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Abstract. The problem of estimating the size of a backtrack tree is an important but hard
problem in computational sciences. An efficient solution of this problem can have a major impact
on the hierarchy of complexity classes. The first randomized procedure, which repeatedly generates
random paths through the tree, was introduced by Knuth. Unfortunately, as was noted by Knuth
and a few other researchers, the estimator can introduce a large variance and become ineffective
in the sense that it underestimates the cost of the tree. Recently, a new sequential algorithm
called Stochastic Enumeration (SE) method was proposed by Rubinstein et al. The authors
showed numerically that this simple algorithm can be very efficient for handling different counting
problems, such as counting the number of satisfiability assignments and enumerating the number of
perfect matchings in bipartite graphs. In this paper we introduce a rigorous analysis of SE and show
that it results in significant variance reduction as compared to Knuth’s estimator. Moreover, we
establish that for almost all random trees the SE algorithm is a fully polynomial time randomized
approximation scheme (FPRAS) for the estimation of the overall tree size.
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1. Introduction. The problem of estimating the total cost of a backtrack tree
is an important but hard problem from both a theoretical and practical point of
view. Consider a tree with node set V , where a cost c(v) is associated with each
node v ∈ V . In many practical situations it is important to find the total cost of
the tree,

∑
v∈V c(v).

For large trees the direct computation of this cost using tree traversal is ex-
pensive in terms of computation effort. Hence, a Monte Carlo approach can be
beneficial. Knuth [17] introduces a randomized algorithm that gives an unbiased
estimator for this problem. The proposed algorithm repeatedly generates a random
walk from the tree root to a leaf and counts the encountered node degrees (a more
detailed explanation will be provided in the next section).

The main disadvantage of Knuth’s approach is a large variance of the estima-
tor that can occur for some tree instances. A few attempts were made to improve
Knuth’s algorithm. For example, Pudrom’s partial backtracking algorithm [22] al-
lows more than one child to be explored by the random walk. This multiple children
exploration is achieved by returning to the same node and choosing a different path
to continue. Pudrom’s method, which employs an importance sampling approach
[27], can offer an improved efficiency. Nevertheless, Chen [6] showed that in this
case it is also hard to achieve a significant variance reduction without considerable
computational effort. Chen [6] introduced another approach to handle the tree cost
estimation problem by using a stratified sampling method. Chen’s algorithm has
proven performance guaranty for some randomly generated instances.

The general problem of estimating the cost of a tree belongs to the complexity
class called #P [30]. This complexity class consists of the set of counting problems
that are associated with a decision problem in NP (non–deterministic polynomial
time), e.g., how many solutions does a propositional formula have (#SAT)? The
#P–complete complexity class is a sub–class of #P consisting of those problems in
#P to which any other problem in #P can be reduced via a polynomial reduction.
#SAT, for example, is #P–complete. Interestingly, various #P–complete problems
are associated with an easy decision problem, i.e., the corresponding decision prob-
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lem is in P (polynomial time), such as satisfiability of propositional formulas in
Disjunctive Normal Form (DNF).

For some #P-complete problems there are known efficient approximations. For
example, Karp and Lubby [16] introduced a FPRAS for counting the solutions of
DNF satisfiability formulas. Similar results were obtained for the knapsack and
permanent counting problems by Dyer and Jerrum et al. [8, 14].

Unfortunately, there are also many negative results. For example, [9, 29] showed
that counting the number of vertex covers remains hard, even when restricted to
planar bipartite graphs of bounded degree or regular graphs of constant degree. The
theoretical importance of this counting problem follows from the fact that finding
an efficient algorithm (for example FPRAS) to some specific problems will result
in the collapse of polynomial hierarchy. For example, it was showed in [18] that
there is no efficient approximation algorithm capable to count vertex covers if some
vertex can appear in 6 clauses unless NP=RP, where RP stands for the Randomized
Polynomial Time complexity class [19]. The findings of Liu and Lu are not very
encouraging, since there is a direct correspondence between counting combinatorial
objects and their associated backtrack trees. For example, we can define c(v) = 1
for every v ∈ V that corresponds to a valid vertex cover. Thus, the estimation of a
backtrack tree is at least as hard as the estimation of the number of vertex covers.

There are two main approaches to tackle such difficult counting problems. The
first one is Markov Chain Monte Carlo (MCMC) and the second is sequential impor-
tance sampling (SIS). Both approaches exploit the finding of Jerrum et al. [15] that
counting is equivalent to uniform sampling over a suitably restricted set. MCMC
methods sample from such restricted regions by constructing an ergodic Markov
chain with limiting distribution equal to the desired uniform distribution. A num-
ber of MCMC approaches with good empirical performance have been proposed
[5, 13, 24, 26]. There are also many examples of successful SIS implementations on
various counting problems; see, for example, [4, 7, 16, 25]. More recent advances
and background material can be found in [3].

In this article, we develop an adaptation of the Stochastic Enumeration (SE)
method, originally proposed in [25], for backtrack tree estimation. The SE algo-
rithm belongs to the sequential importance sampling family of algorithms, but the
main difference between general SIS procedures and SE is that the latter employs
polynomial oracles during the execution and runs multiple trajectories in parallel
instead of repeatedly running single trajectories. It was shown numerically in [28]
that SE may introduce a significant variance reduction. The SE algorithm has a
budget parameter that limits the number of parallel random walks. We show that
the SE algorithm is an extension of Knuth’s estimator, in sense that if we set the
budget equal to one, the SE becomes equivalent to Knuth’s estimator. The reader
might think that the SE extension is just Knuth’s estimator that runs some trajec-
tories in parallel (and therefore brings little added value), but careful consideration
will reveal an additional and much more important property. The SE algorithm
does not operate on the original tree but rather on the associated “hyper tree”. We
show that this property has a crucial impact on the SE performance. In partic-
ular, it turns the SE into a splitting algorithm. It was shown that such splitting
mechanisms can introduce a significant variance reduction [28]. For a background
on the splitting methods, see [5, 10, 11]. For additional detailed explanation about
the general SE method, we refer to [28].

The rest the paper is organized as follows. In Section 2 we introduce the SE
algorithm for counting trees. In Sections 3 and 4 we develop important theoretical
properties of the SE estimator. In particular, we prove that the estimator is unbi-
ased, and that it has a recursive expression for the variance that is similar to the
one given in [17]. Moreover, we develop an upper bond for the variance and show
that for almost all random trees, the SE algorithm is a FPRAS for the estimation
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of the overall tree size. In Section 5 we provide additional numerical evidence for
the accuracy of our method. Finally, in Section 6 we summarize our findings and
discuss possible directions for future research.

2. Estimating the total cost of a tree. The SE extension is heavily based
on the Knuth’s estimator [17], so we feel that a short review of the latter is beneficial.
Our setting is as follows. Consider a rooted tree T = (V , E) with node set V and
edge set E (so that |E| = |V|− 1). We denote the root of the tree by v0, and for any
v ∈ V the subtree rooted at v is denoted by Tv. With each node v is associated a
non–negative cost c(v). The main quantity of interest is the total cost of the tree,

Cost(T ) =
∑

v∈V

c(v)

or, more generally, the total cost of a subtree Tv — denoted by Cost(Tv). For each
node v we denote the set of successors of v by S(v). Knuth’s Algorithm 2.1, [17],
outputs an unbiased estimator of the total cost of a subtree Tv rooted at v.

Algorithm 2.1: Knuth’s algorithm for estimating the cost of a backtrack
tree
Input: A tree Tv of height h, rooted at v.
Output: An unbiased estimator C of the total cost of tree Tv.

1 (Initialization): Set k← 0, D ← 1, X0 = v and C ← c(X0). Here D is the
product of all node degrees encountered in the tree.

2 (Compute the successors): Let S(Xk) be the set of all successors of Xk

and let Dk be the number of elements of S(Xk). If k = h or when S(Xk) is
empty, set Dk = 0.

3 (Terminal position?): If Dk = 0, the algorithm stops, returning C as an
estimator of Cost(Tv).

4 (Advance): Choose an element Xk+1 ∈ S(Xk) at random, each element
being equally likely. (Thus, each choice occurs with probability 1/Dk.) Set
D ← DkD, then set C ← C + c(Xk+1)D. Increase k by 1 and return to Step
2.

It was shown in [17] that for any sub-tree Tv of height h this algorithm has the
following properties.

• It creates a random walk {X0, X1, . . . , Xτ} on the tree (from root X0 = v
to a leaf at level τ 6 h) and returns the estimator

C = c(X0) +D0c(X1) +D0D1c(X2)

+D0D1D2c(X3) + · · ·+


 ∏

06j6τ−1

Dj


 c(Xτ ),

where Xj is the random variable that represents the tree node that was
encountered at step j of the random walk, and random variable Dj is the
corresponding degree of Xj.
• This estimator is unbiased:

E (C(Tv)) = Cost (Tv) .

• The variance of the estimator is given by:
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Var (C(Tv)) = d
∑

16j6d

Var
(
C
(
Twj

))
+(2.1)

+
∑

16i<j6d

(
Cost (Twi

)− Cost
(
Twj

))2
,

where w1, . . . , wd are the successors of v.
Remark 2.1 (Knuth’s Importance Sampling). Instead of choosing one of v’s

successors from S(v) = {w1, . . . , wd} with equal probability, one can choose wj with
probability pj for j = 1, . . . , d, provided that

∑
16j6d pj = 1, where one should set

D ← (1/pj)D in Step 4 (instead of D ← D0D), when wj is selected. Knuth shows
that in this case the estimator remains unbiased, and that the variance is given by:

Var (C(Tv)) =
∑

16j6d

Var
(
C
(
Twj

))

pj
(2.2)

+
∑

16i<j6d

pi pj

(
Cost (Twi

)

pi
− Cost

(
Twj

)

pj

)2

.

In fact, if during the algorithm execution one is able to “guess” the costs of the
subtrees, a zero-variance estimator can be obtained.

Clearly, the last assumption is not practical, but some algorithms have tried to
make improvements by estimating those probabilities in a better manner [2]. Unfor-
tunately, this strategy may even damage the algorithm performance, as explained
in the following example.

Example 2.1 (Choosing nonuniform probabilities). To understand why es-
timating the importance sampling parameters (the probabilities of choosing the
successors in Remark 2.1) is probably hopeless in the general case, consider the
simple example in Figure 1. Suppose that the cost of every node is 1. The tree
root v0 has two successors (v1 and v2). The node v1 has a single successor v3 that
is connected to a complete tree with M − 1 nodes, such that M ≫ k, and the node
v2 is connected to k− 1 leaves. In this context, the complete tree is a tree in which
every level, except possibly the deepest, is entirely filled.

v0

v1

v3

M − 1

v2

k − 1 leaves

Fig. 1. An example tree.

We will use the recursive formula (2.2) to calculate the variance of the Knuth’s
estimator. Note, that in this formula, each successor j is chosen with probability pj
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subject to
∑

16j6d pj = 1. It is not very hard to see that Knuth’s estimator delivers
a zero-variance estimator on any complete tree, so Var(Tv1) = 0. It is also easy to
verify from (2.2) that Var(Tv2) = 0, because the node v2 is a father of k− 1 leaves.
We next consider the following possibilities.

1. Suppose we choose v1 and v2 with equal probabilities, so pv1 = pv2 = 0.5.
Then,

σ2
1 = Var(C) = 0 + (M − k)2.

2. Suppose that one chooses to explore the tree from node v0 (level zero) to
level 2; that is, until node v3 in the left subtree and the k − 1 leaves in
the right subtree. Then, reasonable choices for pv1 and pv2 are 1/k and
(k − 1)/k respectively. In this case,

σ2
2 = Var(C) = 0 +

k − 1

k2

(
M
1
k

− k
k−1
k

)2

= (k − 1)




M
1
k

− k
k−1
k

k




2

= (k − 1)

(
M − k

k − 1

)2

.

Consider now the benefit one can get from this particular change of measure.
Clearly,

σ2
2

σ2
1

=
(k − 1)

(
M − k

k−1

)2

(M − k)2
,

which approaches k−1 asM →∞. Hence, for largeM the performance is k−1 times
worse when applying the change of measure. So, it would be better to choose the
successors with equal probabilities. The latter will not only save on computational
effort needed to compute the new probabilities (pv1 and pv2) but will also reduce
the estimator’s variance.

The SE philosophy is that such estimation of importance weights is probably
hopeless and potentially harmful. Instead, SE will try to improve the estimation by
running a number of parallel random walks. We will show that this simple strategy
can be very beneficial in sense that it turns the SE into a splitting algorithm. To
start with, we will need a few definitions.

Definition 2.1 (Hyper nodes and forests). Let {v1, . . . , vr} ⊆ V be tree nodes.
1. We call a collection v = {v1, . . . , vr} of distinct nodes in the same level of

the tree a hyper node of cardinality |v| = r.
2. Let v be a hyper node. Generalizing the tree node cost, we define the cost

of the hyper node as

c(v) =
∑

v∈v

c(v).

3. Let v be a hyper node. Define the set of successors of v as

S(v) =
⋃

v∈v

S(v).

4. Let v be a hyper node and let B ∈ N, B > 1. Define:

H(v) =

{
{S(v)} if |S(v)| 6 B

{w | w ⊆ S(v), |w| = B} if |S(v)| > B.
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5. For each hyper node v let

Tv =
⋃

v∈v

Tv

be the forest of trees rooted at v. See Figure 2 for an example of hyper node
v = {v1, v2, v3, v4} and its corresponding forest Tv = {Tv1 , Tv2 , Tv3 , Tv4}.

6. Let Tv be the forest of trees rooted at v. Define

S(m)(v) = S(S(S · · ·︸ ︷︷ ︸
m times

(v)) · · · )

to be the set of vertices at level m. (Note that S(0)(v) = v.)
7. For each forest rooted at hypernode v, define its total cost as

(2.3) Cost (Tv) =
∑

v∈v

Cost(Tv).

vv1 v2 v3 v4

Fig. 2. Hyper node example.

We are ready to state the main SE algorithm.

Algorithm 2.2: Stochastic Enumeration algorithm for estimating the cost
of a backtrack tree
Input: A forest Tv of height h rooted at a hypernode v, and a budget

B > 1.
Output: An unbiased estimator |v|CSE of the total cost of forest Tv.

1 (Initialization): Set k ← 0, D ← 1, X0 = v and CSE ← c(X0)/|X0|.
2 (Compute the successors): Let S(Xk) be the set of all successors of Xk.
3 (Terminal position?): If |S(Xk)| = 0, the algorithm stops, returning
|v|CSE as an estimator of Cost(Tv).

4 (Advance): Choose hyper node Xk+1 ∈ H(Xk) at random, each choice
being equally likely. (Thus, each choice occurs with probability 1/|H(Xk)|.)
Set Dk = |S(Xk)|

|Xk|
and D ← DkD, then set CSE ← CSE +

(
c(Xk+1)
|Xk+1|

)
D.

Increase k by 1 and return to Step 2.

Let us have a closer look at Algorithm 2.2 and compare it with Knuth’s Algo-
rithm 2.1. Note that in Step 1, Knuth’s algorithm initializes X0 to be v while SE
sets X0 = v. In general, Algorithm 2.1 will operate on a single node at each step,
while SE will maintain a collection of such nodes (hyper nodes).

The SE algorithm continues to move down the tree to X1,X2, . . . by exam-
ining the hyper nodes from the sets H(S(X0)), H(S(X1)), . . .. This procedure is
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performing a random walk on the hyper nodes of the original tree T . It follows
that SE is actually a generalization of Knuth’s algorithm. Namely, consider the SE
algorithm with budget B = 1. In this case, all the hyper nodes have cardinality of
1 and we get the Knuth’s estimator. Similar to Knuth’s Algorithm 2.1, the output
of Algorithm 2.2 is a random variable

CSE =
c(X0)

|X0|
+
|S(X0)|
|X0|

c(X1)

|X1|
+
|S(X0)|
|X0|

|S(X1)|
|X1|

c(X2)

|X2|

+ · · ·+


 ∏

06j6τ−1

|S(Xj)|
|Xj |


 c(Xτ )

|Xτ |
,

where τ 6 h.

At first glance, one might think that the SE extension is just Knuth’s estimator
that runs B parallel trajectories while estimating average node costs and degrees
at each tree level. We will show in the following sections that this is not so. Before
we proceed with a rigorous analysis, consider the following example. Despite its
simplicity, it provides a good demonstration of SE’s built–in splitting mechanism
and its corresponding benefits.

Example 2.2. Consider the “hair brush” tree T in Figure 3 and suppose that
the costs of all vertices are zero except for vn+1, which has a cost of unity. Our
goal is to estimate the cost of this tree, which obviously satisfies Cost(T ) = 1. It
will become clear from the following discussion that the budget parameter B is
controlling the splitting capability of SE Algorithm 2.2. We will consider two cases.
In particular we examine the behavior of the Algorithm 2.2 with budgets B = 1
and B = 2 respectively.

v1

v2 v2

v3 v3

v4

vn

vn+1 vn+1

Fig. 3. The hair brush tree.

• If we set B = 1, the SE Algorithm 2.2 essentially adopts the behavior of
Knuth’s estimator, [17]. Note that in this case the algorithm reaches the
vertex of interest, vn+1, with probability 1/2n and with D = 2n. In all
other cases, the algorithm terminates with some D′ and a zero cost node
v̄i, i = 2, . . . , n + 1. It follows that the expectation and variance of the
corresponding SE estimator are

E (CSE) =
1

2n
· 2n · 1 + 2n − 1

2n
·D′ · 0 = 1,
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and

E
(
C2

SE

)
=

1

2n
· (2n · 1)2 + 2n − 1

2n
· (D′ · 0)2 = 2n ⇒

⇒ Var (CSE) = E
(
C2

SE

)
− E (CSE)

2
= 2n − 1.

• On the other hand, setting B = 2 will force Algorithm 2.2 to reach vn+1

with probability 1. To see this, note that at each tree level (m = 2, . . . , n),
Xm = {vm, vm}. The latter is true because vm has no successors at all and
vm has exactly two successors respectively. Following the execution steps
of the Algorithm 2.2 one can verify that at the final iteration the cost of
the hyper node Xn+1 = {v̄n+1, vn+1} is 0 + 1 = 1, so

(
c(Xn+1)

|Xn+1|

)
=

1

2
.

In addition, the final value of D is

D = 2 · 1 · · · 1︸ ︷︷ ︸
n−1 times

= 2.

It follows that the expectation and variance of the corresponding SE esti-
mator are

E (CSE) = 1 · 2 · 1
2
= 1,

and

E
(
C2

SE

)
= 1 ·

(
2 · 1

2

)2

= 1 ⇒

⇒ Var (CSE) = E
(
C2

SE

)
− E (CSE)

2
= 1− 1 = 0.

By increasing the budget B from 1 to 2 we managed to achieve remarkable
variance reduction, from 2n− 1 to zero. Clearly, we presented an artificial example
but it is also illustrative enough for our purposes. Generally speaking, by increasing
the budget we cannot expect to obtain a zero variance estimator for hard approx-
imation problems, but we do hope to achieve a significant variance reduction. We
next proceed to the analysis.

3. Analysis. Recall from Definition 2.1 that for any hypernode v, Tv denotes
the forest rooted at v, and that its cost is Cost(Tv). Let |v|CSE(Tv) be the cor-
responding estimator, as returned by Algorithm 2.2. The following theorem shows
that this estimator is unbiased.

Theorem 3.1 (Unbiased Estimator). Let v be a hyper node and let H(S(v)) =
{w1, . . . ,wd} be its set of hyper children. Then,

(3.1) E(CSE (Tv)) =
Cost (Tv)

|v| .

Proof. By the recursive structure of Algorithm 2.2, we have

(3.2) CSE (Tv) =
c(v)

|v| +
|S(v)|
|v| CSE (TW) ,

where W is a hyperchild of v selected uniformly at random from H(S(v)). To show
(3.1) we proceed by induction on the tree height.
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• h = 0:

E (CSE (Tv)) = E

(
c(v)

|v| +
|S(v)|
|v| · 0

)

=
c(v)

|v| =

∑
v∈v c(v)

|v| =
Cost(Tv)

|v| .

• Suppose that the proposition is correct for heights 0, . . . , h− 1. Combining
this with (3.2) we get

E (CSE (Tv)) = E

(
c(v)

|v| +
|S(v)|
|v| CSE (TW)

)

=
c(v)

|v| +
|S(v)|
|v|


1

d

∑

16j6d

E
(
CSE

(
Twj

))



=︸︷︷︸
hypothesis

c(v)

|v| +
|S(v)|
|v|


1

d

∑

16j6d

Cost
(
Twj

)

|wj |


 .

Consider now the following two cases.
1. |S(v)| 6 B. Hence, H(S(v)) = {w1}, |S(v)| = |w1|, and d = 1, so

that

c(v)

|v| +
|S(v)|
|v|


1

d

∑

16j6d

Cost
(
Twj

)

|wj |


 =

c(v)

|v| +
|S(v)|
|v|

Cost(Tw1)

|w1|

=
c(v) + Cost(Tw1)

|v| =
Cost(Tv)

|v| .

2. |S(v)| > B. In this case, there is a set of possible hyper nodes that
will be chosen uniformly at random from H(S(v)). So,

H(S(v)) = {w1, . . . ,wd}, d = |H(S(v))| =
(|S(v)|

B

)
> 1

and |wj | = B for all j = 1, . . . , d. We continue with

c(v)

|v| +
|S(v)|
|v|


1

d

∑

16j61

Cost
(
Twj

)

|wj |




=
c(v)

|v| +
|S(v)|
|v|



(|S(v)|

B

)−1 ∑

16j6d

Cost
(
Twj

)

B




=︸︷︷︸
(2.3)

c(v)

|v| +
|S(v)|
|v|



(|S(v)|

B

)−1 ∑

16j6d

∑
w∈wj

Cost(Tw)

B




=︸︷︷︸
(∗)

c(v)

|v| +
|S(v)|
|v|

((|S(v)|
B

)−1
(
|S(v)|

B

)∑
w∈S(v)Cost(Tw)

|S(v)|

)

=
c(v)

|v| +
|S(v)|
|v|


 1

|S(v)|
∑

w∈S(v)

Cost(Tw)




=︸︷︷︸
(2.3)

c(v)

|v| +
|S(v)|
|v|

(
Cost

(
TS(v)

)

|S(v)|

)
=

c(v) + Cost
(
TS(v)

)

|v| =
Cost(Tv)

|v| ,
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where (∗) follows from Lemma A.1. To see this, substitute

|S(v)| = n, Cost(Twj
) = rj for 1 6 j 6 n, u = B, and d =

(|S(v)|
|v|

)
.

If for the original tree T with root v0 we define v0 = {v0}, then the forest Tv0

is identical to T and, with |v0| = 1, Theorem 3.1 yields the following corollary.
Corollary 3.2 (Unbiased tree estimator). Let T be a tree rooted at v0. Then,

SE returns unbiased estimator for the total tree cost; that is,

E (CSE(Tv0)) = Cost (T ) .

Next we can also derive the recursive expression for the variance.
Theorem 3.3 (Stochastic Enumeration Algorithm Variance). Let v be a hyper

node and let H(S(v)) = {w1, . . . ,wd} be its set of hyper children. Then,

Var (CSE (Tv)) =

(
|S(v)|
|v|

)2

d

∑

16j6d

Var
(
CSE

(
Twj

))
(3.3)

+

(
|S(v)|
|v|

)2

d2

∑

16i<j6d

(
Cost (Twi

)

|wi|
− Cost

(
Twj

)

|wj |

)2

︸ ︷︷ ︸
(∗)

Proof. Using (3.2) and the law of total variance, we have

Var (CSE (Tv)) = Var

(
c(v)

|v| +
|S(v)|
|v| CSE (TW)

)
=

( |S(v)|
|v|

)2

Var (CSE (TW))

=

( |S(v)|
|v|

)2 (
E (Var (CSE (TW) |W)) + Var (E (CSE (TW) |W))

)
,

where W is a hyperchild of v selected uniformly at random from H(S(v)). We
complete the proof by noting that

E (Var (CSE (TW) |W)) =
1

d

∑

16j6d

Var
(
CSE

(
Twj

))

and that

Var (E (CSE (TW) |W)) =︸︷︷︸
Theorem 3.1

Var

(
Cost(TW)

|W|

)
=

=︸︷︷︸
(∗)

1

d2

∑

16i6d

∑

16j6d

1

2

(
Cost(Twi

)

|wi|
− Cost(Twj

)

|wj |

)2

=
1

d2

∑

16i<j6d

(
Cost (Twi

)

|wi|
− Cost

(
Twj

)

|wj |

)2

,

where (∗) follows from the expression for variance of a set of d equally likely values
that can be expressed, without directly referring to the mean, in terms of squared
deviations of all points from each other [31].

Remark 3.1. Note that under the settings of Theorem 3.3 and provided that
we set the budget of the SE algorithm to be equal to 1, the variance of SE Algorithm
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2.2 given in (3.3) becomes equal to the variance of Knuth’s Algorithm 2.1 given in
(2.1). This follows from the fact that in this case, |S(v)| = d and all hyper nodes
have the cardinality of 1.

Recall that in Example 2.2 when we set the budget B equal to the maximum
of the number of nodes in each tree level (B = 2), the hyper tree collapses and SE
returns a zero variance estimator. This true more generally, as summarized in the
following corollary.

Corollary 3.4 (Zero Variance Estimator). Let v be a hyper root of the forest
Tv and let S(m)(v) be the set of nodes at the same tree level m, m = 0, . . . , h. Then,
the SE algorithm with budget

B = max
06m6h

{|S(m)(v)|}

results in a zero variance estimator.
Proof. The proof is an immediate consequence of Theorem 3.3 combined with

the fact that the resulting hyper tree has a single hyper node v(m) at each tree level
0 6 m 6 h and its corresponding degree is equal to one or zero depending whether
it is a leaf hyper node or not. More formally, let v(0) be the hyper root of the tree
and

H
(
S
(
v(0)

))
=
{
v(1)

}
, H

(
S
(
v(1)

))
=
{
v(2)

}
, . . . ,

, . . . , H
(
S
(
v(h−1)

))
=
{
v(h)

}
, H

(
S
(
v(h)

))
= {∅}

be the sets of hyper children at tree levels 0, . . . , h. Then, from Theorem 3.3,

Var (CSE (Tv(0))) =︸︷︷︸
d=1

(
|S
(
v(0)

)
|

|v(0)|

)2

Var (CSE (Tv(1))) + 0.

Iterating the above equation results in

Var (CSE (Tv(0))) =
∏

06m6h−1

(
|S
(
v(m)

)
|

|v(m)|

)2

Var (CSE (Tv(h))) = 0,

because

Var (CSE (Tv(h))) = 0,

thus completing the proof.
Clearly, the most interesting behavior of SE occurs when the number of nodes

in the tree levels is greater than the predefined budget. However, in practice, the
first few levels are usually “fully enumerated” by the SE algorithm. Consider as an
example the tree in Figure 4. Note that for budget B = 3 the last level that still
can be fully enumerated is level m = 3 and the first split of the hyper nodes will
occur at level 4. In this example, the degree of v(0),v(1) and v(2) is 1. The degree
of v(3) is

(∣∣S(v(3))
∣∣

∣∣v(3)
∣∣
)

=

(
7

3

)

respectively. The following lemma summarizes this behavior.
Lemma 3.5 (SE full enumeration). Let v be a hyper root of the forest Tv

and let S(m)(v) be the set of nodes at the same tree level m, m = 0, . . . , h. Let
1 6 m∗ 6 h − 1 be the first tree level such that |S(m∗)(v)| > B, where B is the



12 The Stochastic Enumeration Method

v
(0)

v
(1)

v
(2)

v
(3)

Fig. 4. SE full enumeration with budget B = 3.

budget of the SE algorithm. Suppose that v(0), . . . ,v(m∗−1) are the hyper nodes at
levels 0, . . . ,m∗ − 1 encountered by SE. Then,

Var (CSE (Tv(0))) =

( |v(m∗−1)|
|v(0)|

)2

Var (CSE (Tv(m∗−1))) .

Proof. Similar to the proof of Corollary 3.4, the variance is given by

Var (CSE (Tv(0))) =
∏

06m6m∗−2

( |S(v(m))|
|v(m)|

)2

Var (CSE (Tv(m∗−1))) .

We complete the proof by noting that

|S(v(m))| = |v(m+1)| for m = 0, . . . ,m∗ − 2

and thus

∏

06m6m∗−2

( |S(v(m))|
|v(m)|

)2

=

( |S(v(m∗−2))|
|v(0)|

)2

=

( |v(m∗−1)|
|v(0)|

)2

is a telescopic product.
Recall that the coefficient of variation (CV) of a random variable Z is defined

as

CV =

√
Var(Z)

E(Z)2
.

Let Z be an unbiased estimator of ℓ and consider the Monte Carlo algorithm that
outputs the average of N independent copies Z1, . . . , ZN of Z:

ℓ̂ =
1

N

∑

16j6N

Zj .

The CV is an important measure of efficiency of such a Monte Carlo algorithm
because the relative error (RE) of ℓ̂ is

(3.4) RE(ℓ̂) =

√
Var(Z)

NE(Z)2
=

CV√
N

.
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Clearly, the computational effort that is needed to achieve a small RE depends on
the CV, so if the latter is large, the number of experiments required to achieve
a reasonable relative error will also be unmanageable. Having in mind the above
discussion, we would like to obtain the upper bound on the variance of SE.

3.1. Upper bound for the variance. For the rest of this section our setting
is as follows. Let v be a hyper root of the forest Tv and let S(m)(v) be the set of
nodes at the same tree level m, m = 0, . . . , h. The set of hyper nodes at level m is
defined by H(S(m)(v)). Let

H(S(m)(v)) = {w(m)
1 , . . . ,w

(m)
d }.

Consider a random variable

Cost(TW(m))

|W(m)| ,

where W(m) is taken uniformly from all hypernodes at level m. Define:

γ(m) = CV2

(
Cost(TW(m))

|W(m)|

)
=

Var
(

Cost(T
W

(m) )

|W(m)|

)

(
E

(
Cost(T

W
(m) )

|W(m)|

))2 .

Lemma 3.6 (Upper bound of (∗) in (3.3)). For a forest rooted at v and for any
level m = 0, . . . , h− 1, it holds that

(
|S(v(m+1))|

|v(m+1)|

)2

d2

∑

16i<j6d



Cost

(
T
w

(m)
i

)

|w(m)
i |

−
Cost

(
T
w

(m)
j

)

|w(m)
j |




2

6 γ(m)

[
Cost (Tv)

|v|

]2
.

Proof.

(
|S(v(m+1))|
|v(m+1)|

)2

d2

∑

16i<j6d



Cost

(
T
w

(m)
i

)

|w(m)
i |

−
Cost

(
T
w

(m)
j

)

|w(m)
j |




2

=

( |S(v(m+1))|
|v(m+1)|

)2

Var

(
Cost(TW(m))

|W(m)|

)

= γ(m)

( |S(v(m+1))|
|v(m+1)|

)2(
E

(
Cost(TW(m))

|W(m)|

))2

= γ(m)

( |S(v(m+1))|
|v(m+1)|

)2

1

d

∑

16j6d

∑
w∈w

(m)
j

Cost(Tw)

|w(m)
j |




2

6︸︷︷︸
Lemma A.1

γ(m)

( |S(v(m+1))|
|v(m+1)|

)2
(∑

w∈S(v(m+1)) Cost(Tw)

|S(v(m+1))|

)2

6 γ(m)


 1

|v(m+1)|
∑

w∈S(v(m+1))

Cost(Tw)




2

6 γ(m)

[
Cost (Tv)

|v|

]2
.
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With the above lemma, we are ready to prove the bound for the variance.

Lemma 3.7 (Upper bound for variance in (3.3)). Let Tv be a forest of height
h and let Ph be the power set of {0, . . . , h} excluding the empty set. Then,

Var (CSE (Tv)) 6


 ∑

J∈Ph−1

∏

j∈J

γ(j)



[
Cost (Tv)

|v|

]2
.

Proof. The proof is by induction on the forest height combined with the recur-
sive variance formula (3.3). For h = 1,

Var (CSE (Tv)) = 0 +

(
|S(v)|
|v|

)2

d2

∑

16i<j6d



Cost

(
T
w

(0)
i

)

|w(0)
i |

−
Cost

(
T
w

(0)
j

)

|w(0)
j |




2

6︸︷︷︸
Lemma 3.6

γ(0)

[
Cost (Tv)

|v|

]2
=


∑

J∈P0

∏

j∈J

γ(j)



[
Cost (Tv)

|v|

]2
.

Suppose that the lemma is true for heights less than or equal to h− 1 and let
us examine the estimator variance at height h. Then, by combining the induction
hypothesis and Lemma 3.6, we have

Var (CSE (Tv)) 6

(
|S(v)|
|v|

)2

d



∑

16j6d


 ∑

J∈Ph−2

∏

j∈J

γ(j)






Cost

(
T
w

(h−1)
j

)

|w(h−1)
j |




2


+ γ(h−1)

[
Cost (Tv)

|v|

]2

6

( |S(v)|
|v|

)2

 ∑

J∈Ph−2

∏

j∈J

γ(j)






∑

16j6d



Cost

(
T
w

(h−1)
j

)

|w(h−1)
j |




2

1

d




+ γ(h−1)

[
Cost (Tv)

|v|

]2

6

( |S(v)|
|v|

)2

 ∑

J∈Ph−2

∏

j∈J

γ(j)


 (γ(h−1) + 1)



∑

16j6d



Cost

(
T
w

(h−1)
j

)

|w(h−1)
j |







2

+ γ(h−1)

[
Cost (Tv)

|v|

]2

6

( |S(v)|
|v|

)2

 ∑

J∈Ph−2

∏

j∈J

γ(j)


 (γ(h−1) + 1)

(
d
∑

w∈S(v)Cost(Tw)

|S(v)|

)2

+ γ(h−1)

[
Cost (Tv)

|v|

]2
6


 ∑

J∈Ph−2

∏

j∈J

γ(j)


 (γ(h−1) + 1)

[
Cost (Tv)

|v|

]2
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+ γ(h−1)

[
Cost (Tv)

|v|

]2
6




 ∑

J∈Ph−2

∏

j∈J

γ(j)


 (γ(h−1) + 1) + γ(h−1)



[
Cost (Tv)

|v|

]2

6


 ∑

J∈Ph−1

∏

j∈J

γ(j)



[
Cost (Tv)

|v|

]2
.

As an almost immediate consequence of Lemma 3.7 the following corollaries
can be derived.

Corollary 3.8 (First upper bound for variance in (3.3)). Let

γ = max
06m6h−1

{
γ(m)

}
.

Then, the upper bound on the variance is given by

Var (CSE (Tv)) 6 ((γ + 1)h − 1)

[
Cost (Tv)

|v|

]2
.

Proof. The proof is by straightforward application of the binomial theorem
(BT). That is,

∑

J∈Ph−1

∏

j∈J

γ(j)
6

∑

J∈Ph−1

γ|J| =
∑

06m6h−1

(
h− 1

m

)
γm − 1 =︸︷︷︸

(BT)

(γ + 1)h − 1.

Clearly, γ is generally not available, but if we know something about the subtree
costs, the following bound can be derived similarly to [17].

Corollary 3.9 (Second upper bound for variance in (3.3)). Let

γ = max
06m6h−1

{
γ(m)

}

and suppose that γ is maximized at level m∗. Suppose without loss of generality that

H(S(m∗)(v)) = {w1, . . . ,wd}

and there exists constant a such that

Cost (Tw1)

|w1|
6

Cost (Tw2)

|w2|
6 · · · 6 Cost (Twd

)

|wd|
6 a

Cost (Tw1)

|w1|
.

Then, the variance of SE estimator satisfies

Var (CSE (Tv)) 6 (βh − 1)

[
Cost (Tv)

|v|

]2
,

where β =
(

a2+2a+1
4a

)
.

Proof. Before we begin, let us state a technical result from Lemma A.2: Let
r1, . . . , rn be non–negative scalars and suppose without loss of generality that r1 6

r2 6 · · · 6 rn 6 a r1 for a positive scalar a > 1. Then,

(3.5)
∑

16j6n

r2j
1
n

6

(
a2 + 2a+ 1

4a

)
 ∑

16j6n

rj




2

.
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Using the definition of γ we continue with

γ = CV2

(
Cost(TW)

|W|

)
=

Var
(

Cost(TW)
|W|

)

(
E

(
Cost(TW)

|W|

))2 =
E

(
Cost(TW)

|W|

)2

(
E

(
Cost(TW)

|W|

))2 − 1

=

∑
16j6d

(
Cost(Twj

)

|wj |

)2
1
d

(
1
d

∑
16j6d

Cost(Twj
)

|wj |

)2 − 1 =

∑

16j6d

(

Cost(Twj
)

|wj |

)2

d−1(∑
16j6d

Cost(Twj
)

|wj |

)2 − 1 6︸︷︷︸
(3.5)

β − 1.

Combining this with Corollary 3.8, we complete the proof with

Var (CSE (Tv)) 6 ((γ + 1)h − 1)

[
Cost (Tv)

|v|

]2
6︸︷︷︸

γ6β−1

(βh − 1)

[
Cost (Tv)

|v|

]2
.

As the direct consequence of Theorem 3.1 and Corollaries 3.8 and 3.9 we can
conclude that the CV of the SE algorithm, when applied to the tree Tv0 , is

CVSE =

√
Var(CSE)

E(CSE)2
6

√
((γ + 1)h − 1) [Cost (Tv0)]

2

[Cost (Tv0)]
2 =

√
(γ + 1)h − 1 6

√
βh − 1.

Similarly to the bound in [17], it means that if β is not too large (and as a
consequence, βh−1 has manageable size too), SE will be able to deliver a sufficiently
acceptable estimator (similar to Knuth’s Algorithm 2.1 [17]). Next, we consider a
special case of a random tree counting problem; that is, a counting the number of
vertices in a random tree.

4. Random trees. In this section we will work with families of random trees.
Definition 4.1 (Family of random trees). Consider a probability vector p =

(p0, . . ., pk) that corresponds to the probability of a vertex to have 0, . . . , k successors
respectively. Define a family of random trees Fh

p as all possible trees of height at
most h that are generated using p up to the level h. (Note that if p0 > 0, there exists
a non–zero probability of extinction before generation h, and therefore the tree can
have a hight that is smaller than h.)

The family Fh
p is fully characterized by the probability vector p and the pa-

rameter h. Moreover, the tree generation corresponds to a branching process [1].
Let T = (V , E) be a random tree from Fh

p . By assigning the cost c(v) = 1 for all
v ∈ V , the cost of the tree — Cost(T ) is equal to |V|. Our objective is to analyse
the behavior of Knuth’s and SE’s estimators under this setting. In particular, we
show the following.

• In Lemma 4.3 and Corollary 4.4 we develop the expected variance and the
lower bound of the Knuth’s Algorithm 2.1.
• Using Lemmas 4.6, 4.7 and 4.8 we obtain an upper bound for the variance
of the SE Algorithm 2.2. This result is summarized in Theorem 4.5.
• Combining the results of Corollary 4.4 and Theorem 4.5, we get the lower
bound for the variance reduction introduced by the SE as compared to the
Knuth’s estimator. The latter is summarized in Corollary 4.9.

Consider now a random tree rooted at v0 and let Rm be the total number of
children (population size) at level (generation) m. Define

µ = E(R1) =
∑

06j6k

jpj
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and

σ2 = Var(R1) =


 ∑

06j6k

j2pj


− µ2.

The tree counting problem — (that is, counting the overall number of vertices
in the tree) becomes hard when the number of nodes in a tree is large, so we
are naturally interested in the super-critical branching case (µ > 1). Well-known
results on the distribution of such trees are available from the general theory of
the branching processes. Denote by Mm the total progeny at generation m, that is
Mn = 1 +R1 + · · ·+Rm. Then, from [20] we have

E(Rm) = µm,

(4.1) νm = E(Mm) = E


1 +

∑

16j6m

Rt


 =

1− µm+1

1− µ
,

Var(Rm) = σ2 1− µm

1− µ
,

and

(4.2) ζ2m = Var(Mm) =
σ2

(1− µ)2

[
1− µ2m+1

1− µ
− (2m+ 1)µm

]
.

Before proceeding to the performance analysis of the basic Knuth’s and the SE’s
estimators, we will require the following technical lemma, the proof of which is given
in appendix.

Lemma 4.2 (Sum of squared differences). Let n ∈ N, and Z1, . . . , Zn be inde-
pendent and identically distributed random variables with expectation and variance
equal to µ and σ2 respectively. Then,

(4.3) E


 ∑

16i<j6n

(Zi − Zj)
2


 = n(n− 1)σ2.

Also for m ∈ N, let Z
(i)
1 , . . . , Z

(i)
m , i = 1, . . . ,

(
n
m

)
be the unique subsets of {Z1, . . . , Zn},

and define Ui =
1
m

∑
16j6m Z

(i)
j . Then,

(4.4) E




∑

16i<j6(n
m)

(Ui − Uj)
2


 6

(
n

m

)((
n

m

)
− 1

)
σ2

m
.

We next consider the expected variances of Knuth’s and the SE’s estimators
under the random tree model. It is important to note that in this settings and for
a random tree T ∈ Fh

p

Var (C (T ) | T ) and Var (CSE (T ) | T )

are random variables.
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Lemma 4.3 (Knuth’s expected variance). Let T (h) be a random tree of height
h. Then,

E

(
Var

(
C
(
T (h)

) ∣∣∣ T (h)
))

= (σ2 + µ2)E
(
Var

(
C
(
T (h−1)

) ∣∣∣ T (h−1)
))

(4.5)

+ (σ2 + µ2 − µ)ζ2h−1.

Proof. Suppose that the random tree T (h) is rooted at node v and let S(v) =
{w1, . . . , wD} be the set of its children. Recall that we are working under the random
tree model and each vertex can be a parent of 0, . . . , k children with probability
p = (p0, . . . , pk) respectively. From the variance formula (2.1) we have

E

(
Var

(
C
(
T (h)

) ∣∣∣ T (h)
))

= E (Var (C (Tv) | Tv)) =(4.6)

= E


D

∑

16j6D

Var
(
C
(
Twj

) ∣∣ Twj

)

+
∑

16i<j6D

(
Cost (Twi

)− Cost
(
Twj

))2



=
∑

06d6k

E


D2 1

D

∑

16j6D

Var
(
C
(
Twj

) ∣∣ Twj

)
∣∣∣∣∣∣
D = d


P(D = d)

︸ ︷︷ ︸
Part (a)

+
∑

06d6k

E


 ∑

16i<j6D

(
Cost (Twi

)− Cost
(
Twj

))2
∣∣∣∣∣∣
D = d


P(D = d)

︸ ︷︷ ︸
Part (b)

.

Having in mind that D, the degree of v, is a random variable such that E(D) = µ
and Var(D) = σ2, it follows that E(D2) = σ2 + µ2, and by linearity of expectation
we have the following.

• Part (a):

∑

06d6k

E


D2 1

D

∑

16j6D

Var
(
C
(
Twj

) ∣∣ Twj

)
∣∣∣∣∣∣
D = d


P(D = d)(4.7)

=︸︷︷︸
(∗)

∑

06d6k

E
(
D2Var (C (Tw1) | Tw1)

∣∣ D = d
)
P(D = d)

= E
(
D2
)
E (Var (C (Tw1) | Tw1))

=
(
σ2 + µ2

)
E

(
Var

(
C
(
T (h−1)

) ∣∣∣ T (h−1)
))

,

where “(∗)” follows from the fact that w1, . . . , wd are roots of independent
and identically distributed random trees, and as a consequence, the random
variables

Var
(
C
(
Twj

) ∣∣ Twj

)
, j = 1, . . . , d

have the same distribution for any d ∈ N, so,
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E


 1

D

∑

16j6D

Var
(
C
(
Twj

) ∣∣ Twj

)



=
∑

06d6k

E


 1

D

∑

16j6D

Var
(
C
(
Twj

) ∣∣ Twj

)
∣∣∣∣∣∣
D = d


P(D = d)

=
∑

06d6k

E (Var (C (Tw1) | Tw1) | D = d)P(D = d) = E (Var (C (Tw1) | Tw1)) .

• For Part (b) we continue with

∑

06d6k

E


 ∑

16i<j6D

(
Cost (Twi

)− Cost
(
Twj

))2
∣∣∣∣∣∣
D = d


P(D = d)(4.8)

=︸︷︷︸
(∗∗)

∑

06d6k

E
(
D(D − 1)ζ2h−1

∣∣ D = d
)
P(D = d)

= E (D(D − 1)) ζ2h−1 =
(
σ2 + µ2 − µ

)
ζ2h−1,

where (∗∗) follows from (4.2) and from the fact that Cost (Tw1) , . . . ,Cost (Twd
)

are independent and identically distributed random variables with expectation and
variance equal to νh−1 and ζ2h−1 respectively. So, by Lemma 4.2 (4.3),

E


 ∑

16i<j6d

(
Cost (Twi

)− Cost
(
Twj

))2

 = d(d− 1)ζ2h−1.

We complete the proof of the lemma by combining (4.6), (4.7), and (4.8).
Corollary 4.4 (Lower bound on Knuth’s expected variance). Under the

settings of the random tree model,

(4.9) E

(
Var

(
C
(
T (h)

) ∣∣∣ T (h)
))

>
(
σ2 + µ2 − µ

) 1−
(
σ2 + µ2

)h

1− (σ2 + µ2)
.

Proof.

E

(
Var

(
C
(
T (h)

) ∣∣∣ T (h)
))

= (σ2 + µ2)E
(
Var

(
C
(
T (h−1)

) ∣∣∣ T (h−1)
))

+ (σ2 + µ2 − µ)ζ2h−1

>︸︷︷︸
ζ2
h
>1

(
σ2 + µ2

)
E

(
Var

(
C
(
T (h−1)

) ∣∣∣ T (h−1)
))

+
(
σ2 + µ2 − µ

)
1

=︸︷︷︸
(∗)

(
σ2 + µ2 − µ

) 1−
(
σ2 + µ2

)h

1− (σ2 + µ2)
,

where (∗) follows from the fact that the recursion of type

F (n) = αF (n− 1) + β, F (0) = 0,
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has the solution of the form

F (n) = β
1− αn

1− α
.

(See Lemma A.3).
Next, we proceed to the analysis of E

(
Var

(
CSE

(
T (h)

) ∣∣ T (h)
))
.

Theorem 4.5 (Upper bound on the SE variance under the random tree model).
Let T (h) be a random tree of height h. Let

B′ = max








hk2 ln
(
2h(σ2 + µ2) σ2µ

(µ−1)3

)

2(µ− 1)2



,

⌈
hσ2

µ2

⌉
 ,

and let m∗ be the first level of T (h) for which the number of nodes is greater or equal
to B′; that is

m∗ = min
m

{
m : S(m)

> B′
}
.

Then, for the budget B that satisfies

B = |S(m∗)| 6 kB′,

E

(
Var

(
CSE

(
T (h)

) ∣∣∣ T (h)
))

6 B2heµ2h

(
σ2µ

(µ− 1)3
+ 1

)
.

Similar to Lemma 4.3, the idea is to upper–bound the variance formula (2.1).
However, in the SE analysis, the cardinality of hyper nodes during the SE algorithm
execution is playing an important role and must be taken into consideration. Our
objective is to show that starting from some budget size, the hyper node cardinality
will not vary much, which will cause a significant variance minimization. The proof
is completed in few steps using Lemmas 4.6, 4.7 and 4.8 and Corollary 4.9.

Lemma 4.6 (Random forest variance - Part 1). Consider a random forest T
(h)
v

of height h where v is the root hyper node. Let S(v) = {w1, . . . ,wD} be the set of
v’s children. Then,

E

(
Var

(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))
6 E

(( |S(v)|
|v|

)2

Var
(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

))

+ E

(( |S(v)|
|v|

)2
)

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h−1

.

Remark 4.1. Note that T
(h−1)
wi

, i = 1, . . . , D are forests and that w1, . . . ,wD

are just hyper nodes that contains roots of random trees so with out loss of generality
we write w1 in the result of the above lemma.

Proof. Recall that we are working under the random tree model and each
vertex v ∈ v can be a parent of 0, . . . , k children with probability p = (p0, . . . , pk)
respectively. From the variance formula (3.3) we have

E

(
Var

(
CSE

(
T (h)
v

) ∣∣∣ T (h)
))

= E (Var (CSE (Tv) | Tv)) =(4.10)

= E




(
|S(v)|
|v|

)2

D

∑

16j6D

Var
(
CSE

(
Twj

) ∣∣ Twj

)



︸ ︷︷ ︸
Part (a)
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+ E




(
|S(v)|
|v|

)2

D2

∑

16i<j6D

(
Cost (Twi

)

|wi|
− Cost

(
Twj

)

|wj |

)2



︸ ︷︷ ︸
Part (b)

.

• Part (a):
Note that w1, . . . ,wD are roots of identically distributed random forests of
height h− 1 and consider the random variables

Var
(
CSE

(
Twj

) ∣∣ Twj

)
, j = 1, . . . , D.

Despite the fact that those variables are clearly dependent (because wi and
wj , 1 6 i < j 6 D can share a subset of nodes), they still have the same
expected value, so,

E



( |S(v)|
|v|

)2
1

D

∑

16j6D

Var
(
CSE

(
Twj

) ∣∣ Twj

)

(4.11)

=
∑

16d6|v|k

E




(
|S(v)|
|v|

)2

D

∑

16j6D

Var
(
CSE

(
Twj

) ∣∣ Twj

)
∣∣∣∣∣∣∣
D


Pd

=
∑

16d6|v|k

E

(( |S(v)|
|v|

)2

Var (CSE (Tw1) | Tw1)

∣∣∣∣∣ D
)
Pd

= E

(( |S(v)|
|v|

)2

Var
(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

))
,

where Pd = P(D = d).
• Part (b):

E




(
|S(v)|
|v|

)2

D2

∑

16i<j6D

(
Cost (Twi

)

|wi|
− Cost

(
Twj

)

|wj |

)2



(4.12)

=
∑

06d6|v|k


E




(
|S(v)|
|v|

)2

D2

∑

16i<j6D

(
Cost (Twi

)

|wi|
− Cost

(
Twj

)

|wj |

)2
∣∣∣∣∣∣∣
D





Pd

=
∑

06d6|v|k




(
|S(v)|
|v|

)2

D2
E


 ∑

16i<j6D

(
Cost (Twi

)

|wi|
− Cost

(
Twj

)

|wj |

)2
∣∣∣∣∣∣
D





Pd

6︸︷︷︸
Lemma 4.2 (4.4)

∑

06d6|v|k




(
|S(v)|
|v|

)2

D2
E

(
D(D − 1)

ζ2h−1

|w1|

∣∣∣∣ D
)

Pd

=
∑

06d6|v|k

[
E

(( |S(v)|
|v|

)2
D(D − 1)

D2

ζ2h−1

|w1|

∣∣∣∣∣ D
)]

Pd

6︸︷︷︸
|w1|>1

E

(( |S(v)|
|v|

)2 ζ2h−1

1

)
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6︸︷︷︸
(4.2)

E

(( |S(v)|
|v|

)2
)

σ2

(µ− 1)2

(
1− µ2h−1

µ− 1
− (2h− 1)µh−1

)

6 E

(( |S(v)|
|v|

)2
)

σ2

(µ− 1)3
µ2h−1

6 E

(( |S(v)|
|v|

)2
)

σ2µ

(µ− 1)3
(µ2)h−1

6︸︷︷︸
σ2

B
>0

E

(( |S(v)|
|v|

)2
)

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h−1

.

We complete the proof of the lemma by combining (4.10), (4.11), and (4.12).
We are interested in having all the tree hyper nodes to retain cardinalityB. This

will allow us to control the value of the (σ2/B + µ2) term and as a consequence to
introduce a significant variance reduction as will be shown in the following lemmas.
In Lemma 4.7 we assume that the root has the desired cardinality and consider the
following events:

A = {|S(v)| > B}, A = {|S(v)| < B}.

Lemma 4.7 (Random forest variance - Part 2). Consider a random forest T
(h)
v

of height h where v is the root hyper node such that |v| = B. Then,

E

(
Var

(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))
6

6 E

((
σ2

B
+ µ2

)
Var

(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

)
+

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h
∣∣∣∣∣ A
)
P(A)

+ h
(
σ2 + µ2

)h σ2µ

(µ− 1)3
P(A).

Proof. It is not hard to prove by induction that recursive equations of the type

(4.13) F (n) = αF (n− 1) + βαn + γ, F (0) = 0, α > 1, γ > 0,

are bounded by

(4.14) F (n) 6 αnn(β + γ).

See Lemma A.3 for a proof. In addition, under the random tree model,

E

( |S(v)|
|v|

)2

= Var

( |S(v)|
|v|

)
+ µ2 =

σ2

|v| + µ2.

See Lemma A.4 for the proof. Having in mind that by the law of total expectation

E

(( |S(v)|
|v|

)2
∣∣∣∣∣ A
)
P(A) + E

(( |S(v)|
|v|

)2
∣∣∣∣∣ A
)
P(A) =

σ2

B
+ µ2,

we can conclude that

E

(( |S(v)|
|v|

)2
∣∣∣∣∣ A
)
P(A) 6

σ2

B
+ µ2, E

(( |S(v)|
|v|

)2
∣∣∣∣∣ A
)
P(A) 6 σ2 + µ2.

We complete the proof by applying the law of total expectation on the result
of Lemma 4.6.
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E

(
Var

(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))

6 E

((
σ2

B
+ µ2

)
Var

(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

)
+

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h
∣∣∣∣∣ A
)
P(A)

+ E

((
σ2 + µ2

)
Var

(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

)
+

σ2µ

(µ− 1)3
(
σ2 + µ2

)h
∣∣∣∣ A
)
P(A)

6 E

((
σ2

B
+ µ2

)
Var

(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

)
+

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h
∣∣∣∣∣ A
)
P(A)

+ h
(
σ2 + µ2

)h σ2µ

(µ− 1)3
P(A).

Lemma 4.8 (Random forest variance - Part 3). Consider a random forest T
(h)
v

of height h where v is the root hyper node such that |v| = B. Then, for the budget
B that satisfies

B > max








hk2 ln
(
2h(σ2 + µ2) σ2µ

(µ−1)3

)

2(µ− 1)2



,

⌈
hσ2

µ2

⌉
 ,

it holds that

E

(
Var

(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))
6 heµ2h

(
σ2µ

(µ− 1)3
+ 1

)
.

Proof. Recall that P(A) is the probability that S(|v|) < B. Hoeffdings
inequality yields

P(A) 6 2e−
2|v|(µ−1)2

k2 ,

See Lemma A.5 for the proof. By requiring

(4.15) h
(
σ2 + µ2

)h σ2µ

(µ− 1)3
P(A) 6︸︷︷︸

|v|=B

h
(
σ2 + µ2

)h σ2µ

(µ− 1)3
2e−

2B(µ−1)2

k2 6 1,

we arrive at

B >




hk2 ln
(
2h(σ2 + µ2) σ2µ

(µ−1)3

)

2(µ− 1)2



.

With this budget and from Lemma 4.7 we have

E

(
Var

(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))
6

6 E

((
σ2

B
+ µ2

)
Var

(
CSE

(
T (h−1)
w1

) ∣∣∣ T (h−1)
w1

)
+

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h
∣∣∣∣∣ A
)
P(A)

+ h
(
σ2 + µ2

)h σ2µ

(µ− 1)3
P(A)

︸ ︷︷ ︸
61 by (4.15)

6
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6︸︷︷︸
P(A)61

E

((
σ2

B
+ µ2

)
Var

(
CSE

(
T (h−1)
w

) ∣∣∣ T (h−1)
w

)
+

σ2µ

(µ− 1)3

(
σ2

B
+ µ2

)h
)

+ 1,

where |w| = B. We complete the proof by applying the recursive bound (4.13) and
(4.14) on the above equation and arrive at

E

(
Var

(
CSE

(
T (h)
v

) ∣∣∣ T (h)
v

))
6 h

(
σ2

B
+ µ2

)h(
σ2µ

(µ− 1)3
+ 1

)

6︸︷︷︸
B>

⌈

hσ2

µ2

⌉

hµ2h

(
1

h
+ 1

)h(
σ2µ

(µ− 1)3
+ 1

)
6 heµ2h

(
σ2µ

(µ− 1)3
+ 1

)
.

We are ready to complete the proof of Theorem 4.5.
Proof. The proof is almost an immediate consequence of Lemmas 3.5 and 4.8.

Let v be the hyper node at level m and note that by definition of the Lemma,
|v| = |S(m∗)|2 = B2. Then, the variance of SE Algorithm 2.2 satisfies:

E

(
Var

(
CSE

(
T (h)

) ∣∣∣ T (h)
))

6︸︷︷︸
Lemma 3.5

|v|2E
(
Var

(
CSE

(
T (h−m∗)
v

) ∣∣∣ T (h−m∗)
v

))

6︸︷︷︸
Lemma 4.8

B2heµ2h

(
σ2µ

(µ− 1)3
+ 1

)
.

Having in mind that each vertex has at most k successors and combining this
with the fact that |S(m∗−1)| < B′ we conclude that |S(m∗)| 6 kB′, thus completing
the proof of Theorem 4.5.

The following corollary reveals the true strength of the SE Algorithm 2.2.
Corollary 4.9 (Average variance of SE and Knuth). For the problem of

counting the number of nodes in a random tree T ∈ Fh
p and provided that the

budget B is chosen according to the conditions of Theorem 4.5, the SE Algorithm
2.2 introduces an expected variance reduction that is greater or equal to

1

P(h;B, k, σ, µ)

((
1 +

σ2

µ2

)h

− 1

µ2h

)
,

where P(h;B, σ, µ)) is a polynomial function of h,B, k, σ and µ.

Remark 4.2. Note that if
(
1 + σ2/µ2

)h
is an exponentially fast growing func-

tion, the variance reduction becomes significant. This happens for example when µ
and σ2 do not depend on the parameter h.

Proof. Combining Corollary 4.4 and Theorem 4.5 results in

E
(
Var

(
C
(
T (h)

) ∣∣ T (h)
))

E
(
Var

(
CSE

(
T (h)

) ∣∣ T (h)
)) >

(
σ2 + µ2 − µ

) 1−(σ2+µ2)h

1−(σ2+µ2)

B2heµ2h
(

σ2µ
(µ−1)3 + 1

)

=
1

(σ2+µ2−µ)/(1−σ2+µ2)

B2he
(

σ2µ

(µ−1)3
+1

)

︸ ︷︷ ︸
(P(h;B,k,σ,µ)))

·
(
σ2 + µ2

)h − 1

µ2h
=

1

P(h;B, k, σ, µ)




(
µ2
(
1 + σ2

µ2

))h

µ2h
− 1

µ2h




=
1

P(h;B, k, σ, µ)

((
1 +

σ2

µ2

)h

− 1

µ2h

)
.
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4.1. FPRAS for special families of trees. Following [23], we first formalize
the notation of “computationally efficient approximation algorithm”. A randomized
approximation scheme for Cost(T ) is a non-deterministic algorithm which, when
given an input tree T and a real number ε ∈ (0, 1), outputs a random variable K
such that

P ((1 − ε)Cost(T ) 6 K 6 (1 + ε)Cost(T )) >
3

4
.

It was shown in [15] that the success probability 3/4 can be boosted to any 1 − δ
by running the algorithm O(log(δ−1)) times and taking the median of the obtained
results. Such a scheme is said to be fully polynomial if its execution time is bounded
by some polynomial in the tree height (that is assumed to be polynomial in our case)
and ε−1. If this condition holds, such algorithm is a fully polynomial randomized
approximation scheme or FPRAS. A FPRAS is considered a very good algorithm,
especially when a polynomial time exact algorithm does not exists (unless P = NP ),
so, FPRAS for such problems is essentially the best approximation one can hope
to achieve [14]. We will construct a FPRAS from the unbiased SE estimator K for
Cost(T ) — the number of vertices in T .

Those settings allow us to run a number of independent copies of the algorithm
on the same input, and output the average of the results. Actually, for any random
variable U with expectation µ′ and variance σ′2, Chebyshev’s inequality yield

P (|U − µ′| > rσ′) 6
1

r2
.

Combining this with the independence of repetitive calculations of the random
variable K and provided that

Cost(T ) = E(K) = µ′ and Var(K) = σ′2,

one can show that for a random variable K defined by

K =
1

N

N∑

i=1

Ki,

we have

P
(
|K − µ′| > εµ′

)
6

Var(K)
ε2µ′2

=
σ′2

N

ε2µ′2
.

So, if we demand the final expression to be less than 1/4, one can immediately
conclude that the use of N samples such that

σ′2

N

ε2µ′2
6

1

4
⇒ N >

4

ε2
σ′2

µ′2

will satisfy

P
(
|K − µ′| > εµ′

)
6

1

4
⇒ P

(
|K − µ′| 6 εµ′

)
>

3

4
.

Moreover, from this, it readily follows that the critical factor of the algorithm is
the variance of the unbiased estimator divided by the square of its expectation —
the CV2. We conclude the above discussion with an important observation. If the
coefficient of variation is bounded above by a polynomial in the size of the tree
height, then we have constructed a FPRAS.
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As it was already discussed in Section 1, we probably cannot hope to develop
FPRAS for the general tree counting problem, because the latter is considered to
be a very hard task. Still, we show that the SE algorithm is efficient for counting
the number of vertices in random trees. More specifically, following the work of
Rasmussen [23], we show that for almost all trees that were generated under the
random tree model and provided that the number of vertices is not much smaller
than their expected number (that is given by equation (4.1)), one can construct
FPRAS.

Theorem 4.10 (Almost sure FPRAS). Let Fh
p′ be a family of random trees

such that for T ∈ Fh
p′

(4.16) lim
h→∞

P

(
Cost(T ) <

1

P(h)
νh

)
= 0,

where P(h) > 0 is some polynomial function in h and νh = 1−µh+1

1−µ is the expected

number of nodes. In other words, for most instances, (almost surely), the actual
number of nodes is not much smaller than the expectation. Then, under the above
condition, and provided that

(4.17) µ > 1 + ε for any ε > 0, (see Remark 4.3),

the SE algorithm is FPRAS for most of the instances in T ∈ Fh
p′ , that is,

CV2 =
Var (CSE(T ) | T )
(E (CSE(T ) | T ))2

is bounded by a polynomial in h with high probability.
Remark 4.3. The condition (4.17) is technical in sense that we demand µ to

be not very close to 1.
Proof. Let T ∈ T ∈ Fh

p′ be a random tree that was generated by the corre-
sponding branching process. Recall that both Var (CSE(T ) | T ) and E (CSE(T ) | T )
are random variable, so, by the Markov inequality,

P (Var (CSE(T ) | T ) > a) 6
E (Var (CSE(T ) | T ))

a
.

By setting

a = hE (Var (CSE(T ) | T )) ,

we get

(4.18) P

(
Var (CSE(T ) | T ) > hE (Var (CSE(T ) | T ))

)
6

1

h
→ 0 as h→∞.

Note also that by Theorem 3.1, for any tree T ,

E (CSE(T ) | T ) = Cost(T ),

so, under the condition (4.16),

(4.19) P

(
E (CSE (T ) | T ) = Cost(T ) <

1

P(h)

1− µh+1

1− µ

)
→ 0 as h→∞.

And now, by combining (4.18) and (4.19), we conclude that for T ∈ Fh
p′ and as

h→∞,
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P


 Var (CSE(T ) | T )
(E (CSE(T ) | T ))2

=
Var (CSE(T ) | T )

(Cost(T ))
2 6

hE (Var (CSE(T ) | T )))(
1

P(h)E (Cost(T ))
)2

6︸︷︷︸
Corollary 4.9

h(P(h))2
B2he

(
σ2µ+ (µ− 1)3

)

µ2(µ− 1)


→ 1 as h→∞.

We complete the proof by noting that under (4.17),

h(P(h))2
B2he

(
σ2µ+ (µ− 1)3

)

µ2(µ− 1)
6︸︷︷︸

Remark 4.3

hε(P(h))2
B2he

(
σ2µ+ (µ− 1)3

)

µ2

is bounded by a polynomial, while Theorem 4.5 provides the upper bound on B2;
that is

B2
6 [k (B′)]

2
6


k


max








hk2 ln
(
2h(σ2 + µ2) σ2µ

(µ−1)3

)

2(µ− 1)2



,

⌈
hσ2

µ2

⌉






2

.

As a consequence,

Var (CSE(T ) | T )
(E (CSE(T )))

2

is bounded by a polynomial in h for most of random tree instances.
We complete this section by showing a specific family of trees T ∈ Fh

p∗ for which

SE is FPRAS for counting the number of nodes in Fh
p∗ .

Let Fh
p∗ be a family of random trees defined by a fixed height h ∈ N and

probability vector

p∗ =
(
p0, . . . , ph⌈log(h)⌉−1, ph⌈log(h)⌉, . . . , ph⌈log(h)⌉+h

)
,

where

pi = 0 for i = 0, . . . , h⌈log(h)⌉ − 1 and pi =
1

h
for i = h⌈log(h)⌉, . . . , h⌈log(h)⌉+ h.

In other words, each vertex can have

a = h⌈log(h)⌉, . . . , h⌈log(h)⌉+ h = b

successors with equal probability 1/h. Suppose that such trees are generated up to
height h. Note that this is always possible since p0 = 0. Under the above settings,
we have a discrete uniform distribution between a and b over h values. Such a
distribution satisfies

(4.20) µ =
a+ b

2
=

2h⌈log(h)⌉+ h

2
and σ2 =

h2 − 1

12
,

and as a consequence,

σ2

µ2
→ (h2 − 1)/12

(2h⌈log(h)⌉+ h)2/22
→ 1− 1/h2

3
(
4⌈log2(h)⌉+ 4⌈log(h)⌉

h + 1
) →(4.21)

→ 1

12⌈log2(h)⌉
, h→∞.
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Theorem 4.11 (FPRAS). For the random tree family Fh
p∗ the following holds.

1. Knuth’s estimator average variance is growing at an exponential rate com-
pared to the SE average variance.

2. For most of the trees in Fh
p∗, SE is FPRAS.

Proof.
1. Follows immediately from Corollary 4.9 and the fact that

(
1 +

σ2

µ2

)h

→
(
1 +

1

12⌈log2(h)⌉

)h

>︸︷︷︸
log(1+x)> 2x

2+x

e
h

2
12⌈log2(h)⌉

2+ 1
12⌈log2(h)⌉

= e
2h

12⌈log2(h)⌉

12⌈log2(h)⌉

24⌈log2(h)⌉+2 = e
h

12⌈log2(h)⌉+1 , h →∞.

2. To complete the second part of this theorem, we will show that

P

(
Cost(T ) <

1

P(h)

1− µh+1

1− µ

)
→ 0, h →∞.

thus satisfying the condition of Theorem 4.10. From (4.1) and (4.2), we
have

lim
h→∞

ζ2h
ν2h

= lim
h→∞

σ2

(1−µ)2

[
1−µ2h+1

1−µ − (2h+ 1)µh
]

(
1−µh+1

1−µ

)2 =
σ2

µ2
=︸︷︷︸

(4.21)

1

12⌈log2(h)⌉
.

And now, by choosing

P(h) =

√
⌈log(h)⌉ − 1√
⌈log(h)⌉

,

we arrive at

lim
h→∞

P

(
Cost(T ) <

1

P(h)

1− µh+1

1− µ

)

= lim
h→∞

P

(
Cost(T ) <

(
1− 1√

⌈log(h)⌉

)
νh

)

6︸︷︷︸
(∗)

ζ2h

ζ2h +
ν2
h

⌈log(h)⌉

=
ζ2h/ν

2
h

ζ2h/ν
2
h + 1

⌈log(h)⌉

=

1
12⌈log2(h)⌉

1
12⌈log2(h)⌉

+ 1
⌈log(h)⌉

=
1

1 + 12⌈log(h)⌉ = 0,

where (∗) follows from the one–sided Chebyshev’s bound

P(X < νh − a) 6
ζ2h

ζ2h + a2
.

We complete the proof by noting that (4.17) holds, because

lim
h→∞

1 +
1

P(h)
= lim

h→∞

2⌈log(h)⌉ − 1

⌈log(h)⌉ − 1
= 2

< lim
h→∞

µ = lim
h→∞

2h⌈log(h)⌉+ h

2
= h⌈log(h)⌉+ h/2.
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5. Numerical Results. In this section we present some numerical results
obtained by the SE Algorithm 2.2. The results were obtained using an Intel Core
i7 machine with 16 GB of RAM. The tables should be interpreted as follows.

• Run: independent runs of the algorithm.
• Ĉ, ĈSE: estimators returned by Knuth’s Algorithm 2.1 and SE Algorithm
2.2 respectively.
• R̂E: estimated relative error of the unbiased estimator (3.4).

Random Trees: As a motivating example for further investigation of the SE
method, we consider a random tree that was generated in the following manner.
Starting from the tree root and for each node recursively, we connect 0, 1, 2 or 3
children with probabilities 0.3, 0.4, 0.1 and 0.2 respectively. In the following exam-
ples, we consider trees of specific heights. Hence, we stop the tree generation at the
predetermined height.

Model 1: The generated tree is of height 60 and the number of nodes is
1976527. Tables 1 and 2 present the comparison between the Knuth’s estimator
and the SE algorithm. Note that if SE uses B = 1 we get Knuth’s algorithm. We
introduce the parameter R — the number of independent replications of unbiased
estimator — and deliberately set the simulation effort to be the same (B · R) for
both algorithms.

Table 1
Performance of 10 independent runs

of Knuth’s Algorithm 2.1 for a randomly
generated tree (Model 1) with B = 1 and
R = 20000.

Run Ĉ R̂E

1 3.06× 103 6.09 × 10−1

2 1.44× 104 9.52 × 10−1

3 1.05× 103 2.40 × 10−1

4 7.08× 103 7.93 × 10−1

5 3.01× 103 6.08 × 10−1

6 4.36× 104 8.41 × 10−1

7 3.26× 103 5.36 × 10−1

8 3.01× 103 4.14 × 10−1

9 1.51× 103 2.65 × 10−1

10 1.06× 103 3.06 × 10−1

Average 8.10× 103 5.56 × 10−1

Table 2
Performance of 10 independent runs of

SE Algorithm 2.2 for a randomly generated
tree (Model 1) with B = 20 and R = 1000.

Run ĈSE R̂E

1 2.04× 106 5.03 × 10−2

2 1.83× 106 5.56 × 10−2

3 1.99× 106 7.18 × 10−2

4 2.02× 106 5.80 × 10−2

5 1.90× 106 5.97 × 10−2

6 1.95× 106 5.70 × 10−2

7 2.03× 106 6.38 × 10−2

8 1.83× 106 5.25 × 10−2

9 2.14× 106 6.88 × 10−2

10 1.97× 106 5.97 × 10−2

Average 1.97× 106 5.97 × 10−2

Model 2: We consider another model with p = (0.5, 0.1, 0.2, 0.2, 0.1) the tree
was generated until height h = 30. The number of vertices was 551. Tables 3 and
4 summarize the results.

Model 3: Finally, we consider a model with p = (0.0, 0.7, 0.2, 0.1), where the
tree was generated until height h = 30. The number of vertices was 25723. Tables
5 and 6 summarize the results.

It is interesting to note that for the first two models, Knuth’s estimator performs
poorly but this is not the case for the last model. The key to understand this
phenomenon lies in the analysis of the variance of corresponding child distributions.
Recall the result that was obtained in Corollary 4.9. The variance reduction of SE

is governed by the
(
1 + σ2/µ2

)h
term that clearly governs the exponential grow.
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Table 3
Performance of 10 independent runs

of Knuth’s Algorithm 2.1 for a randomly
generated tree (Model 2) with B = 1 and
R = 20000.

Run Ĉ R̂E

1 1.38× 102 1.71× 10−1

2 1.53× 102 4.05× 10−1

3 1.68× 102 4.63× 10−1

4 1.85× 102 4.28× 10−1

5 1.15× 102 1.11× 10−1

6 1.89× 102 2.90× 10−1

7 1.25× 102 1.16× 10−1

8 2.06× 102 4.84× 10−1

9 2.06× 102 4.25× 10−1

10 2.38× 102 8.09× 10−1

Average 1.72× 102 3.70× 10−1

Table 4
Performance of 10 independent runs of

SE Algorithm 2.2 for a randomly generated
tree (Model 2) with B = 20 and R = 1000.

Run ĈSE R̂E

1 5.51× 102 5.97 × 10−3

2 5.52× 102 6.24 × 10−3

3 5.45× 102 6.18 × 10−3

4 5.47× 102 6.00 × 10−3

5 5.49× 102 6.31 × 10−3

6 5.51× 102 6.35 × 10−3

7 5.46× 102 6.08 × 10−3

8 5.53× 102 5.97 × 10−3

9 5.56× 102 6.01 × 10−3

10 5.58× 102 6.05 × 10−3

Average 5.51× 102 6.12 × 10−3

Table 5
Performance of 10 independent runs

of Knuth’s Algorithm 2.1 for a randomly
generated tree (Model 3) with B = 1 and
R = 20000.

Run Ĉ R̂E

1 2.52× 104 2.98× 10−2

2 2.60× 104 3.50× 10−2

3 2.73× 104 3.82× 10−2

4 2.63× 104 3.31× 10−2

5 2.55× 104 3.05× 10−2

6 2.56× 104 3.13× 10−2

7 2.63× 104 3.87× 10−2

8 2.51× 104 3.17× 10−2

9 2.55× 104 3.67× 10−2

10 2.50× 104 3.40× 10−2

Average 2.58× 104 3.39× 10−2

Table 6
Performance of 10 independent runs of

SE Algorithm 2.2 for a randomly generated
tree (Model 3) with B = 20 and R = 1000.

Run ĈSE R̂E

1 2.55× 104 1.05× 10−2

2 2.58× 104 1.07× 10−2

3 2.59× 104 1.10× 10−2

4 2.55× 104 1.11× 10−2

5 2.59× 104 1.08× 10−2

6 2.56× 104 1.08× 10−2

7 2.60× 104 1.08× 10−2

8 2.61× 104 1.08× 10−2

9 2.54× 104 1.09× 10−2

10 2.59× 104 1.04× 10−2

Average 2.57× 104 1.08× 10−2

By examining the parameters of the above models, we get a desired intuition for
different performance rates.

• For Model 1 we have

p = (0.3, 0.4, 0.1, 0.2) ⇒ µ = 1.2, σ2 = 2.6

⇒
(
1 +

2.6

1.22

)60

≈ 7.61× 1026.

• For Model 2 we have

p = (0.5, 0.1, 0.2, 0.2, 0.1) ⇒ µ = 1.5, σ2 = 2.05

⇒
(
1 +

2.05

1.52

)30

≈ 2.75× 108.
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• For Model 3 we have

p = (0.0, 0.7, 0.2, 0.1) ⇒ µ = 1.4, σ2 = 0.44

⇒
(
1 +

0.44

1.42

)30

≈ 435.

Non–random Model: Numerous experiments we performed with the SE al-
gorithm indicate that it can introduce a good performance for different problems
and models, not necessarily random ones. Unfortunately, it is generally not easy
to develop rigorous theoretical guarantees similar to those introduced in Section 3.
But the numerical performance can readily be examined. As an additional example,
consider the following, very structured tree.

The root has 3 children. The leftmost child becomes the root of full binary tree
and the rest of the children will continue the root behavior recursively. Let Tbft(h)
be the number of vertices in the big fat tree (BFT) of height h. Then,

Tbft(h)) = 1︸︷︷︸
root

+ 2h−1 − 1︸ ︷︷ ︸
left successor full binary tree

+ 2Tbft(h− 1)︸ ︷︷ ︸
rightmost and middle successors

.

Solving the recursion gives

(5.1) Tbft(h) = (h+ 1)2h for h > 0.

�

� � �

Fig. 5. BFT tree of height 3 with 32 nodes.

Let C (Tv) be Knuth’s estimator for the BFT tree of height h rooted at v and
let

S(v) = {w1, w2, w3} ,

where w1 is a root of a full binary tree of height h− 1 and w2, w3 are the roots of
BFT trees of height h− 1 respectively. Then, having in mind that for a full k-ary
tree Knuth’s estimator has zero variance [17], and, combining with (2.1), we have

Var (C (Tv)) =(5.2)

= 3
∑

16j63

Var
(
C
(
Twj

))
+

∑

16i<j63

(
Cost (Twi

)− Cost
(
Twj

))2

= 3
(
Var (C (Tw1)) + 2Var (C (Tw2))

)
+

∑

16i<j63

(
Cost (Twi

)− Cost
(
Twj

))2
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= 6Var (C (Tw2)) + 2 (Tbft(h− 1)− Cost (Tw1))
2

= 6Var (C (Tw2)) + 2
(
h2h−1 − (2h − 1)

)2
.

Using the equation above, we show by induction that

(5.3) Var (C (Tv)) > 1.4h−1
(
2h−2

)2
.

For h = 2,

Var (C (Tv)) = 0 + 2(2− 3)2 = 2 > 1.42−1
(
22−2

)2
.

Suppose that (5.3) holds for heights 1, . . . , h− 1 and consider the variance at level
h.

Var (C (Tv)) = 6Var (C (Tw2)) + 2
(
h2h−1 − (2h − 1)

)2

> 6
(
1.4h−2

(
2h−3

)2)
+ 2

(
h2h−1 − (2h − 1)

)2

>
1.5

1.4
(1.4 · 2 · 2)

(
1.4h−2

(
2h−3

)2)

>
1.5

1.4

(
1.4 · 1.4h−24 ·

(
2h−3

)2)
> 1.4h−1

(
2h−2

)2
.

Combining now (5.1) and (5.3), we can derive a lower bound on Knuth’s estimator’s
coefficient of variation:

CV2 =
Var (C (Tv))

(E (C (Tv)))
2 >

1.4h−1
(
2h−2

)2

((h+ 1)2h)
2

>
1.4h−1

(h+ 1)2

(
2h−2

)2

16 (2h−2)
2 >

1.4h−1

16(h+ 1)2
.

Clearly, this bound implies that the efficiency of Knuth’s estimator deteriorates at
an exponential rating for BFT trees.

In Figure 6, we plotted the numerically obtained coefficients of variations for the
BFT trees of different heights. In the left panel, the numerical CV of the Knuth’s
estimator is plotted against the exact CV value, which was calculated using the
recurrence formula (5.2). In the right panel, we plotted the numerical coefficient of
variation of SE. Unfortunately, we do not posses a good upper bound for the CV of
SE. Still, we can clearly observe the superiority of the SE algorithm. The CV of SE
Algorithm 2.2 seems to grow linearly while the CV of Knuth’s Algorithm 2.1 has
a clear exponential rate of growth. Moreover, while we could easily estimate the
CV of SE Algorithm 2.2 on the trees of height 100, we could not do the same for
Algorithm 2.1 because of the large relative error. As a consequence, we only report
the CV until h = 30 for the Knuth’s method.
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Fig. 6. The performance of Knuth’s Algorithm 2.1 and the SE Algorithm 2.2 on counting
BFT trees of different heights. Left panel: Knuth. Right panel: SE.

6. Concluding remarks. We introduced an adaptation of the SE algorithm
for counting backtrack trees. We showed that this estimator is unbiased, developed
the upper bound for the coefficient of variation and established that for almost all
random trees the SE algorithm is a FPRAS for estimation of the overall number of
vertices. The proposed algorithm is easy to implement and the numerical results
introduce an excellent practical performance. Of interest for future research is to
theoretically investigate specific families of trees that can be efficiently enumerated
using the proposed SE algorithm. Additionally, it will be interesting to rigorously
study further adaptations of SE to different hard counting problems.

Appendix.
Lemma A.1 (Sum of k-subsets). Let A = {r1, . . . , rn} be a set of scalars and

define the set J to be

J = {R | R ⊆ A, |R| = u}, u = 1, . . . , n.

Then,

∑

R∈J

∑
r∈R r

u
=

(
n
u

)∑
16j6n rj

n
.

Proof. Note that there are exactly
(
n−1
u−1

)
subsets in which each rj (j = 1, . . . , n)

appears. We conclude the proof with

∑

R∈J

∑
r∈R r

u
=

(
n−1
u−1

)

u

∑

16j6n

rj =

(n−1)!
(u−1)!(n−u)!

u

∑

16j6n

rj

=

n!
u!(n−u)!

n

∑

16j6n

rj =

(
n
u

)∑
16j6n rj

n
.

Lemma A.2 (Sums of squares bound - from [17]). Let r1, . . . , rn be non–negative
scalars and suppose without loss of generality that r1 6 r2 6 · · · 6 rn 6 a r1 for a
positive scalar a > 1. Then,

∑

16j6n

r2j
1
n

6

(
a2 + 2a+ 1

4a

)
 ∑

16j6n

rj




2

.
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Proof. The proof is an immediate consequence from the following basic calculus
inequality [21] (pages 71,253 – 254). Let l, L, b, B be positive numbers such that

0 < l 6 l1 6 l2 6 · · · 6 ln 6 L and 0 < b 6 b1 6 b2 6 · · · 6 bn 6 B.

Then,

(∑
16j6n l2j

)(∑
16j6n b2j

)

(∑
16j6n ljbj

)2 6
1

4

(√
LB

lb
+

√
lb

LB

)

holds. We continue the development by assigning

li = 1 and bi = ri ∀i = 1, . . . , n.

Having in mind that rn 6 ar1, we get

l = L = 1 and b = r1, B = rn 6 ar1,

and the lemma follows immediately from

∑

16j6n

r2j
1
n

= n
∑

16j6n

r2j 6
1

4

(√
LB

lb
+

√
lb

LB

)
 ∑

16j6n

rj




2

6
1

4

(√
ar1
r1

+

√
r1
ar1

)
 ∑

16j6n

rj




2

6

6
1

4

(
√
a+

√
1

a

)
 ∑

16j6n

rj




2

6
1

4

(a+ 1)2

a


 ∑

16j6n

rj




2

.

Proof. [of Lemma 4.2]

E


 ∑

16i<j6n

(Zi − Zj)
2


 = E


(n− 1)

∑

16j6n

Z2
j − 2

∑

16i<j6n

ZiZj




= (n− 1)
∑

16j6n

E(Z2
j )− 2

∑

16i<j6n

E(ZiZj)

=︸︷︷︸
Zi,Zj i.i.d

(n− 1)
∑

16j6n

E(Z2
j )− 2

∑

16i<j6n

E(Zi)E(Zj)

= n(n− 1)
(
E(Z2

1 )
)
− 2

n(n− 1)

2
(E(Z1))

2

= n(n− 1)
(
E(Z2

1 )
)
− (E(Z1))

2 = n(n− 1)σ2.

Consider now

Ua =
1

m

∑

16j6m

Z
(a)
j and Ub =

1

m

∑

16j6m

Z
(b)
j ,

and suppose that

∣∣∣{Z(a)
1 , . . . , Z(a)

m } ∩ {Z(b)
1 , . . . , Z(b)

m }
∣∣∣ = k (k = 0, . . . ,m)
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where k is the number of the same Z variables. Suppose also without loss of
generality that

{Z(a)
1 , . . . , Z(a)

m } ∩ {Z(b)
1 , . . . , Z(b)

m } = {Z(a)
1 , . . . , Z

(a)
k } = {Z

(b)
1 , . . . , Z

(b)
k }.

Then,

E (Ua − Ub)
2
= E


 1

m

∑

16j6m

Z
(a)
j − 1

m

∑

16j6m

Z
(b)
j




2

= E


 1

m

∑

k+16j6m

Z
(a)
j − 1

m

∑

k+16j6m

Z
(b)
j




2

.

Having in mind that in this case,

U ′
a =

1

m

∑

k+16j6m

Z
(a)
j and U ′

b =
1

m

∑

k+16j6m

Z
(b)
j

are independent random variables that satisfies

E(U ′
a) =

m− k

m
E(Ua), E(U ′

b) =
m− k

m
E(Ub), E(U ′

aU
′
b) = E(U ′

a)E(U
′
b),

and

Var(U ′
a) = Var(U ′

b) = Var


 1

m

∑

k+16j6m

Z


 =

1

m2
(m− k)σ2,

we can write,

E (Ua − Ub)
2
= E (U ′

a − U ′
b)

2
= E

(
U ′2
a − 2U ′

aU
′
b + U ′2

b

)
=

= 2
(
E
(
U ′2
a

)
− (E (U ′

a))
2
)
= 2Var(U ′

a) = 2
1

m2
(m− k)σ2

6 2
σ2

m
.

By the previous equation combined with the linearity of expectation, we complete
the proof with

E




∑

16i<j6(n

m)

(Ui − Uj)
2


 6

((n
m

)

2

)
E (Ua − Ub)

2

6

(
n
m

) ((
n
m

)
− 1
)

2
E (Ua − Ub)

2

6

(
n

m

)((
n

m

)
− 1

)
σ2

m
.

Lemma A.3 (Recursions).
1. The recursive formulas of the type

F (n) = αF (n− 1) + β, F (0) = 0,

has the solution of the form

F (n) = β
1− αn

1− α
.
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2. The recursive formulas of the type

F (n) = αF (n− 1) + βαn + γ, F (0) = 0, α > 1, γ > 0,

is bounded by

F (n) 6 αnn(β + γ).

Proof. For both equations, the proof is by induction on n.
1. For

F (n) = αF (n− 1) + β, F (0) = 0.

• For n = 1,

F (1) = 0 + β = β
1− α1

1− α
.

• Suppose that the proposition holds for n− 1, so,

F (n) = αβ
1− αn−1

1− α
+ β =

βα− βαn + β − βα

1− α
= β

1− αn

1− α
.

2. For,

F (n) = αF (n− 1) + βαn + γ, F (0) = 0, α > 1.

• For n = 1,

F (1) = α · 0 + βα + γ 6︸︷︷︸
α>1

1 · α(β + γ) = βα+ γα.

• Suppose that the proposition holds for n− 1, so,

F (n) 6 α
(
(n− 1)αn−1(β + γ)

)
+ βαn + γ 6

6︸︷︷︸
α>1

α
(
(n− 1)αn−1(β + γ)

)
+ βαn + αnγ

6 αn(n− 1)(β + γ) + βαn + γαn = nαn(β + γ).

Lemma A.4 (Hyper node child distribution). Consider a random tree model
where each node have 0, . . . , k successors with the corresponding probabilities p =
(p0, . . . , pk) such that

µ =
∑

06j6k

jpj , σ2 =
∑

06j6k

j2pj − µ2,

and consider a hyper node v. Then,

E

( |S(v)|
|v|

)2

=
σ2

|v| + µ2.

Proof. Having a hyper node v = {v1, . . . , v|v|} in hand, the number of children
of each vj ∈ v is distributed with p = (p0, . . . , pk). Under the above settings,

|S(v)| =

∣∣∣∣∣∣
∑

16j6|v|

S(vj)

∣∣∣∣∣∣
,
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where S(vj) are independent and identically distributed random variables such that
0 6 S(vj) 6 k, E(S(vj)) = µ and Var(S(vj)) = σ2. Note that

Var

( |S(v)|
|v|

)
= Var

(∑
16j6|v| |S(vj)|
|v|

)
=

σ2

|v| ,

and as a consequence,

E

( |S(v)|
|v|

)2

= Var

( |S(v)|
|v|

)
+ µ2 =

σ2

|v| + µ2.

Lemma A.5 (Hyper node child concentration). Consider a random tree model
where each node have 0, . . . , k successors with the corresponding probabilities p =
(p0, . . . , pk) such that

µ =
∑

06j6k

jpj ,

and consider a hyper node v. Then,

P(|S(v)| < |v|) 6 2e−
2|v|(µ−1)2

k2 .

Proof. By Hoeffding’s inequality [12], let

Y1, . . . , Yn

be independent random variables. If Yj are almost surely bounded; that is,

P(Yj ∈ [aj , bj]) = 1,

then

(A.1) P



∣∣∣∣∣∣
∑

06j6n

Yj − E


 ∑

06j6n

Yj



∣∣∣∣∣∣
> t


 6 2e

− 2t2
∑

06j6n (bj−aj)
2
.

With a hyper node v = {v1, . . . , v|v|}, the number of successors of each vj ∈ v is
distributed with p = (p0, . . . , pk) for 0, . . . , k respectively. Under the above settings,

|S(v)| =
∑

16j6|v|

|S(vj)|,

where S(vj) are independent and identically distributed random variables such that
0 6 S(vj) 6 k and E(S(vj)) = µ. Combining this with (A.1) for t = µ|v| − |v| we
immediately arrive to

P(|S(v)| < |v|) 6 P (||S(v)| − µ|v|| > µ|v| − |v|) 6 2e
− 2(µ|v|−|v|)2

∑

06j6|v| (k−0)2
6

6 2e
− 2|v|2(µ−1)2

|v|k2 = 2e−
2|v|(µ−1)2

k2 .
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