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This article presents Monte Carlo techniques for estimating network reliabitity
highly reliable networkgechniques based on graph evolution models provide very
good performanceHowever they are known to have significant simulation cost

An existing hybrid schemébased on partitioning the time spade available to
speed up the simulationkowever there are difficulties with optimizing the im-
portant parameter associated with this schehoeovercome these difficultiesa

new hybrid schemébased on partitioning the edge sistproposed in this article

The proposed scheme shows orders of magnitude improvement of performance
over the existing techniques in certain classes of netwoalkso provides reliability
bounds with little overhead
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24 K.-P. Hui et al.

1. INTRODUCTION
1.1. Problem Description

Itis well known that for large networksthe exact calculation of network reliability

is difficult. Indeed computing the probability that a graph is connected is a #P-
complete problerfi2,11]. Hence for large networksestimating the reliability using
simulation techniques becomes necesdarlyighly reliable networks such as mod-
ern communication networkthe probability of network failure is very lavDirect
simulation of such rare events is slow amence very expensiveVarious tech-
niques have been developed to produce better estinfadegxample Kumamoto
proposed a very simple technique calledgger Samplingo improve the Crude
Monte Carlo simulatiori8]. Fishman propose&rocedure Q which can provide
reliability estimates as well as boung#]. Colbourn and Harms proposed a tech-
nique that will provide progressive bounds that will eventually converge to an exact
reliability value[3]. Easton and Wong proposed a sequential construction method
[4]. Elperin Gertsbakhand Lomonosov proposesl/olution Modeldor estimating
reliability of highly reliable network$5,6,9,10].

For highly reliable networks such as modern communication netwitréslerge
Processproposed by Elperin et aprovides good performance without significant
overhead5]. However it has a relatively high computation cost per samjjle
combat the high complexity for the Merge Progdssmonosov proposed a hybrid
scheme based on partitioning the time sp@eThis scheme can reduce the aver-
age simulation coshoweverthe choice of a partition point in time space controls
the performance of the schenténfortunatelythe optimal value for this parameter
is difficult to find. In this article we develop a new hybrid scheme for the Merge
Process by using a novel partitioning based on the edgénseertain classes of
networksthe new scheme shows orders of magnitude improvement in performance
In addition to performance improvemettie new scheme can also provide reliabil-
ity bounds which hasthus far never been available using Evolution Models

In this article we first define network reliability in Section4. Then the math-
ematical formulation of the Evolution Models is reviewed in Sectioht existing
hybrid scheme is presented in Section 3 using our mathematical formyltdion
lowed by the proposed new scheme in SectioBxXperiments and results are pre-
sented in Section 5 with some discussions

1.2. Network Reliability

Consider an undirected grajpor network G(V, E,K), whereV is the set oh ver-
tices(or nodes, E is the set oinedgesandK C Vis a set ofterminalnodes with
|K| = 2. Associated with each edge= E is a binary random variablé,, denoting
the failure stateof the edgeIn particulayr {X. = 1} is the event that the edge is
operationaland{X. = 0} is the event that it has failetVe label the edges from 1 to
mand call the vectoK = (X4, ..., X,,) the(failure) state of the networlor the state
of the setE. Let S be the set of all 2 possible states d&.
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TREE CUT AND MERGE ALGORITHM 25

Notation 1: ForA C E, letx = (X, ..., Xy be the vector id0,1}™ with

1 ieA
70, igA

We canidentify xwith the setA. Henceforthwe will use this identification whenever
this is convenient

Next, we assume that the random variab{eg, e € E} are mutually inde-
pendent Let p, and g, denote the reliability and unreliability of € E, respec-
tively; that is

Pe = P[Xe=1],
qe:P[erO]zl_pe-

The reliability r (G; p) of the network is defined as the probability fbeingcon-
nectedby operational edge&urtherletp = (py,..., pm). Thus

r(G:p) = Ele(X)]= X ¢(0)P[X=x], (1)

XES

where

1 if Kis connected
X
¢ () 0 otherwise

This is the standard formulation of the reliability of unreliable systémetworks;
seefor example[1]. The functiony is called thestructure functiorof the unreliable
system Note that the reliability of the network is completely determined by the
individual edge reliabilities since we do not consider node failures

In the rest of this articlewhengG andp are assumed to be understoaa will
write r instead off (G; p). For highly reliable networkst is sometimes more useful
to analyze or estimate the system unreliability

r=1-r.
1.3. Crude Monte Carlo Simulation

The easiest way to estimat€or ) is to use Crude Monte Carl@MC) simulation
LetX@, ..., X™N) be independent and identically distribut@d.d.) random vectors
with the same distribution as. Then

1
N ;
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is an unbiased estimator for An important measure for the “efficiency” of any
estimator is itgelative error. The relative error fof is given by

. _/Var(f) _\/r(l—r)/N_\/l—r
OGN

Similarly, the relative error fof is

. [1—T
re(r) = N_

This shows that for smalf (which is typical in communication networksa large

sample size is needed to estimataccuratelyWhenr is small the event that the
terminal nodes are not connected isage event In the next sectionwe discuss
methods to increase the accuracy of simulation procegdwirgsh work well for rare

events

2. PERMUTATION MONTE CARLO SIMULATION
2.1. Construction Process

First, we describe the concepts behind Bermutation Monte Carl¢7-MC) sim-
ulation(se€5] for the original description Consider the networ&(V, E) in which
each edgehas an exponential repair time with repair rate) = —log(qe). At time
t =0, all edges are failedVe assume that all repair times are independent of each
other The state oéat timet is denoted by(t) and the state of the edge &ttime
tis given by the vectoK(t), defined in a similar way as earlieFhus (X(t)) is a
Markov process with state spa@@1}™ or, in view of Notation 1 a Markov process
on subsets dt. This process is called ti@onstruction Proces&CP) of the network
LetII denote th@rderin which the edges are constructégcome operationgl
and letS), S+ S,,..., S + -+ + S-1 be the times at which those edges are con-
structed Hence the § aresojourn timesf (X(t)). IT is a random variable which
takes values in the space of permutation&.of
For any permutatiomr = (e, e,...,€ey), define

EO = E,
E = E_,\{e}, l1=i=m-1
ME) = X Ao,

eEk;

and let
b(m) = min{e(E) =1}

be thecritical numberof 7.
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TREE CUT AND MERGE ALGORITHM 27

From the general theory of Markov processess not difficult to see that

A(q)
j 1)

Moreover conditional on{II = 77}, the sojourn times,, ..., S,_; are independent
and eacl§ is exponentially distributed with parametgfE;), i = 0,...,m— 1.

Note that the probability of each edgdeing operational at time= 1 is pe. It
follows that thenetworkreliability at timet = 1 is the same as ifill). Hence by
conditioning onll, we have

Pl =7]= ﬁ

r=E[e(X()] = X P[IT = 7]P[¢(X(1) = 1|11 = 7], )

or

r=1-r=P[I=7n]Ple(X(1)=0I=7]. )
Using the definitions of§ andb(#), we can write the last probability in terms of
convolutions of exponential distribution functigmeamely for anyt = 0, we have

Ple(X(t) =0l =7] =P[S+ -+ + Sym-1 >t/ = 7]
= 1— CONVoejcp(m {1l — expl—A(E)t]}. 4)
Let
ge(m) = Ple(X(1)) = O[IL = 7],
as given in(4). Equation(3) can be rewritten as
r=E[gc(ID],

and this shows how the Permutation Monte Carlo simulation scheme wiankeely
let 19Y,..., 1IN be ii.d. random permutationseach distributed according .
Then

1 .
—:_ (i)
N 2 Ge()

is an unbiased estimator for

2.1.1. Performance of the Construction Process. The Construction Pro-
cess scheme based on generating permutaticarsd computingye(7) is charac-
terized by the variance

Varce = >, P[I1 = 7]0&(m) — <2 P11 = w]gc(w)>2. (5)
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Comparing this with the variance of the Crude Monte Carlo scheme

Vargye = r(1—r) = (E P[II = W]gc(ﬂ')><l_ > PlII= w]gc(w)>
= Varge + >, P[1I = 7w]gc () (1 — ge(m)),

proved that the Construction Process scheme has a lower variance than the Crude
Monte Carlo scheme and hence greater accutdowever this accuracy comes at
the expense of more complex computations

2.2. Standard Merge Process

Acloser look at the evolution of the Construction Process process reveals that many
of the above results remain valid when mergevarious states into “superstates” at
various stages of the proce3#is is known as thdlerge ProcessWe will briefly
describe the ideas belotseg[ 9] for a detailed description

To begin with for a subsef C E of edgesdenote byor = {V,,V,,...,V} the
proper partition(in connected componentsf the subgraplg(V, F) (including iso-
lated nodegf any). Letl; denote the edge set of the induced subg@ph). The set
l,=1,U --- Ul ofinneredgedi.e., the edges within the componehisthe closure
of F (denoted by(F)). Denote its complemeritheintercomponenedge$ by E,, =
E\I,. Figure 1is an example of a complete six-node grdfy), a subgraphand its
corresponding closure

LetL(G) be the collection of all proper partitions GfV, E). It is not difficult to
see thal.(G) is alattice, ordered by the relation< o < |. C |, (i.e, o is obtained
by merging components af).

Consider the Construction Proce®$(t)) of the network By restricting the
procesg X(t)) toL(G), we obtain another Markov proceg€s(t)), called theMerge
Procesg MP) of the networkThis process starts from the initial statgof isolated
nodes and ends at the terminal stajecorresponding tg;(V, E).

Figure 2 show4.(K,), the lattice of all regular partitions of the complete four-
node graphK,, grouped into four different levels according to the number of

0—0 0—0
FiGURE 1. Kg, a subgraphand its corresponding closure
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TREE CUT AND MERGE ALGORITHM 29

FIGURE 2. State transition diagram for merge proces&gf

componentsThe arrows show the direct successiond.ifK,), thus forming the
transition graph of the Markov proce€X(t)).

For eachr € IL(G), the sojourn time ir has an exponential distribution with
parameten (o) = X.ce, A(€), independent of everything elddoreover the tran-
sition probability fromr to o (whereo is a direct successor af is given by

A7) — A(o)
A(7)
Next, in analogy with the results for the Construction Procegsdefine drajectory
of (X(t)) as a sequendak= (o, 04,...,0,), Whereb = b(8) is the firstindex such
thato; is “up”; that is the network is operationaBy defining ¢ (X(t)) = ¢(X(1)),
we have

F = PLo(X(1)) = 0] = E[ g (©)],

where®0 is the random trajectory @ (t)). For each outcome = (oy,...,0},) of O,
gw(0) is given by

Ow(0) = Ple(X(1) =0[@ =0]=P[S+ -+ + Sy9-1 > 1|0 = 0],
where§ is the sojourn time a&;. Therefore gy (0) is given by the value
1-— Con\/o§i<b(6){1 - eXp[—)\(O'i )t]},

att=1.
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2.2.1. Performance of the Merge Process. The Merge Process scheme
based on generating permutatiaghand computinggy (6) is characterized by the
variance

Varye = (2 Ple = e]gme)) - (2 PlO = e]gM<e>>2. ()

By expanding the expression for the variance of the Crude Monte Geelget

Vargye =r(1—r)
= Varye + Z P[O = 60]gu(6)(1— gu(0)), (7)

which shows that the Merge Process has a smaller variance than does the Crude
Monte Carlo

To compare the Merge Process with the Construction Prpaesso back to the
permutationr = (e, e,,...) of the Construction Processhich produces a unique
trajectory of the Merge Process denoted by. We say that permutations,, 7, of
the Construction Process are equivalent in the Merge Procésg)if= (7). Thus
a trajectoryd of the Merge Process represents the set of permutations of the Con-
struction Process satisfyirgr) = 6; we write it as7 € 6. For a given trajectory
and its corresponding permutations= 6, the probability of randomly choosing a
particular permutation is given by

P[Ml=17,0 =0]

P =m0 =0]= ——"—,
P[O =6]

and the reliability estimation functions are related by

gw(0) = X P11 = 7|0 = §]gc(m).

TEO

By the variance expansiowe get

Varep = Vatiyp + 3 [0 = e]( S P[I = 7]6 = 0]gi(w) — gﬁ(e)). 8)

TEO

The second term on the right-hand sidd®&)fis the part of Vagp eliminated by the
state-space reduction when the Construction Process is transformed into the Merge
ProcessBecause the term in brackets

> P[II = 7|0 = 0]9&(m) — g(0) = Var,<,(ge (7)) =0, 9)

TEH

(8) and(9) demonstrate that the Merge Process scheme has greater accuracy than the
Construction Process scheme
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2.3. General Formulation

The above Construction Process and Merge Process simulations always start with
oo, the isolated node stat€his can be generalized to start at any syead produce
the hybrid sampling schemes described in Sectidn &is subsectioywe present
the ideas behind the Merge Process where it starts from a genera}.state

Consider a continuous-time Markov procé€Xst), t = 0) on a finite posetpar-
tially ordered setX of statesFrom each state € X, the Markov process can only
jump to a direct successor gf we say that the Markov processnsonotoneon X.
Let ¢ be a binary monotone function ot that is ¢(X) = ¢(y) whenevex = y.
Using ¢ we partition X into two sets U = {X: ¢(x) = 1} (up statesand D =
{X:@(x) = 0} (down states

Assume that the statesdhareabsorbing We are interested in the probability
that the Markov processtarting from some initial stat¥, is in I/ at a certain
time t. We denote this by(t). To avoid trivial caseswe assume that the starting
stateY € D.

Forx € D, let

A(x) = E Ai

iEx

and assume & A(x) < co. In other wordsthe sojourn time irx has an exponen-
tial distribution with parameten(x). Let B be the random variabléand b its
corresponding outcomalescribing the first index such that the process i%/jn
and let®y = (Y, X4,...,Xg_1) be the sequence of consecutive states visited by
(X(t)) before absorptiarDenote the corresponding sojourn times$y5,,..., Sz 1.
Each outcomé, = (Y, Xy,..., X,—1) Of Oy is atrajectory of the process starting
aty. Conditional on{®y = 6, }, the sojourn times are independent and exponen-
tially distributed with parametera(y), A(Xy),...,A(Xp_1), respectivelyAs a re-
sult we have

P(t) = Ple(X(1)) = 1] = E[g(®y, 1)], (10)
where for eact, = (Xo =Y, X1, ..., Xp_1),
g6y, t) = P[S+ -+ + S > 1[0y = 6,] =1 — Convo=ip{l — exp[—A(x)t]}.

Hence we may estimat®(t) by simulatingN independent copied!’, ..., 0" of
®v and evaluating the estimator

P(D) = = > g(6y,1).

Z| -

Note that the generalization is equally applicable to any ofghé¢ of evolution
models
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3. HYBRID SAMPLING SCHEMES

The complexity of a single sample in the Merge Procésduding generating a
trajectory and computing the convolutiois O(n?) (see[5]) as compared to al-
mostO(n) in the Crude Monte Carldrhis complexity is acceptable as a price for
the low relative error when — 0. Lomonosov suggested a hybrid schefwéich
we call theLeap—Evolvescheme to reduce the average complexity whieis not
so near zerg9].

The scheme is based on the following observati@t (X(t)) be the Construc-
tion Process or Merge Process as described eaxiigrrepair rate\ (e) = —log(Qe),
as earlierand starting with all links dowrBy conditioning on the state of the system
at times € [0,1] and the trajectory of (X(t)) after times, we find

r=Ple(X(1) = 0] =PLe(X(s)) = 0, ¢(X(1)) = 0]
= E[E[pxsn=0; loxan=0 | X(8), Ox(5) 1]
= E[l1,(x(s)=0; PL@(X(1)) = 0|Oxs]]
= E[l{p(x(s)=0;Im (Ox(s),1 — S)].

Herg |, denotes the indicator function of the evéniNote that for fixed,, gy (6,
1 - s) can be evaluated by applying the convolution given in Section 2
Figure 3 shows an example of the Leap—Evolve scheme using the same lattice
as in Figure 2However the Merge Process starts at timdepending on the out-
comeX(s), the initial state of the Merge Process can be in any state in the lattice
The hybrid simulation now involves partitioning the time space into two parts
[0,s) and[s,c0). Each simulation run consists of two steps

FiGuRreE 3. State transition diagram for the Leap—Evolve schemi€ of
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TREE CUT AND MERGE ALGORITHM 33

1. Leap An outcome of the random variab)(s) is generated by indepen-
dently bringing the edges up with probabilities Exg — A(e)s], e€ E. The
complexity of this step is close ©(n).

2. Evolution If the outcomey of X(s) isini, letz= 0. If the outcomey of X(s)
isinD, generate a trajectoy, on the intervals,oo], starting(X(t)) in state
y at times. For an outcomé, of 0, letz= gy (6,1 —s). The complexity of
generatinggy (6,1 — s) is O(|y|?).

Note that by the above constructiaris indeed an outcome of the random variable

le(x(9)-019m(Ox(s),1 = 5).
Henceif zY,...,Z™) are independent samples franthen

is an unbiased estimator bf

3.1. Performance of the Leap-Evolve Scheme

The complexity of generatingy (6,1 — s) is O(]y|?). The mean complexity of the
evolution step of the hybrid scheme feerefore at most

C X PIX(s) = yllyl?
y

whereC is some constant

In the Leap—Evolve sampling schepibe choice ofs can be critical If s is
too large X(s) may converge t@{ and leave no room for evolution sampling to
lower the relative error in comparison to the ordinary Crude Monte Carlo scheme
If sis too small then|X(s)| will be “close” to the initial state and will hardly
reduce the average sampling complexity in comparison to the ordinary Merge Pro-
cess In Section 4 we introduce an alternative hybrid scheme that avoids this
critical choice ofs.

4. TREE CUT AND MERGE ALGORITHM
4.1. Cut and Merge

A different hybrid sampling scheme is proposed hénstead of partitioning the
time spacewe propose partitioning the edge set ifta_ E and its complement
F =E\F.

Let L be thelattice of all proper partitionsof G(V, E) as described in Section 3
For eachr € L and edge sdft C E we define the sublattick’, of L. as the set of all
successors af that can be obtained by merginglythe edges ifr. Figure 4 shows
the sublattice induced by the edge set shown in the lower left corner of the.figure
Note that as in this examplet is possible thal.f, does not have an “up” state
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FIGURE 4. A sublattice of thek, graph induced by the edge set shown in the lower
left corner

LetA C F. Consider a Markov proce$&(t)) onE with transition rates (e) = 0
for e € F and with the edges € A operationalat time Q the other transition rates
are the same as for our original edge state proC¢&9) in Section 3Let o be the
state inL corresponding té. The Markov proceséX(t)) induces another Markov
process(X(t)) say onL’, in the same way aX(t)) induces(X(t)) onL.

Let ® be the random trajectory ¢X(t)) ands be the random variable describ-
ing the state ifi. corresponding té\ C F. For each outcome of X andé,, of Oy, let

gr(0,) = Ple(X(1) = 0|2 = 0,05 = 6, ].

As earlier gr(6,,) can be evaluated by taking convolutioh®te thaig # gy due to
the restricted sublattice
By conditioning on botl® and®y, one has

r=Ple(X(1) =0]=P[e(X(1) =0, ¢(X) =0]
= E[E[lipza)=0 lp)=0} %, Ox]]
= E[l{y3)-0; 9r(0s)].

The hybrid simulation involves partitioning the edge set iRtandF. On the edge
setF, let XF be the random variable describing the state of all edges EaEh
simulation run consists of two steps

1. Cut: An outcome of the random variabk€ is generated by independently
cutting the edges &€ F with probabilitiesge. This also gives a corresponding
outcomeo of 3. The complexity of this step iI©(|F|).

2. Merge If the outcomer is such thatp (o) = 1, letz= 0. If the outcomer is
suchthap (o) = 0, we generate a trajectosy, in L7, starting(X(t)) in state
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TREE CUT AND MERGE ALGORITHM 35

o. For an outcomd,, of ©,, let z= g-(6,.). The complexity of generating
and calculating this i©(|a|?).

Note that by the above constructiaris indeed an outcome of the random variable
Z=ly,5)-0)9r(0s). Hence if ZW,...,Z™N) are independent samples franthen

N
S z0

.1
r= —
N =
is an unbiased estimator of

Figure 5 shows the sublattices of the complete four-node gfapfihe lower
left-hand corner shows the edge set partitions Wwitieing a spanning treenarked
by thick lines. Depending on the outcome of tRaitstep of the algorithithe initial
state of the Merge Process can be in any state in the sublattices marked by thick
circles

4.2. Tree Cut and Merge with Bounds

Assume that is connectedIf we choose to partition the edge set intMaimum
Spanning Tree With respect tay., and its complementary s&t= E\T, thenT will
connectthe complete set of nodés$-urthermoreif there arekfailed links inT, they
will partition the graphG(V, T) into exactlyk + 1 componentd_et X be the random
state of all edgesand letXT be the random state of the edgesTinThe network
reliability can be expressed as

n—1

r=>Ple(X)=1|X"|=k+1], (11)

k=0

FIGURE 5. State transition diagram for Tree Cut and Merge schen&, of
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or
=S Plo(X) = 0,XT| =k+ 1], (12)
k=0

wherek is the number of cuts in trék Let P, = P[| XT| = k + 1] be the probability
of T havingk cuts and letr, = P[¢(X) = 0| |XT| = k + 1] be the system’s failure
probability given there ark cuts inT. Then

n—1
k=0
Sincegd is connected andl connectsy, iy = 0 and hence
n—1
r= 2 Py
k=1

and

where

Letf = 2= andP,, = X« P;. We can modify the Cut and Merge scheme to
estimate_. as follows

1. Tree Cut I+: An outcome of the random staté given that there is at least
one cut is generated by sequentially cutting the eéged as followed see
Appendix A1 for details For theith edge inT:

(a) If there are no failed edges before fitik edge modify its failure prob-
ability to
Gi

ai 1 H o
j=i
(b) Ifthere are any failed edges before tlle edge keep its original failure
probability g;.
This also gives a corresponding outcomef 3. The complexity of this step
isO(n—1).
2. Tree Merge Since the outcome is generated from cutting a spanning tree
itis certain thatp (o) = 0. Next, we generate a trajectofy, in L], starting
(X(t)) in states. For an outcomé,, of ©,,, we calculategr(c, 6,,).

Letz= gr(o,6,) be the outcome of each simulation rdien zis the outcome of
the random variabl& = P[¢(X) = 0| XT| = 1].
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If we takeN independent sample&s?, ..., Z™N) from Z, then

—

N
=g 22"

1
N ;
is an unbiased estimator bf;, andr can be estimated by= P, . r1:+

4.2.1. Improving the bounds. There are onlyn — 1 edges inl and there-
fore, n—1 single cut statesis a consequengde, can be calculated i@ (n) time. For
each such stat¢here are only two components aiderefore it takes at most one
state jump to reacht. P,; can easily be evaluated without convolution and the
complexity isO(n?). Combining; with iy, an improved bound

Piri=r=Pi+P,,,

can be calculated in tim®(n?). It is obvious thaP,, =1 — P, — P, and we need
only 51 to complete the estimation of network failure probabilitymodern com-
munication systemshepe's are typically very high in fixed cable networkge <
1079). It means that the above simple bounds will not be useless in most bés@Es
importantly with a small amount of time investedll of the remaining simulation
effort can be channeled to estimating as follows

1. Tree Cut 2+: An outcome of the random variab¥€ given that there are at
least two cuts is generated by sequentially cutting the eelge® as follows
(see Appendix A2 for detailg. For theith edge inT:

(a) If there are no failed edges before tite edge modify its failure prob-

ability to
G <1 - H pj)
_ j>i
<1 +> = _ >H P,
j=i j=i
(b) If exactly one edge failed before thth edge modify its failure proba-
bility to
go 9
C1- [T P

j=i

(c) Ifthere are two or more edges failed beforeittieedgekeep its original
failure probabilityg;.
This also gives a corresponding outcomef 3. The complexity of this step
isO(n—1).
2. Tree Merge Since the outcome is generated from cutting a spanning tree
itis certain thatp (o) = 0. Next, we generate a trajectofy, in L], starting
(X(t)) in states. For an outcomd,, of ®,,, we calculateyr(6,,).
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Similar to that in theTree-Cut I+ schemez = g;(6,,) is an outcome of the random
variableZ = P[¢(X) = 0]|XT| > 2]. Hence i, can be unbiasedly estimated by
averagingN independent sampleg?, ..., Z™N) from Z,

— 1 N
o= — Z(i),
> = N ;

and the estimate dfcan be obtained from= P;f; + P2+r2:+.

4.2.2. Performance of the Tree Cut and Merge (2+) scheme. The com-
plexity of cutting the tree i©(n), and the complexity of generating(6,.) isO(|o|?).
Thereforgthe mean complexity of estimatirfgs at most

P =0
Cin+C, X HEal o3,

o:loT|>2 P2+

whereC; andC, are constants

5. NUMERICAL EXPERIMENTS

In this sectionthe Tree Cut and Merge algorithms are compared with the Standard
Merge Process and the Leap—Evolve schehe Relative Time Variancproduct
(RTV) is used as a metric to compare different algorithinis defined as the sim-
ulation time(in secondsmultiplied by the(estimategl squared relative errofor a
large number of iterationy, the simulation time is proportional téand the relative
error is inversely proportional t¢N. Thereforethe RTV is a number that largely
depends on the network and the performance of the algorithm being studied rather
than onN. The smaller the RTV valy¢he more efficient is the simulation algorithm

An exact algorithm using the concept of connected components and exhaustive
search is also implemented to confirm that the simulations produce accurate esti-
mateslt evaluateg12) by exhausting all of the statesXwithin all possible cutsin
T. Adodecahedron netwollFig. 6) with different link reliabilities is used to test the

0]

Ficure 6. Dodecahedron network and its Minimum Spanning Tree
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TABLE 1. Descriptions of Different Labels Used

Label Explanation
Tree Exact Exact Evaluation algorithm
Standard Merge Standard Merge Process algorithm

Leap—Evolvg0.15) Leap—Evolve algorithm with a leap time ofl® s
Leap—Evolve(0.25) Leap—Evolve algorithm with a leap time of2® s

Tree—Mergg1+) Tree Cut and Merge algorithm with one or more cuts in each sample

Tree-Merge(2+) Tree Cut and Merge algorithm with two or more cuts in each sample

t Total simulation time for 18 samplegin s)

Qa Estimated ALL-terminal network failure probability

Q> Estimated TWO-terminal network failure probability

re Estimated relative error

RTV Relative Time Variance product

bounds Bounds on the network failure probability calculated by the
algorithm

different schemesdn each experimenall the Monte Carlo algorithms were run for
106 iterations and their results are listed for comparid@ble 1 lists the meaning of
the labels used in the experimental results

Experiment 1: ALL-terminal reliability of a heterogeneous unreliable netwdink:
the first experimentthere are two groups of link he first group is the minimum
spanning treéresembling a backbone netwgrnd the second group consists of
the remaining links with slightly lower reliabilitfyresembling wireless backup
links). In particular the backbone links have failure probabilities 0%, and the
backup links have failure probabilities of 1%he ALL-terminal network failure
probability is to be estimated and the results are listed in Tableh2 best per-
forming algorithm in this experiment is Tree-Mer¢2+). In fact, the RTV of the

TABLE 2. ALL-Term Reliability of a Heterogeneous Unreliable Network

Scheme t Qa re RTV bounds
Tree Exact 1488 .B02e-7 n/a n/a n/a
Standard Merge 813 .919e-7 148e-3 179e-3 n/a

Leap—Evolve0.15) 108 7885e-7 190e-3 3894 n/a
Leap—Evolveg0.25) 43 7894e-7 294e-3 376e-4 n/a

Tree-Merge(1+) 53 7.854e-7 598e-3 1.89e-3 [0,1.883e-2]
Tree-Merge(2+) 82 7908e-7 137e-3 155e-4 [6.915e-7,1.698e-4]
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TAaBLE 3. TWO-Term Reliability of a Heterogeneous Unreliable Network

Scheme t Q> re RTV bounds
Tree Exact 3922 123e-7 n/a n/a n/a
Standard Merge 794 118e-7 473e-3 167e-2 n/a

Leap—Evolveg0.15) 70 1123e-7 571e-3 229%-3 n/a
Leap—Evolveg0.25) 34 1144e-7 829e-3 231e-3 n/a

Tree-Merge(1+) 25 1140e-7 163e-2 6.55e-3 [0,1.883e-2]
Tree-Merge(2+) 46 1124e-7 142e-3 930e-5 [1.002e-7,1.692e-4]

best Leap—Evolve algorithifa leap time of @ 9 is 3.193 X 10~* (not shown in

the table, almost double that of the Tree-Merd2+). It shows that the Tree-
Merge (2+) algorithm is able to take advantage of the backbone network and
compress the variance significantly

Experiment 2: TWO-terminal reliability of a heterogeneous unreliable netwdtie
second experiment uses the same network as in the first experiimesitime we

are estimating the TWO-terminal network failure probabilihe two terminal nodes

are marked by thick circles in Fi@). The results are listed in Table 3 and the best
performing algorithm is again Tree-Mer¢2+). It shows that this algorithm is per-
forming just as well in the TWO-terminal case and it is reasonable to extend this
assumption to K-terminal cases

Experiment 3: ALL-terminal reliability of a heterogeneous reliable netwodrke

third experiment is the same as the first experiment except the backbone network is
much more reliablgthe link failure probability is 10°, which is more realistic in
shielded cable network3he results are listed in Table 4 and the best performing
algorithm is still Tree-Mergé2+). Note that the RTV value of this algorithm has
orders of magnitude improvement over any other algorithm under investigation!

TABLE 4. ALL-Term Reliability of a Heterogeneous Reliable Network

Scheme t Qa re RTV bounds

Tree Exact 1488 D4le-10 n/a n/a n/a

Standard Merge 812 .031le-10 138e-3 155e-3 n/a
Leap—Evolveg0.15) 47 7.045e-10 243e-3 2.79e-4 n/a

Leap—Evolve0.25) 32 7.049e-10 679e-3 147e-3 n/a

Tree-Merge(1+) 53 7.044e-10 130e-3 8.99e-5 [0,1.900e-05]
Tree-Merge(2+) 82 7.041e-10 6.08e-7 3.02e-11  [7.040e-10,8.750e-10]
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TABLE 5. ALL-Term Reliability of a Homogeneous Unreliable Network

Scheme t Qa re RTV bounds
Tree Exact 1637 B30e-5 n/a n/a n/a
Standard Merge 812 .@28e-5 965e-4 757e-4 n/a

Leap—Evolve0.15) 177 2032e-5 125e-4 277e-4 n/a
Leap—Evolveg0.25) 68 2025e-5 169e-3 193e-4 n/a

Tree-Merge(1+) 55 2078e-5 4.65e-2 120e-1 [0,0.1739
Tree-Merge(2+) 85 2003e-5 136e-2 156e-2 [5.858e-6,1.528e-2]

Experiment 4: ALL-terminal reliability of a homogeneous unreliable netwank:

the last experimenthe network was homogeneous and unrelialbéeh link had the
same failure probability of 1%and the ALL-terminal network failure probability
was to be estimated he results are listed in Table B this experimentthe best
performing algorithm is the Leap—Evolve scheme with a leap time.2% @ It
shows that in this networkhe Leap—Evolve scheme successfully reduces the num-
ber of components to be merged after the “Leap” step without largely sacrificing the
variance However only the Tree Cut and Merge scheme can provide reliability
bounds that are available within a fraction of a second

5.1. Summary of the Results

In heterogeneous networkbe Tree Cut and Merge scheme can indeed take advan-
tage of the backbone to compress the sample variance and speed up the simulation at
the same timeln homogeneous unreliable netwoykise Tree Cut and Merge does
not compress the sample variance as much as the optimal Leap—Evolve sbheme
this casethe Leap—Evolve scheme may provide a better speed up without sacrific-
ing variance too muchHowever one of the problems with the Leap—Evolve scheme
is that of finding the optimal leap tim&rom Experiment 1 through Experiment 4
the best leap time has shifted fron28 s to 015 s and the leap time is the critical
parameter in this schemEor instanceif we choose a leap time ofB®s in Experi-
ment 3 the RTV for the Leap—Evolve scheme would hd3® (well above that of
Standard Merge Process

6. CONCLUSION AND FUTURE DIRECTIONS

In this article we developed the Tree Cut and Merge hybrid scheme to improve the
Standard Merge Procedsshows substantial performance improvement in hetero-
geneous networksvhich are common in telecommunication networldsllike the
Leap—Evolve hybrid schemthe performance of the Tree Cut and Merge scheme is
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not dependent on the a priori optimization of a key paraméhés makes the scheme
much easier to applyrhe benefits of the Tree Cut and Merge scheme are twofold
First, by exactly calculating’, andP; 7, it provides reliability bounds in a very short
time with very little overheadSecondit compresses the sample variance by esti-
mating the remaining conditional probability;, which will be scaled down b,

to form the final estimateTo make that possibJeve use the technique of sequential
sampling introduced in the Tree Cut step of the schahalows us to unbiasedly
sample the states of the tree given there are two or more links failed

The bounding technique introduced in this article concludes it the exact
calculation stagenoweveritis possible to further compress the sample variance by
evaluating up td, and estimating th€, . The maximum number of states we
need to search to calculafgis Bin (n — 1,k)2% the computational complexity of
computing all theP, is O(n?) and the complexity of the sequential sampling in the
Tree Cut step i©(n).

A close inspection of the Tree Cut and Merge scheme reveals that the problem
of calculating the network failure probabiljtf; is subdivided intan separate calcu-
lations by the formuld = 3} P«Fw. This creates the opportunity to apply other
techniques such dsnportance Samplingo further reduce sample varianda a
forthcoming articlewe will investigate the application of the Importance Sampling
and other techniques to the Tree Cut and Merge scheme and show that the combi-
nation of these techniques overcomes the potential shortcomings of the Tree Cut and
Merge scheme in homogeneous networks
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APPENDIX: UNBIASED SAMPLING OF A GRAPH GIVEN LINK FAILURES

LetG(V, E) be a graph with edge sEt= {ey,..., en}, where edge has a failure probability
of g; (or a functioning probability op; = 1 — q;). If the edges are very reliablee., g — 0),
the Crude Monte Carl@CMC) sampling scheme is very inefficient in sampling states of such
a network The question iscan we modify the Crude Monte Carlo scheme to sample the
network’s rare states where at least one link has failed? FishmarPuseedure Qo sample
edge states while avoiding certain cut-sets and patH-8et$involves a sequential sampling
technique which we can modify to fit our purpose

LetY; be the binary random variable associated with eglgie particular{Y; = 1} is the
event that the edge has failehd{Y; = 0} is the event that the edge is operational

A.1. Some Failed Links

We want to unbiasedly sample the network state given that there is at least one fail@é.link
>Y; > 0). It can be achieved through the sequential sampling technggumepling the edge
state one by one and modifying its failure probability according to the states of previous
edges

For the tha th edge inE, we have the following

1. If there are no failed edges before tit edge the probability ofe, having failed
given at least one edge has failecHris

]P’[Yi =13, >o]

j=i

]P[Yi=1

EYJ- >0] =
= [P[ZYJ->O]

j=i

G

1*Hpj.

j=i

2. If there is at least one failed edge before tlte edge the probability ofg; having
failed given at least one edge has failedirs

IP[Yi =13y, >o]

j<i

IED[Yizl

Y, >0] =
= P[EYJ>0]

j<i
= Gi.
A.2. Two or More Failed Links
Having developed the sampling procedure for the situation in which at least one link has

failed, we now develop the case for two or more failed links
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For theith edge inE, we have the following

1. If there are no failed edges before tith edge the probability ofe, having failed
given at least two edges have faileddris

IP’[Yi 1YY > 1]

j=i

IP’[Yi:l

2>_Yj > 1]
- P[EY,->1]

j=i

PLY, = 1]1?[;\(] > o]

[P[EYJ > 1]

j=i

qi(lpr,)

j=>i

1711»[;\4:0] fP[Z%%:l]

Qi<1_Hpj>
j>i
- q
1_Hpj_Hpj =
i=i i=i k=i Pk
qi<1_Hpj>
j=i

1—<1+2q—k>1]pj'

k=i Mk / j=i

2. If there is exactly one failed edge before thth edge the probability ofe; having
failed given at least two edges have failedsis

IP’[Yi -3y > o]

j=i

IP[Yi=1

ij > O]
= P[EYJ>0]

j=i
PLY, =1]

1—1@[2\(j=0]

j=i

0

1-1Ip

j=i
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3. If there are at least two failed edges beforeittieedge the probability ofe, having
failed given at least two edges have failedsins

2Y1>1]:C1h

j<i

]P[Yizl

Indeedthe procedure can be extended tir more failed linksHoweverwe only use up
to k = 2 in this article angdhence have not shown the deductions for higler
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