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We consider level crossing for the difference of independent renewal processes. Second-order expansions 

for the distribution function of the crossing time of level n are found, as n + a. As a by-product several 

other results on the difference process are found. The expected minimum of the difference process 

appears to play an important role in the analysis. This makes this problem essentially harder than the 

level crossing for the sum process which was studied earlier. 
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1. Introduction 

Although renewal processes are among the most important and basic processes in 

applied probability, various areas in renewal theory are still rather unexploited. One 

of these more or less “blank spots on the map” seems to be the diference process 

of two independent renewal processes, which occurs frequently in queueing and 

reliability theory. Let N, = (N,(t)) and N, = (N,(t)) be two independent renewal 

processes and let the difference process M be defined by M(t) = N,(t) - N,(t), t 2 0. 

Assume that M has an upward drift. We are in particular interested in the crossing 

time r,, of level n EN. The situation resembles in a way the model of Kroese and 

Kallenberg (1989) [ KK] where level crossing was considered for the sum process 

of independent renewal processes. For that model second-order approximations to 

the distribution function (d.f.) of the crossing time of level n were found, as n + co. 

These approximations depend only on the first three moments of the d.f.‘s defining 

the renewal sequences. 

Both for the sum process and for the difference process a first-order approximation, 

based on asymptotic normality, can be easily established using Cox (1962, p. 73). 

However, as seen in [KK], first order approximations are not very accurate and a 

big improvement is obtained by applying second-order approximations, leading to 

quite satisfactory approximations even for very small values of n. 

The main result of the paper is a second-order expansion for the d.f. of r,, when 

suitably standardized, as n + cc. In the derivation of this expansion we come across 
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several results, which are of independent interest. First of all, in Theorem 4.2 the 

d.f. of M(t) for large values of t is approximated in a similar way as the d.f. of the 

sum process, using expansions for the individual processes. In the case of the sum 

process a classical inversion step makes it possible to give a second-order expansion 

for the d.f. of the crossing time of level n. However, for the difference process, such 

a relatively simple inversion step is not available, due to the fact that in this situation 

the process is not increasing. To tackle these complications we rely on an idea of 

Anscombe (1953) to “look backwards in time”. This idea is most easily used when 

both N, and N2 are stationary renewal processes. In the recent past the idea 

of Anscombe has been applied frequently in boundary crossing problems for random 

walks (cf. Woodroofe (1982), Lalley (1984), Siegmund (1985) and Woodroofe and 

Keener (1986)). 

Apart from a term which may be seen as the equivalent of the inversion step in 

the expansion for the sum process (cf. (3.2) and p. 486 of [KK]) now an extra term 

comes in, where the expectation of the minimum of M emerges. It is shown that 

this expectation exists finitely, due to the positive drift of M and the finiteness of 

the second moments of the corresponding renewal sequences. Finally a delicate 

investigation of the local behavior of M at time t for large t is given for the finishing 

touch. 

From a theoretical point of view the second-order expansion of the d.f. of 7, 

gives insight in the structure of the problem. The approximation does not only 

depend on the first three moments of the d.f.‘s defining the renewal sequences. The 

somewhat unexpected appearance of the expected minimum of M in the expansion 

shows that the d.f. of the crossing time for the difference process is essentially more 

complicated than for the sum process. 

From a computational point of view, (3.1) shows that for a second-order approxi- 

mation to the d.f. of T, it is not sufficient to know the first three moments of the 

d.f.‘s involved. Fortunately, in many practical cases the expected minimum of M 

can be derived, whereas the true d.f. of T,, is practically always intractable. Numerical 

results and special cases are given in Kroese (1992). If the positive drift is not too 

small, the approximations are close to the (estimated) true d.f. even for rather small 

n. 

We conclude the Introduction with an outline of the rest of the paper. In the next 

section the basic definitions and model assumptions are given. Section 3 lists the 

main result and sketches its proof. The formal proof of the main result is given in 

Sections 4-5. 

2. Model, definitions 

In this section we formalize the model. Throughout this paper we conform to the 

definitions and assumptions that are given here, unless otherwise specified. There 

exist several definitions of a renewal process. Here we use the following: 
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Let X = (Xi)i3, be a sequence of independent nonnegative random variables, such 

that X*,X,,... are identically distributed with some d.f. G. Let F denote the d.f. 

of X, . We call X the renewal sequence corresponding to the delayed renewal process 

N = (N(t)),&, which is defined for t 2 0 by 

N(t) = 
{ 

0, ifX,> t, 

sup{n>l:X,+...+X,5t}, else. 

N is called an ordinary renewal process if F = G, and a stationary renewal process 

if 

F(x)=l x{l-G(y)}dy, 
I 

where/1=EX,<a. 
P 0 

Let N, = (N,(t)) and Nz = ( Nz( t)) denote two independent renewal processes with 

renewal sequences (X:“) and (Xp’), respectively. If we omit the index set in the 

definition of a stochastic process, it is either N, (renewal sequences) or R+ (other- 

wise). The difference process M = (M(t)) of N, and Nz is defined by 

M(t)= N,(t)-N,(t), t30. 

Let r,, be the time at which M crosses level n EN, i.e. 

~,,=inf{taO: M(t)zn}. 

Similarly, let Tk be the first time at which M crosses level k E Z_, 

Tk = inf{ t 2 0: M(t) s k}. 

We do not a priori assume N, and N2 to be stationary renewal processes. Although 

the main result is stated for such processes, most of the results hold true for delayed 

renewal processes. Let F, be the d.f. of Xi” and let G, be the d.f. of X:“, i = 1,2. 

We assume that the expectation p,, the variance uf and the third central moment p3i 

of Xii) exist jinitely and that G, is nonlattice, i = 1,2. This also ensures the finiteness 

of the expectation and variance of X(li’ when N, is stationary, i = 1,2. Let 

~~=suP{x~O: Fi(x)<l}, i=l,2. 

The probability space in the background is denoted by (a, %, P). We introduce 

also a family of probability measures (I”*“; 0 s r < Cl , 0 s s < lI;) on (a, %‘). Under 

measure P*,‘, N, and Nz are independent renewal processes, such that Xy’ has d.f. 

Gi, i=l,2, and, forx,y>O, 

P(X’,” s x, x’,*’ =s y) = F,(x+r)-F,(r) F2(y+s)-F2(s) 

l-F,(r) l-F2(s) ’ 

The expectation operator corresponding to P’,” is denoted by E’,“. 

Remark 2.1. When Fi(0) = 0, for i = 1,2 (as is the case for stationary N, and N2), 

then probability measures P and PoYo coincide. 

The following notation for conditional probabilities is used. Let (0, 2, Q) be the 

probability space under use. Let H be an event and let ‘3 be a sub a-algebra of %5 
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The conditional probability of the event H, given Ce is denoted by &(H). If Y? is 

generated by a random variable V, we write Q,(H) for Q,(H). 

We assume from now on that y, < p2. In that case A4 has a positive drift (Y-‘, 

ff -‘=P;‘-P;‘. 

The following parameters are used frequently in the expansions below. We therefore 

list them in this section. We define 

2 2 -3 
y = a,P;3+~2P2 

and, for XER, 

fn = t,(x) = llcy + xyV5 CP2, 

c, = &L3icr;3/_Li ‘/2, di = ;aiPJ’/2, ai = P;/2C;‘, i=1,2. (2.1) 

The standard normal d.f. is denoted by @, its density by cp. To conclude this section, 

Figure 1 gives an illustration of the various definitions (note that k 4 0). 

M(t)T I 
n .- - 

-. - . 

n+k -. 

-- 

- T_, 

0 : Tn t4 t” .- 

Fig. 1. Realization of (M(t), t Z 0). 

3. Main result 

Theorem 3.1. Let N, and N2 be independent stationary renewal processes that satisfy 

the conditions of Section 2. Then the following second-order expansion for T,, holds true. 

sup P 
XCR I ( 

y;3;2n;s x - CD(x) 
> 

9(x) 
-F p(l -x2)+ 

{ 
1 

--tY~-~ Ep(f)}/ 
2y& 

= o( l/G) as n + Co, (3.1) 

where 

p=(cI-dI)(yaI)Y3-(c2-d&ya2)-3+,yG 

v’z 
2 . 
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(The other parameters are defined in Section 2.) 

Remark 3.1. First we show that the terms in (3.1) are well-defined (i.e. that 

inf,,, M(t) has finite expectation). This can be seen as follows. Let S’,“= 
x(i)+ 

I . ..+X’.“, i=l,2. For kEfV+, 

= P(S’,“> S(,?ik-, for some n) 

supj-‘~s~2’-j~z( > E +P(S~‘>(n+k-1)(~2-~)forsOmen) 
,sk > 

C P sup j-‘JSj2)-jp2J> 8 
jak > 

n(p2-E)I>(p2-e)(k-l) , 
> 

where e > 0 is so small that /1, < p2 - e. Now 

-Ef$X(t)= f P 
k=l 

-jhX(t)sk 
> 

> 

s f p( ;uF jm'ISj2'-jp2J > E 
k=, .s > 

+(/.&-&)-‘E sup{S~‘-n(~L?-E)}+l. 
?I=0 

The sum in the previous line is finite by Theorem 3 of Baum and Katz (1965), while 

the second expression is finite e.g. by Theorem 5 of Kiefer and Wolfowitz (1956). 

Next we give a broad sketch of the proof of Theorem 3.1, of which the details 

can be found in the remaining sections. 

Sketch of the proof of Theorem 3.1. By definition of t,, and T,,, 

=P(M(t,)~n)+P(M(t,)<n, 7,s t,). (3.2) 

We tackle the first term in (3.2) by using techniques that were developed in [KK]. 

That is, first we derive an expression for P(Ni(t) 6x), as tam, i = 1,2. Then, in 

order to obtain an expansion for P(M( t) s x) it suffices to convolve the expansions 

of P( Nl( t) i x) and P( N2( t) s x). This first term may be seen as the equivalent of 
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the inversion step in the expansion for the sum process. For the second term in 

(3.2) we have, 

= ;,’ P(M(t,)=n+k,T,,ctt,) 
k=_-r 

M t,,-t,,)=n+k,,~~~,,,{M(1,)-M(r,,-u)}~k ( 
> 

. 

Since N, and N2 are independent stationary renewal processes, (M( t,) - 

M(L - a))m<,,, has the same probability law as (M(u)),,.,,,~. This is a direct 

consequence of the reversibility property of stationary renewal sequences and 

Anscombe’s (1953) idea to “look backwards in time”. This idea is frequently used 

in level crossing problems for random walks (cf. Section l), and is most easily 

illustrated by turning the realization of M in Figure 1 upside down and viewing 

the process “backwards in time”, starting at time t,. Hence by definition of Tk in 

Section 2, we have 

P(M(t,)<n,~,~t,)= ; P(M(t,)=n+k,T k s h,). (3.3) 
k=-W 

We will show that, up to o(nm”2), we may restrict attention to a finite sum in (3.3) 

and that the summand may be replaced by 

f’(M(t,)=n+k)~P(T,~t,). 

Moreover, 

P(M(t,)= n+k)-cp(x)y-1(na)-“2 

for fixed k and large enough n, and finally 

5 P(T,<t,)= ; P(T,<oo)=-Eib~;M(t). 
k=-cc k=mm 

The approximation sign = will be made more precise in the next sections, where 

we will give the formal proof of Theorem 3.1. The first term in (3.2) is considered 

in Section 4, whereas the second part is treated in Section 5. The actual proof of 

the theorem is given at the end of Section 5. 

4. Expansions, first part 

In order to expand the first term in (3.2), P( M( t,) Z= n), for large n, we start with 

an expansion for P( M (t) s x) for large t. 

Throughout this section N = (N(t)) denotes a delayed renewal process with 

renewal sequence (X,). Let F be the d.f. of X, and G the d.f. of Xi, i = 2,3, . . . . 
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We assume that F and G have finite expectation, variance and third central moment 

and that G is nonlattice. Let l=sup{x 20: F(x) < l}. The probability measure 

P’, 0~ r < 5, is defined in the same manner as P’,‘ in Section 2. 

Let~=EX,,~‘=VarX?,~Lj=E(X?-~)3andy=zl(r)=E’X,,Osr<5.Define 

parameters a, c and d similarly to (2.1). Note that v(O) is not necessarily equal to 

EX,, cf. Remark 2.1. We have the following lemma. 

Lemma 4.1. Lef S, = X, + . . .+X,,. For everyjxed OSy<[, 

sup sup P’ I ( S,-(n-l)P-~<x 
4 

(P(x)/+ 

O-;r-~ rtR c&i 
-@(x)-J&6a’ (1-x’) 

= o(n-‘/2) asn+co. 

Proof. Let S_, =X2+ . . . +Xx,, and Y,=(ax~-X,+v)a~‘(n-l)~“‘, then 

= E’P;, 
S,,-(n-l)w< 

CrJn-l 
1 

Consequently, 

S,,-(n-l)P-~<X cp(X)Pi 
u&i - - Q(x) - h6+3 (1 -x2) 

L-w)P< y 
aJn_l . ” 

-@(r;~)-&-q6a; p( yn)p3 (1- Y:) (4.1) 

+IE’@O’,,)-@(x)1 (4.2) 

cp( Y,l)/-G 
++Er &-q&(1- y:)-&(g dX)PJ (1 _ x2) . (4.3) 

It is clear that (4.1) is of the order o(n-I”) uniformly in x and r (cf. Feller, 1971, 

Theorem XVI 4.1, p. 539). Moreover, for 1x1= lx,,1 s log n, 

Y*-x= S+O((n - 1))’ log n). 

It follows from the mean value theorem that both (4.2) and (4.3) are o(H-“~) 

uniformly for 0 < r c y and 1x1 c log n. In particular, 

sup P’ ( S,-(n-l)p--v 
4 -log n 

> 
=o(n-I”) 

OSV_=V UJ;; 

and 

sup P’ ( S,-(n-l)p-- 
slog n 

> 
= 1 -o(np”2), 

Osrs~ a&i 

so that Lemma 4.1 follows by the monotonicity of d.f.‘s. 0 
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We now have the means to derive an expansion for the d.f. of the delayed renewal 

process N(t) starting with ‘age’ r. 

Theorem 4.1. For 0 d y < 5 jixed, 

N(t) - t/F< x 

0src-v XCR 
&,a 1 -Q(x) 

(c-d)(a’--l)+e+a{ 6(i+xa_l\;i) --:)}I 

=o(t-I’*) as t+oo, 

where e = -d -$a -I ~_L’/~C’ v and 0(y) = [y] + 1 -y with [ y] the integer part ofy. 

Proof. Let (xl = Ix,1 G log t. 

p’ N(4-~lP<X ( A/a . > 
= p’(N(t)s t/p+xap’A) 

= P’(N(t)G m,-O(t/p+xap’Ji)) = P’(S,,> 1), 

where 

Let y, = (t - (m, - 1)~ - v)C’m;“*, then by Lemma 4.1, 

uniformly for 0 G r s y. Moreover, 

+ O( tc’ log3 t), 

uniformly for 0 c r < y, 1x1 s log t. Therefore, by the mean value theorem and the 

finiteness of V, we have, 

v(x) 
=@(x)-xc(l-x2) 

cp(x) IJ 
WV 

-- 
JI 

x’d-ka- --ae(t/p+xa-‘A) 
u 1 

+o(t_I’*), 

uniformly for 0 s r G y, 1x1~ log t. The uniformity for x E R now follows in the usual 

way from the monotonicity of d.f.‘s. 0 
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Corollary 4.1. Let N, and N2 be delayed renewal processes and let e, and e2 be dejned 

similarly as e in Theorem 4.1. For all 0 d y < 5, and 0 d z < c2 we have, 

= o( t-‘/2) (4.4) 

and 

Proof. (4.4) is a direct consequence of Theorem 4.1 by substituting ya,x for x. (4.5) 

is obtained in the same way after observing that lim,,&, e(z - h) = 1 - 0(-z), for all 

ZEIR. 0 

The following theorem is proved in exactly the same way as Theorem 4.1 of [ KK], 

using Corollary 4.1. Since in Theorem 4.2 sup,,_s,.]e,I <cc and supO~.~~Z~e2~ COO, the 

uniformity in r and s follows easily. 

Theorem 4.2. Let M(t) = N,(t) - N2( t), where N, and N2 are independent delayed 

renewal processes. Let e, and e2 be dejined as in Corollary 4.1, then for$xed 0 G y < 5, 

and OGZ<~~, 

M(t) - tla<x 
-Q(x) 

yJ? . 

x2-I)+;+:{ e(f+ yxJT)-$}}I 
= o( t-‘/2), 

as t+co, where 

q=(c,-d,)(yaI)-3-(c2-dJ(ya2)Y3 

and 

f?= e,(ra,)-‘-e,(ya,)-‘. q 
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Corollary 4.2. If M is the diference of two independent stationary renewal processes, 

then 

sup P(M(t,)an)-Q(x) 
X CR 

v(x) I( ~+&ly/ 
fi & > 

1 
(1 -x2)+-_-’ 

2y& 2ff 
r/z 

y II 
= o( n -9 

as n + 00, where q is defined in Theorem 4.2 and the other parameters in Section 2. 

Proof. First let 1x1 s log n. We have 

P(M(t,)Sn)=l-P 
M(t,) - &la 

ra 
Syfl 9 

> 

where, by the choice of x, 

n-l-&/a x2a y l/2 1 
Yll = 

YJL 
‘_XS____ 

24% YJnLv 
+O(n-’ log” n). (4.6) 

Observe that in this stationary case, Y, =&_L~+ of/p,), so that e, = e2 = c = 0 in 

Theorem 4.2. Moreover, the argument of 0 in Theorem 4.2 now equals n - 1, and 

thus the &part simply becomes 1. Consequently, 

P(M(t,)zn)=l-@(y,)- 
cp(Y,) 
Jt- 

II 

so that by (4.6), 

P(M(t,)>n)=@(x)- 

v(x) 1 -- 
Jt; 

ix2yJ;;-- 
Yfi 

+ o( nP”2), 

as n + CO, uniformly for 1x1 slog n. The corollary follows by the monotonicity of 

d.f.‘s. El 

A local expansion for the distribution of M is given in the next lemma. Although 

the result below can be extended in several ways, we only list it in the form that is 

sufficient for our purposes. Note that we again do not specify the distribution of 

the first component of N, and N2. 

Lemma 4.2. Let Y 2 0 be jxed and let r,< min{Y, S,}, then 

(P(x) 
sup sup sup Pr,O(M(t,-u)=n)-- = o(n-“2). 

“Grsr,, “CUS? IxlzGlog n YVG 
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‘(t, - u)-I”, then Proof. Lety,=(n-(t,-u)/(Y)y~‘(~,-U)~“~ and z,=y,-y 

P’*“( M( t, - 24) = n) 

= pr.0 ( M(t,-u)-(t,-u)/a 

yJt,-u c Yn 
> 

- pr.” ( ww+(w41a<z 
yJr,-u > 

-n. 

Since b, = n(~ + xyJT; (Y’/~, 

Iyn -z,I= y-‘(t, -u)-“2= y-‘(na)-“2+O(n-’ log n), 

319 

uniformly for 0 d r G r,,, 0 d u c y and 1x1 d log n. Also, 

y, = -x+ O( nP”2 log2 n), 

uniformly for 0 c r G r,, 0 s u G y and 1x1~ log n. Now 

(4.7) 

(4.8) 

< pr.0 I ( M(t,-u)-(t,-u)/a 

y- 
G Yfl 

) 
- @(Yk*P(YJ (4.9) 

+ P’,O 
I ( 

M(Cl -u) -(tn -4/Q< z 

yfi 
1 n 

> 
- @(&I) --J&m (4.10) 

+l~(Yn)-~(Zn)-(P(X)Y-‘(na)~“21 (4.11) 

+ *P(Y..)- *P(z.)l, (4.12) 

where p(x) = 4(x2- 1)+ E+$’ (q and C are defined in Theorem 4.2). By Theorem 

4.2 it follows that (4.9) and (4.10) are of order o((t, - u)-“‘)) = o(K”~) uniformly 

for 0~ rS r,, 0~ u~y and lxl~log n. The same result holds for (4.11) and (4.12), 

by the mean value theorem and (4.7) and (4.8), which completes the proof. 0 

The following lemma provides additional information about the local behavior 

of a delayed renewal process. 

Lemma 4.3. Let (N(t)) be a delayed renewal process as defined at the beginning of 

this section, then 

sup sup P’( N( t) = n) = 0( n-‘I’). 
1=0 l%r<< 
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Proof. Throughout the proof C denotes a generic constant. Let (X,,) be the renewal 

sequence of N, and define 

&, = (XT+. . .+x,-(n-l)~)(n-l)-“28, Fla2. 

Then 

I”( N(t) = n) = Pr($_, S Y) - Pr(& S Z), 

where Y=(t-X,-(n-l)~)o~‘(n-l))“* and Z=(t-X,-np)c~~‘n-“~. 

Therefore, 

P’(N(t)=n)~E’I~(Y)-~(Z)l+E’IP~,(~~,,~ Y)-@(Y)1 

+ Iz’IP;(,(& d Z) - @(Z)l. (4.13) 

By the Berry-Esseen inequality and the independence of Xl, X2, . . . we have 

independently of r, so that the last two terms in (4.13) are 0( 6I’*) uniformly in t 

and 0~ r < f: The same holds for the first term in the right-hand side of (4.13), since 

it can be established by 

su! I@ (&) -cD(+/&=)l =o(n-‘T 

This completes the proof. 0 

5. Expansions, second part; proof of main result 

Throughout this section, M denotes the difference of two independent stationary 

renewal processes. In (3.3) we found 

P(M(t,)<n,T,,Ct,)= 2 P(M(t,)=n+k,T. !, G t,). 
k=-cc 

We first show that it suffices to consider P(M( t,) = n + k, Tk s t,) for fixed k. 

Lemma 5.1. Let M and Tk be dejined as in Section 2, then 

lim lim sup fi z P(M(t,)=n+k, T kst,)=O. 
A-m n+= /X~SIO~ n k=-m 

Proof. By using conditional expectation with respect to the u-algebra 9, generated 

by the stopping time Tk we obtain 

P(M(t,)=n+k, Tk~tn)=EI1r,,,,,)P~~,(M(t,)=n+k). (5.1) 
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Let Qr*’ denote the probability measure Pr,’ under which both N, and N2 are 

ordinary renewal processes and Xy’ has d.f. G,, i = 1,2. Denote fl in this case by 

Sf. On the other hand let the probability measure or,’ correspond to P”’ such that 

N, is a stationary and N2 is an ordinary renewal process with again Xy’ having 

d.f. Gi, i = 1,2. Now 5, is denoted by & . If we denote the ‘lifetime’ of N, (i.e. the 

time elapsed since the last renewal of N,, or, if there was no renewal, the time 

elapsed since t = 0) at time Tk by R, then we have 

&,(W,) = n + k) 

= Z~,=,@,“(M(t,- Tk)= n)+Zcr,~RiQR~o(M(tn- Tk)= n). (5.2) 

Let (P”, 5) be (or,‘, f,) or (Q”‘, l?). Then, applying Lemma 4.3, we have in either 

case 

Prvo(M(t)=n)= ; P”“(N,(t,)=n,)PrXo(N,(t)=n,-n) 

= qn-*l* ) f P”“(N2(t)=n,-n)=O(n-“2), (5.3) 

uniformly in 0 s r < l: or 0 < r < &, respectively and t. Hence, combining (5.1)-(5.3), 

P(M(t,) = n +k, Tk G t,) = P( Tk G t,)O(n-I”), (5.4) 

where 0( K”*) is independent of x and k. In particular, 

lim& : P(M(t,)=n+k,Tkst,)slim 2 P(T kstn)C n-oo k=-a *-cc k=-W 

= -CE ,ii; M(t) (5.5) 

by the monotone convergence theorem and the definition of Tk. Since E inf,,, M(t) 

is finite by Remark 3.1, Lemma 5.1 follows from (5.5). q 

Lemma 5.2. For fixed k E Z_ , 

sup 
p(x) 

P(M(t,)=n+k, Tks t,)-- 
~+=log n y&z 

P(T,<oo) =o(np”2). 

Proof. Let sTk, or,‘, Q”‘, iJ, and c: be defined as in the proof of Lemma 5.1. Fix 

y > 0 and 8 > 0. For n large enough 

P(M(t,)=n+k, Tksy) 

sP(M(t,)=n+k, Tkstn) 

=P(M(t,)=n+k, Tksy)+P(M(t,)=n+k,y<Tkst,). (5.6) 
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Using Lemmas 4.3 and 4.2 we have for Tk G y, similarly to (5.2) and (5.3), 

where fR(S) = 1 and gR( 6) = 0 if 6 is small enough (depending on R) and 

.&(8), gR(s) E {O,l). Hence, 

P(M(t,)=n+k, T,<y) 

= ~%~,,z,P~~~(M(tn) = n+k) 

= Jq,,,,, 
{ 
~fR@)+06(” -“‘)+gR(8)O(n-“2) I 

uniformly for 1x1 s log n. Therefore 

ll_mlj~!$ 
-[ 

&P(M(t,)=n+k, T,sy)- 
v(x) 
-P(T,Sy) 
YG 1 

= lim lim lim EII-r,S-y) 1 cp(x) 
)“‘X s&l n-a ~~Ik(s)-l~+o,(l)+gK(S)O(1) =O. 

I 

(5.7) 

(Note that in taking the limit w.r.t. 6 we apply the dominated convergence theorem.) 

Moreover, since, similarly to (5.4), 

P(M(t,)=n+k,y<T,ct,)~P(y<T,q)O(nm”2), 

where O(np”2) d oes not depend on y, we have 

lim limJb;P(M(t,)=n+k,y<T,~t,)=O. (5.8) y+cr n+cc 

Combination of (5.6)-(5.8) and lim,,, P( Tk s y) = P( Tk <co) now yields the 

result. 0 

Corollary 5.1. Let M be the diference process of two independent stationary renewal 

processes and let Tk be dejined as in Section 2, then 

-I v(x) 
sup 1 P(M(t,)=n+k, Tkst,,)+p 

Ixl<log n k=-m Y&G 
E j$M(t) 

= o( n-‘12) asn-+m. 
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Proof. For every fixed A E NJ, 

-1 

C P(M(t,)=n+k, Tkst,) 
k=-oc 

-A-l 

= 1 P(M(t,)=n+k, Tksttn)+ : P(M(t,)=n+k, T ks h). 
k=-cr k=-A 

The result now follows from Lemmas 5.1 and 5.2. Note also that 

We now prove the main result, Theorem 3.1. 

Proof of Theorem 3.1. Since E inf,,, M(t) is well defined by Remark 3.1, we have 

sup 
~x/=zlog n 

1 y& 1 
p(1 -x2)+----- 

2yJ;; 2 y& > 
E ~n$l4(t) 

= o(n-‘/2) as n-+oo, 

by (3.2), Corollary 4.2, (3.3) and Corollary 5.1. Uniformity for all x E [w follows by 

the monotonicity of d.f.‘s. 0 
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