best performing
algorithm is still Tree-Merge~21!+ Note that the RTV value of this algorithm has
orders of magnitude improvement over any other algorithm under investigation!

Table 3. TWO-Term Reliability of a Heterogeneous Unreliable Network

Scheme t Q2 re RTV bounds

Tree Exact 3922 1+123e27 n0a n0a n0a
Standard Merge 794 1+118e27 4+73e23 1+67e22 n0a
Leap–Evolve~0+15! 70 1+123e27 5+71e23 2+29e23 n0a
Leap–Evolve~0+25! 34 1+144e27 8+29e23 2+31e23 n0a
Tree-Merge~11! 25 1+140e27 1+63e22 6+55e23 @0,1+883e22#
Tree-Merge~21! 46 1+124e27 1+42e23 9+30e25 @1+002e27,1+692e24#

Table 4. ALL-Term Reliability of a Heterogeneous Reliable Network

Scheme t QA re RTV bounds

Tree Exact 1488 7+041e210 n0a n0a n0a
Standard Merge 812 7+031e210 1+38e23 1+55e23 n0a
Leap–Evolve~0+15! 47 7+045e210 2+43e23 2+79e24 n0a
Leap–Evolve~0+25! 32 7+049e210 6+79e23 1+47e23 n0a
Tree-Merge~11! 53 7+044e210 1+30e23 8+99e25 @0,1+900e205#
Tree-Merge~21! 82 7+041e210 6+08e27 3+02e211 @7+040e210,8+750e210#
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Experiment 4: ALL-terminal reliability of a homogeneous unreliable network:In
the last experiment, the network was homogeneous and unreliable+Each link had the
same failure probability of 1%, and the ALL-terminal network failure probability
was to be estimated+ The results are listed in Table 5+ In this experiment, the best
performing algorithm is the Leap–Evolve scheme with a leap time of 0+25 s+ It
shows that in this network, the Leap–Evolve scheme successfully reduces the num-
ber of components to be merged after the “Leap” step without largely sacrificing the
variance+ However, only the Tree Cut and Merge scheme can provide reliability
bounds that are available within a fraction of a second+

5.1. Summary of the Results

In heterogeneous networks, the Tree Cut and Merge scheme can indeed take advan-
tage of the backbone to compress the sample variance and speed up the simulation at
the same time+ In homogeneous unreliable networks, the Tree Cut and Merge does
not compress the sample variance as much as the optimal Leap–Evolve scheme+ In
this case, the Leap–Evolve scheme may provide a better speed up without sacrific-
ing variance too much+However, one of the problems with the Leap–Evolve scheme
is that of finding the optimal leap time+ From Experiment 1 through Experiment 4,
the best leap time has shifted from 0+25 s to 0+15 s and the leap time is the critical
parameter in this scheme+ For instance, if we choose a leap time of 0+5s in Experi-
ment 3, the RTV for the Leap–Evolve scheme would be 0+439 ~well above that of
Standard Merge Process!+

6. CONCLUSION AND FUTURE DIRECTIONS

In this article, we developed the Tree Cut and Merge hybrid scheme to improve the
Standard Merge Process+ It shows substantial performance improvement in hetero-
geneous networks, which are common in telecommunication networks+ Unlike the
Leap–Evolve hybrid scheme, the performance of the Tree Cut and Merge scheme is

Table 5. ALL-Term Reliability of a Homogeneous Unreliable Network

Scheme t QA re RTV bounds

Tree Exact 1637 2+030e25 n0a n0a n0a
Standard Merge 812 2+028e25 9+65e24 7+57e24 n0a
Leap–Evolve~0+15! 177 2+032e25 1+25e24 2+77e24 n0a
Leap–Evolve~0+25! 68 2+025e25 1+69e23 1+93e24 n0a
Tree-Merge~11! 55 2+078e25 4+65e22 1+20e21 @0, 0+1738#
Tree-Merge~21! 85 2+003e25 1+36e22 1+56e22 @5+858e26,1+528e22#
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not dependent on the a priori optimization of a key parameter+This makes the scheme
much easier to apply+ The benefits of the Tree Cut and Merge scheme are twofold+
First, by exactly calculatingP0 andP1r1, it provides reliability bounds in a very short
time with very little overhead+ Second, it compresses the sample variance by esti-
mating the remaining conditional probabilityr21 ,which will be scaled down byP21

to form the final estimate+ To make that possible, we use the technique of sequential
sampling introduced in the Tree Cut step of the scheme; it allows us to unbiasedly
sample the states of the tree given there are two or more links failed+

The bounding technique introduced in this article concludes atr1 in the exact
calculation stage; however, it is possible to further compress the sample variance by
evaluating up tork and estimating ther~k11!1+ The maximum number of states we
need to search to calculaterk is Bin ~n 2 1, k!2k, the computational complexity of
computing all thePk is O~n2! and the complexity of the sequential sampling in the
Tree Cut step isO~n!+

A close inspection of the Tree Cut and Merge scheme reveals that the problem
of calculating the network failure probability, Tr, is subdivided inton separate calcu-
lations by the formulaTr 5 (k50

n21 Pkrk+ This creates the opportunity to apply other
techniques such asImportance Samplingto further reduce sample variance+ In a
forthcoming article,we will investigate the application of the Importance Sampling
and other techniques to the Tree Cut and Merge scheme and show that the combi-
nation of these techniques overcomes the potential shortcomings of the Tree Cut and
Merge scheme in homogeneous networks+
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APPENDIX: UNBIASED SAMPLING OF A GRAPH GIVEN LINK FAILURES

Let G~V,E! be a graph with edge setE5 $e1, + + + ,em%, where edgeei has a failure probability
of qi ~or a functioning probability ofpi 512 qi !+ If the edges are very reliable~i+e+, qi r 0!,
the Crude Monte Carlo~CMC! sampling scheme is very inefficient in sampling states of such
a network+ The question is, can we modify the Crude Monte Carlo scheme to sample the
network’s rare states where at least one link has failed? Fishman usedProcedure Qto sample
edge states while avoiding certain cut-sets and path-sets@7# + It involves a sequential sampling
technique which we can modify to fit our purpose+

Let Yi be the binary random variable associated with edgeei + In particular, $Yi 51% is the
event that the edge has failed, and$Yi 5 0% is the event that the edge is operational+

A.1. Some Failed Links

We want to unbiasedly sample the network state given that there is at least one failed link~i+e+,
(Yi . 0!+ It can be achieved through the sequential sampling technique, sampling the edge
state one by one and modifying its failure probability according to the states of previous
edges+

For the thei th edge inE, we have the following:

1+ If there are no failed edges before thei th edge, the probability ofei having failed
given at least one edge has failed inE is

PFYi 5 1*(j$i

Yj . 0G5

PFYi 5 1,(
j$i

Yj . 0G
PF(

j$i

Yj . 0G
5

qi

12 )
j$i

pj

+

2+ If there is at least one failed edge before thei th edge, the probability ofei having
failed given at least one edge has failed inE is

PFYi 5 1*(j,i

Yj . 0G5

PFYi 5 1,(
j,i

Yj . 0G
PF(

j,i

Yj . 0G
5 qi +

A.2. Two or More Failed Links

Having developed the sampling procedure for the situation in which at least one link has
failed, we now develop the case for two or more failed links+
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For thei th edge inE, we have the following:

1+ If there are no failed edges before thei th edge, the probability ofei having failed
given at least two edges have failed inE is

PFYi 5 1*(j$i

Yj . 1G5

PFYi 5 1,(
j$i

Yj . 1G
PF(

j$i

Yj . 1G

5

P@Yi 5 1#PF(
j.i

Yj . 0G
PF(

j$i

Yj . 1G

5

qi S12 )
j.i

pjD
12 PF(

j$i

Yi 5 0G2 PF(
j$i

Yi 5 1G

5

qi S12 )
j.i

pjD
12 )

j$i

pj 2 )
j$i

pj (
k$i

qk

pk

5

qi S12 )
j.i

pjD
12 S11 (

k$i

qk

pk
D)

j$i

pj

+

2+ If there is exactly one failed edge before thei th edge, the probability ofei having
failed given at least two edges have failed inE is

PFYi 5 1*(j$i

Yj . 0G5

PFYi 5 1,(
j$i

Yj . 0G
PF(

j$i

Yj . 0G
5

P@Yi 5 1#

12 PF(
j$i

Yj 5 0G
5

qi

12 )
j$i

pj

+
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3+ If there are at least two failed edges before thei th edge, the probability ofei having
failed given at least two edges have failed inE is

PFYi 5 1*(j,i

Yj . 1G5 qi +

Indeed, the procedure can be extended tokor more failed links+However,we only use up
to k 5 2 in this article and, hence, have not shown the deductions for higherk+
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