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Abstract: Consider a ring on which customers arrive according to a Poisson process. Arriving 
customers drop somewhere on the circle and wait there for a server who travels on the ring. 
Whenever this server encounters a customer, he stops and serves the customer according to an 
arbitrary service time distribution. After the service is completed, the server removes the client from 
the circle and resumes his journey. 

We are interested in the number and the locations of customers that are waiting for service. These 
locations are modeled as random counting measures on the circle. Two different types of servers are 
considered: The polling server and the Brownian (or drunken) server. It is shown that under both 
server motions the system is stable if the traffic intensity is less than 1. Furthermore, several earlier 
results on the configuration of waiting customers are extended, by combining results from random 
measure theory, stochastic integration and renewal theory. 
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I Introduction 

Recent developments in tele-communication and computer architecture have 
given rise to several exotic queueing systems. An important sub-class of such 
non-standard queueing models is formed by the queueing systems on a circle. 
Instead of waiting in a queue, arriving customers now choose positions on a 
circle. There they wait until they are visited by a server who travels on the ring. 
When the server is only allowed to travel in a fixed direction, the system is 
usually referred to as a pollin9 system. Over the last few years a wide variety of 
cyclic service models has found application in tele-communication (e.g. Local 
Area Networks) and reliability (inspection policies). Usually such models are 
formulated in discrete time, ef. for example [5], [12] and [14]. However, a 
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continuous approach, such as in [2], [3], [8], [10] and [13], often reveals much 
more of the underlying structure of the model. 

Here we consider two such queueing systems on the circle: the polling-server 
system and the Brownian-server system. In the first system, the server moves 
uni-directionally at constant speed, whereas the Brownian server carries out a 
Brownian motion with zero drift on the ring. Customers arrive according to a 
Poisson process, and are dropped on the circle (relatively to the position of the 
server) according to an arbitrary diffuse distribution (which is not necessarily 
uniform). We analyze the configuration of waiting customers on the ring. This is 
done by representing the waiting customers through a random counting mea- 
sure. It is proved that both systems are stable, provided that the mean service 
time is smaller than the mean inter-arrival time. Moreover, results on the config- 
uration of waiting customers obtained in [101 are extended to the polling- and 
Brownian-server systems. The Laplace functional for the random measure of 
waiting customers is given for the polling system. For  the Brownian-server 
system we derive the mean measure of waiting customers and the expected 
number of waiting customers. 

In the analysis we use results from stochastic integration theory (see the 
appendix) and renewal theory (cf. [1]). For basic definitions and results on 
random counting measures (point processes) we refer to the appendix. Note that 
we will frequently use the notation/~f for the integral of a function f with respect 
to a (random) measure #. 

2 The Model(s) 

In this section we describe the polling-server and Brownian-server systems in 
more detail. Both systems are based on the following model. Let C be a circle 
with circumference one. Fix the orientation on C, clockwise, say. A server travels 
on C, in a way which is specified below, and stops to serve a customer whenever 
he encounters one on his way. Starting with an empty system, these customers 
arrive according to a Poisson process with intensity a and drop somewhere on 
the circle, independently of everything else. Specifically: we assume that the 
distance from the server to a newly arrived customer, measured along the 
orientation on C, has a fixed distribution 7r. For convenience we assume that rc 
is a diffuse distribution on [0, 1]. 

During a service the server does not move. The consecutive service times are 
i.i.d, random variables with distribution function (d.f.) F and ith moment  e~, i e N 
(here we take ~ = {1, 2 . . . .  }). When a service has been completed, the customer 
is removed from the circle, after which the server resumes his journey. We 
assume that the service times are independent of the arrival process and the 
locations of the clients on C. 
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The two models are specified by the following rules that govern the servers 
motion on the circle, when the server is idle: 

Polling Server: In this model the server (when not busy) travels at constant speed 
~-1 in the direction of the orientation on C. 

Brownian Server: Here the (idle) server carries out a Brownian motion on the 
circle, with zero drift and variance parameter a z. This server movement is 
assumed to be completely independent of everything else. 

3 Waiting Customers 

In fig. 1 a number of possible configurations of waiting customers on the ring is 
depicted. In both models above we are interested in describing this "distribu- 
tion" of waiting customers probabilistically. 

A first observation to make is that the actual position of the server is not very 
relevant to the analysis. It is the configuration of customers relatively to the 
position of the server that is important. We therefore analyze the system from 
the point of view of the server. For every time t we identify the circle C with the 
interval [0, 1] in the obvious way, such that both 0 and 1 are identified with the 
position of the server. That is, for every t > 0 we cut the circle at the current 
position of the server and stretch it onto the interval [0, 1], hereby preserving 
the orientation from 0 to 1. 

From the point of view of the server, the customer paths form a stochastic flow 
on ~+ x [0, 1], as is shown in fig. 2 (the paths depicted in fig. 2 correspond to 
the Brownian-server model). Notice that from the perspective of the server, the 
positions of arrivin9 customers form a Poisson random measure on ~+ x [0, 1] 
with mean measure aLeb(R+) x ~ (see appendix). It will be convenient to de- 

@ @ @ 
(a) (b) (c) 

Fig. 1. A number of possible customer configurations on the circle. The waiting customers are 
depicted by dots (o). The position of the server is given by the symbol "[". Note that in (b) a customer 
is being served. 
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Fig. 2. From the point of view of the server, customers arrive according to a Poisson random measure 
on ~+ x [0, 1] with mean measure aLeb(~+) x n, and move all.in the same fashion (when the server 
is not busy). Whenever a customer "reaches the server" (the corresponding customer path hits 0 or 
1), all customers stop moving for a certain service period. After the service has been completed, the 
customer that has been served is removed and the other customers resume their journeys. The atoms 
of W~((o) (e) form the relative positions of waiting customers at time t. The paths depicted here 
correspond to the Brownian-server model. 

scribe the positions of  waiting customers at time t as a toms of a r andom 
count ing measure (r.c.m.) Wt on [0, 1]. These a toms are formed by the intersec- 
tions of the customer paths (as seen by the server) and the line x = t, see fig. 2. 
Notice that in fig. 2, the actual configurat ion of customers on C at time t 
(corresponding to W,) is similar to the last configurat ion of fig. 1, up to a rotat ion 
of the picture. 

In the next section it is proved that  the polling-server system and the 
Brownian-server system are both stable, in the sense that the measure-valued 
process (Wt) is regenerative, provided that the traffic intensity ael is smaller 
than 1. Hence Wt converges in distribution to a limiting r andom measure W 
on [0, 1]. The probabilistic description of  the waiting customers will be given 
in terms of  the law W. W can be interpreted as the random measure of  cus- 
tomers that are waiting to be served, in the "stat ionary situation". Analysis of  
the process (W,) is facilitated by the introduct ion of a new "clock" which stops 
whenever the server is busy. For  any realization co ~ O, we introduce the clock 
process (S,) by 

t 

s,(o)) = S dx i{w~({o},  ~ )  = o, w~({1},o,) = o } ,  
0 

t > 0 , ( 3 . 1 )  

That  is, we only run the clock when the server is not  busy. Let (v,) denote the 
r ight-continuous functional inverse of (St), and define 

Q, = w~, . (3.2) 



Queueing Systems on a Circle 307 

Qt is again a r.c.m, on [0, 1]. In the next section it will be shown that (Qt) is a 
regenerative process as well. Hence there exists a limiting random counting 
measure Q on [0, 1]. Q can be interpreted as the random measure of waiting 
customers in the stationary situation 9iven that the server is not busy (see Section 
5). The relationships between the various measures Qt, W~, Q and W will be 
specified in Section 5. 

4 Stability 

In this section we prove that the Brownian-server and the polling-server systems 
are stable, provided that the traffic intensity ael is smaller than 1. Specifically, 
the main result of this section is the following theorem. 

Theorem 4.1: I f  ae 1 < 1, then the processes (Wt) and (Qt) for the polling-server and 
Brownian-server systems are regenerative with regeneration periods that have 
absolutely continuous distributions and finite expectations. 

A short proof of Theorem 4.1 for the polling-server case with ~ uniform, can 
be found in Section 3 of [10]. This proof can be easily extended to the polling- 
server case where ~ is an arbi'trary diffuse distribution on [0, 1]. However, for 
the Brownian-server case the proof of Theorem 4.1 is much more difficult and 
forms a substantial part of this paper. In the proof we will make use of a stable 
auxiliary queueing system, which processes all customers slower than the origi- 
nal system. The actual proof is deferred to the end of the section. 

Notice that stability does not depend on the "speed" of the server. For  slow 
servers the circle "fills up" with a lot of customers, and hence the server does not 
loose much time traveling to the next customer. 

Assume that at time zero we start with the empty state. Clearly, each point in 
time at which the system returns into this state after a busy period is a regenera- 
tion epoch of both the processes (Wt) and (Qt). We show that the distance 
between two consecutive regeneration epochs of this type have absolutely con- 
tinuous distributions and finite expectations. 

Notice that a regeneration period of (W~) and (Qt) can be represented as the 
sum of two independent random variables: the residual time to the next arrival 
(the distribution of which is exponential) plus the length of a busy period. We 
will refer to the regeneration periods as the busy cycles of the queue. Thus, in 
order to prove that a busy cycle has an absolute continuous distribution, it 
suffices to show that the length of the corresponding busy period is a proper 
random variable, e.g. by showing that the expectation of the busy cycle is finite. 
This can be shown by introducing the following auxiliary queueing system. 
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Fig. 3. An illustration of the definitions of the auxiliary batch queue. T 5 is a regeneration epoch. 

Consider the following M/G/oe-type batch queue. The batches of customers 
arrive according to a Poisson process with intensity a, at times T~, T2 . . . . .  with 
batch sizes M1, m 2  . . . .  We assume that the M,'s form an i.i.d, sequence of 
random variables with finite expectation, independent of the arrival times. Let 
(X,k, n, k e N) be a further sequence of i.i.d, positive random variables, indepen- 
dent of the arrival times and the batch sizes. Within each interval IT,, T,+I) we 
construct a sequence of "departure times" in the following way. Let S,k = T, + 
X n l  At- ' ' '  -~- Xnk , k = 1, 2 . . . .  and let Y, be the number of S,k'S in the interval 
[T,, T,+I), n = 1, 2 . . . .  Denote these S,k'S by D,k, k = 1, . , . ,  I1.. These D,k'S will 
be the departure times of customers. Note that then the Y.'s form an i.i.d. 
sequence of random variables with 0 < E I1, < o% independent of the batch sizes. 
An illustration of these definitions is given in fig. 3. 

Service is performed in the following way: At time of arrival every batch is 
assigned to a free server. For  every n = 1, 2 . . . . .  the kth customer of the batch 
that arrived at T, is completely served (and therefore departs) at the kth time Dij 
after T,, k = 1, . . . ,  M.. For  example, the six customers that arrive at time T 2 in 
fig. 3, depart at times O21 , D22 , 023  , O4.1, D42 and D43. The two customers that 
arrive at time T3 depart at/941 and D42. 

The question whether this queueing system is stable can be answered affirma- 
tively. Furthermore, for proving that the busy cycles of the processes (IV,,) and 
(Qt) of the original polling- or Brownian-server system have finite expectations 
if ael < 1, we will make use of the fact that the number of batches and the 
number of customers served during a busy period of the auxiliary queue have 
finite expectation. For  showing this finiteness property, we extend the sequence 
(T,, M,, n ~ %) to the sequence (T,, M,, n ~ Z), where the T.'s form a stationary 
(Poisson) point process ... < T-1 < To < 0 < T1 < T2 < "" on R with intensity 
a, and the M,'s form an independent i.i.d, sequence of random variables, each 
distributed as M1. Analogously, we extend the sequence (X,k, n, k ~ N) to the 
i.i.d, sequence (X,k, n ~ 77, k ~ ~). For n < 0 we define the random variables S,k, 
D,k and II, in the same way as above. Note, however, that although the Y,'s are 
still independent, I1o has a different distribution than the other Y,'s. But this is of 
no importance for the proof. For  every n e Z define 
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and let, for t ~ 

Z t =  ~ l(_~,t)(Tk)I(t,~)(Tk*) . (4.1) 
k = - ~  

T,* can be interpreted as the arrival time of the first customer after the time that 
the batch that arrived at time T, has been completely served. Zr . ,  consequently, 
can be interpreted as the total number of batches in the system, seen by the batch 
that arrives at time T, (itself not included). In the above interpretation, the 
auxiliary queuing system is in a "stationary situation". 

Consider the partial point process of (T,) consisting of those arrival times T, 
such that Zr .  = 0. Such arrival times are usually called empty points (see e.g.p. 
71 in [6]). Using similar arguments as in [9], where the G/GI/o~ queue with 
independent service times has been considered, we get the following result. 

Lemma 4.1: Almost every realization of the arrival process (T,, n < O) on the 
negative half-line has infinitely many empty points. 

Proof: Note that the event/4,  = {Zr. = 0} can be written in the form 

/-/. = {M._I _< r.-1,  m . - 2  _ r.-1 + r . -2 ,  M. -3  _< r.-1 + Y.-2 + r . -3  . . . .  } - 

Let R be the number of arrival times T, in ( - o%  0) for which Zr. = 0, and let 
E = (R = or}. Observe that E only depends on the tail of the i.i.d, sequence 
(M-t,  Y-~), (M-2, Y-z) . . . . .  Thus by Kolmogorov's zero-one law we get that the 
probability of event E is either 0 or 1. On the other hand, for the conditional 
probability Py(E) of the event E given (I1,), we have 

(4.2) 

Define B, = {M_, < Y-1 + "'" + Y-,}, n = 1, 2 . . . . .  then 

The last term in (4.3) is an infinite product of positive factors. It is well-known 
that such a product is positive if and only if 
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{1 -- Py(B,)} < oo . (4.4) 
n = l  

Hence by (4.2)-(4.4) we have that Pr(E) > 0 if and only if 

n = l  j = l  

But (4.5) holds for almost every realization of(Y.). This follows from the fact that 
the M_,'s are identically distributed with finite expectation and independent of 
the (Y.), and that by the strong law of large numbers, with probability 1, and for 
arbitrarily small ~ > 0, we have 

• Y_j>_n(EY 1 - e ) > O  , 
j = l  

for sufficiently large n, because 0 < EY1 < oo. Thus the validity of (4.5) is a 
consequence of the obvious inequalities 

EM_1 
Pr (M- .  > n(EY-1 - O) < - -  

. = I  - EY-1 - -  g 
< 0 ( 3  . 

Summarizing the above considerations, we showed that Pr(E) > 0 with proba- 
bility one. Consequently, P(E) = 1, which had to be shown. �9 

Let (T, e, n e 7/) denote the (partial) point process of empty points of the arrival 
process (T,), i .e.. . .  < T51 < To ~ < 0 < T[ < ... is the subsequence of those ar- 
rival times T,, for which Zr ,  -- 0. Note that (Tf) is a stationary point process on 
N. From Lemma 4.1 it follows easily that, with probability one, (T, e) has infinitely 
many points both on the negative and positive half-lines. Thus the intensity 2e of 
(Tf) is strictly positive. Moreover, the intensity is finite, since )~e < a < oo. Con- 
sequently, from the general theory of stationary point processes it follows that 
the Palm distribution pO of(T~) is well-defined (see e.g. Sect. 12.3 in I-4], or Sect. 
1.2 in [6]). Namely, 

P~ - T~ < x l ,  T~ - T~ < X 2 . . . . .  T n  e - -  Tne_l ( X n )  

i f  = = P ( T~ ~ < I ,  T L  x - Tk ~ < x ~ , T L  2 - T L  x < x2 . . . .  , T L  . - T i  + . _ < x . ) , 
J~e k = l  

(4.6) 
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for x 1, . . . ,  x ,  > 0, n = 1, 2 . . . .  Fur thermore,  for every n e 7/ the expectation of 
T,e+l - Tf  taken with respect to the Palm distribution is finite, that  is 

E p o ( T n e + l  __ The)  = ) ~ e l  < O0  . (4.7) 

Finally, we have 

P(T[  <_ v) = 2~ i dx P~  > x) , v > 0 , (4.8) 
0 

which shows that T[ < oo P-almost  surely. 

Lemma 4.2." For every n > 1 we have 

E ( T . %  - T [ )  = E~o(T:+~ - T d )  = s  �9 (4.9) 

Proof." Note  that the r andom variables (T~+ 1 - T, e) are independent,  and for 
n r 0 identically distributed. Moreover ,  the pair (T~, T()  is independent  of the 
sequence (T~+ 1 - Tf, n # 0). Thus from the definition (4.6) of  the Palm distribu- 
tion we get 

P~ -- Tne ( x) = ~e k~___l P(Tke < l' Te+k+l -- T'e+k ( = 

= =-P(T.~+I - Tf < x) P(Tk ~ < l) = P(Tf+ 1 -- T, ~ < x) . 
A e k = l  

N o w  we are in a position to show that the auxiliary M/G/oe - t ype  batch queue 
which starts at time zero in the empty state is stable, and that  the number  of 
customers served during a busy period of this queue has finite expectation. For  
doing this, we introduce similarly to (4.1) the process (Z ~ t _> 0) by 

Z~ ~ I(o,t)(Tk)l.,~)(Tk*), (4.10) 
k = - v o  

where the T,*'s are defined as before, n = 1, 2, . . .  Consequently,  Z ~ can be 
interpreted as the total number  of batches in the system, seen by the batch that  
arrives at time T, (itself not  included). This all for the auxiliary queuing system 
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starting empty at time zero. The following two results hold for the auxiliary 
queue. 

Lemma 4.3: The expectation of the length of the busy cycle of the auxiliary 
M/Glee-type batch queue is finite. 

Proof" Note that 

Z~ -- Zdco) for all t >_ Tte(co) , (4.11) 

where T( < oo P-a.s., by (4.8). The expectation of the busy cycle of the auxiliary 
queue is equal to the expected distance between two consecutive arrival times 
T,, with n > 1, such that Z ~ = 0, which, in view of the coupling equation (4.11), 

- -  T n 

is equal to E ( T ~ -  T(), which is finite by (4.7) and (4.9). This completes the 
proof. �9 

Lemma 4.4: The mean number EJ ~ of batches served during a busy period of the 
auxiliary M/G/oo-type batch queue is finite. 

Proof" Let Nk denote the number of arrivals in the interval IT1 ~, Tke). By using for 
example the individual ergodic theorem, we have, with probability one 

EJ ~ = lim Nk lira Nk lim - -  
~ k = ~ Td+~ - T ~  

= aE(Tf - Y() = a/)~ e < oo . 

~ + ~ -  T i 

Returning now to the original Brownian- and polling-server systems we give the 
proof of Theorem 4.1. 

Proof of Theorem 4.I: Consider as regenerations epochs the departure times of 
those customers that leave the system empty. It suffices to prove that the regener- 
ations periods of (W,) and (Q0 have finite expectations (see the discussion at the 
beginning of this section). Proceeding similarly as in [10], we first consider the 
process (Q0. Clearly, for showing that the regeneration period of (Qt) has finite 
expectation, it suffices to prove that the process (IQtl) has this property, where 
IQ,I = Qd[0, 1]) is the total number of customers in the system at time t (mea- 
sured with respect to the new clock introduced with the definition of Qt). 
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Next we majorize (IQtl) by the process (Z ~ t > 0) defined in (4.10) where the 
characteristics of the corresponding auxiliary M/G/m-type batch queue are 
chosen in the following specific way: We subdivide the customers arriving in the 
original system into disjoint classes. The group of first-generation customers is 
formed by those customers that arrive when the server is travelling. The group 
of second-generation customers is formed by those customers that arrive when a 
first-generation customer is being served. Third-, fourth-, etc. generation cus- 
tomers are defined in a similar way. Notice that any nth-generation customer is 
a "descendant" from only one first-generation customer. Let 7"1, T 2 . . . .  denote 
the arrival times of the first-generation customers in the new time scale. They 
form a stationary Poisson process on the positive half line with intensity a. 
Furthermore, for n > 1, let M, be the total number of descendants produced 
by the nth first-generation customer (including this initiating customer). It is 
easy to show (cf. [10]) that the M,'s form an i.i.d, sequence of random variables 
that are independent of the arrival times of first-generation customers, and that 
EM, < oo if aex < 1. To complete the specification of the auxiliary queue, con- 
sider first the Brownian-server case. 

The random variables X,k appearing in the general definition of the auxiliary 
M/G/oe-type batch queue are determined in the following way by the Brownian 
motion of the server on the circle. Namely, from the independence properties of 
the Brownian motion with zero drift it follows that, in the original Brownian- 
server system, we can start the Brownian motion anew at each arrival time T,, 
n ~ ~ of a first-generation customer without changing the random mechanism 
of the system. By (B[ "), t > 0) we denote the Brownian motion which starts at T,. 
Furthermore, we can assume that, for each n e N, the processes (B} "), t > 0) are 
i.i.d, copies ofa Brownian motion with zero drift and diffusion parameter a 2 > 0 
and, moreover, that they are independent of the T,'s and the M.'s. Then, let X,k 
be the random amount of time which the Brownian motion (B} "), t > 0) needs for 
achieving, for the kth time, a (positive or negative) increase of size 1, i.e. 

X,k=min{t>O: Bt"'(k~ 1X.j+t)-Bt"'(k~IX.j) = 1 } .  
\ j = l  \ j = l  

Clearly, the Snk'S given in this way form an i.i.d, sequence of proper positive 
random variables which are independent of the T,'s and M,'s. Hence the auxil- 
iary queue fulfills all the assumption used in the proofs of Lemmas 4.1-4.4. 
Furthermore, from the construction of this special auxiliary M/G/oe-type batch 
queue it follows that, for every n > 1, the last descendant of the nth first- 
generation customer leaves this system not eariler than he does in the original 
Brownian-server system (considering here the new time scale introduced with 
(Q0). This is because of two reasons: First, it is ruled out that more than one 
descendant of one and the same first-generation customer is served simultane- 
ously, whereas in the Brownian-server case the server can walk towards more 
than one descendant of one and the same first-generation customer. Second, the 
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walking distance to the next descendant is always less than the distance 1 which 
has been considered in the definition of the "service times" (X,k). Consequently, 
the process (Z ~ t > 0) of our specific auxiliary queue majorizes the process 
(]Qt[, t _> 0), in the sense that 

min{t > TI: 10,1 : 0} ~ min{t > TI: Z ~ = 0} , (4.12) 

with probability one. Thus, from Lemma 4.3 it follows that the process (Qt) has 
a regeneration period with finite expected length. 

Similarly, for the polling-server system, the specification of the special auxil- 
iary M/G/~-type batch queue such that (4.12) holds, is completed by taking 
X,k = 1, for all k, n > 1. 

Finally, for showing that also the process (W~) is regenerative it suffices to notice 
that the difference between the length of the (first) regeneration period of (W~) 
and that of (Qt) is equal to the sum of the service times of all customers served 
during this regeneration period. Thus it remains to be shown that the expecta- 
tion of this sum is finite. Let J denote the number of first-generation customers 
served during the (first) regeneration period, and let Ujk denote the service 
time of the (k - 1)th descendant of the j th  first-generation customer, j = 1 . . . . .  
J, k = 1, . . . ,  M~. The expected sum of the service times can now be written as 

j M j  M 1 

E 2 2 Ujk = EJE 2 Ulk : EJEM1EUll 
j = l  k = l  k = l  

by Wald's lemma. From (4.13) and Lemma 4.4 we get EJ <_ EJ ~ < Go, and by our 
assumptions we have EM1 < ~ and EUll < m, which completes the proof. �9 

Remark 4.1: In [13] the following modification of the polling-server has been 
considered. The server is assumed to scan an interval of fixed length at constant 
speed. The scan follows a fixed path, where the interval is divided into a finite 
number of subintervals which not necessarily must be disjoint. Stability of this 
system (in particular, Theorems 1 and 4 in [13]) immediately follows from the 
results we obtained in the present section. Namely, it suffices to specify the 
auxiliary M/G/m-type batch queue in the same way as we did for the polling- 
server and the Brownian-server system, with the only difference that now the 
X,k'S are taken equal to the (fixed) total length of a scanning path, for all k, n ~ [~. 

5 The Measures Q and W 

As a result of Theorem 4.1 and the Key Renewal Theorem (KRT) (cf. [1]), there 
exist limiting r.c.m.'s W and Q on [0, 1] such that 
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W~Z~ W and Q,-~Q , 

as t --+ oe, where -~ denotes convergence in distribution. W represents the posi- 
tions of waiting customers (relatively to the position of the server) in the station- 
ary situation. Q can be interpreted as the random measure of waiting customers 
in the stationary situation given that the server is not busy (see (5.4)). It will be 
convenient to introduce, similarly to (3.1), two new "clocks" (S ~ and (Sr which 
are defined by 

S [ = i d x l { W x { i } = l }  , t>_O, i=O, 1 . (5.1) 
0 

In other words, we run (S ~ if there is a customer being served at O, and we run 
(S:) only when the server is busy with a customer at 1. Let (v, ~) denote the 
right-continuous functional inverses of (S[), i = O, 1, and define 

QI = wvt , i =  o, 1 . (5.2) 

Then QO and Qr are again r.c.m.'s on [0, 1] and the processes (QO) and (Q:) are 
regenerative with absolutely continuous regeneration periods of finite expected 
length, because (W~) has this property. The corresponding limiting random 
measures to which these processes converge in distribution are denoted by QO 
and Q1, respectively. The next theorem gives another interpretation of these 
measures. 

Theorem 5. I: The limiting probability of being idle is given by 

lim P ( W z { O  } = O, W t { 1 }  = O) = 1 - a e  1 . 
t + z C  

(5.3) 

Moreover, for any f ~ ~[0,  1] (see appendix), we have 

lim E ( e - W ' : l W , { O  } = O, Wt{1 } = O) = E e  - Q :  . 
t + a o  

(5.4) 

and, for i = O, 1, 

lim E(e -w,:] Wt{i } = 1) = Ee -a': . (5.5) 
t ~ o o  
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Proof: As regeneration epochs for (Qt) we take those times t for which IQt-I = 1 
and l Qt I = 0 (and similarly for (W~)). The regeneration epochs of (W~) are just the 
departure times of customers that leave the system empty. Let Y and Y' denote 
the length of the first regeneration period of (Q,) and (W~), respectively. Notice 
that since the system starts empty, we can take t = 0 as the first regeneration 
epoch for both processes. Since Y' is also the length of the first regeneration 
period of (e-W~fl Iw~{o I =o, wt [1 }=o}), we obtain from the K RT that 

1 Y'  
lim -w f ~ f ,  E ! - E(e, I~,, . . . . . . . . . . . . . .  ~ v , - v , - t  ~., -~, .) = ds e wsfI{ws{o}=o, ws{1}=o} 

1 Y E Y  
= E y ~ E  ! ds e - Q J  - E y ,  E e - Q f  . (5.6) 

Similarly, we obtain 

E Y  
lim E l , w  ~, . . . . . .  - , (5.7) 

~0~ O , W t , 1  ~ O, E Y '  
t ~ ot3 

so that (5.4) follows from (5.6) and (5.7), and (5.5) follows by analogy. The limiting 
probability of being idle follows directly from the KRT, as in Corollary 3.1 
of [10]. �9 

R e m a r k  5.1." By the KRT and Theorem 5.1 it easy to see that the distribution of 
W is a mixture of the distributions of Q, QO and Q1, the mixing factors being 
1 - ae l ,  P(W{0} -- 1) and P(W{1} = 1), respectively. 

Using Theorem 5.1 we can interpret Q as the r.c.m, of waiting customers in 
the stationary situation, given that the server is not busy.  Moreover, a customer 
who (in the Brownian-server case) is under service could have been approached 
by the server from one of two directions. Remembering that we fixed an orienta- 
tion on C, we can interpret Q0 as the r.c.m, of waiting customers in the stationary 
situation, given that the server is busy and that the server travelled in the 
direction of the orientat ion on the circle before reaching the customer. A similar 
interpretation holds for Q1 for the opposite direction. 

Before we come to the main result of this section, that relates the various 
random measures in yet another way to one another, we need to introduce some 
more notation. Let f ~  C+[0, l] (the set of positive, continuous functions on 
[0, 1]), and consider the stochastic process (Wtf), starting at 0. A typical realiza- 
tion of (Wtf), for the Brownian-server case, is given in fig. 4. 

In both models upward jumps of (Wtf) occur via a Poisson process (At) with 
rate a on E+. The size of a jump is independent of everything else and is 
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T 
W~ f(w) J 

f(1) 

o 1 
F F 

0 1 
F 

"V 

) c 

Fig. 4. A realization of (Wtf). For  every co, Fi(e)) denotes  the set of t imes where W t has  an  a t o m  at i, 
i = 0, 1. U p w a r d  j u m p s  cor respond  to arr ivals  of cus tomers  and  have  size f(~i), where (~i) is an  i.i.d. 
sequence  of r.v.'s on [0, 1], all hav ing  dis t r ibut ion n. D o w n w a r d  j u m p s  cor respond to depar tures  of 
cus tomers  and  have  size f(0)  or f(1). 

distributed as f(~), where ~ has distribution n on [-0, 1-]. Downward jumps have 
sizes f(0) or f(1), depending on whether W t had an atom at 0 or 1 just before the 
jump. Let (D[) denote the departure counting process that counts downward 
jumps of size f(i), i = 0, 1. Let (At) be the compound Poisson process that jumps 
at arrival times (T/), with jump sizes (f(~i)), the ~i's having distribution n, being 
i.i.d, and independent of everything else. The continuous part of (W t f )  is denoted 
by (C,). Let U = U(co) denote the set of times that W t has an atom at i, i.e. 
U(co) = {t > 0: Wt(co, {i}) = 1}, i =  0, 1. And let Z(co) = N+\{F~ FI(o))}. 
For all t > 0 we have 

Wtf  = C, - D~ - Dtlf(1) +/~t , (5.8) 

The next theorem, the main theorem of this section, Shows the relationship 
between the various random measures. It could be regarded as a kind of stochas- 
tic decomposition result for random measures (see also [7] and [-8] for stochastic 
decomposition results on cyclic server systems). By specifying process (Ct) for the 
two queueing systems at hand, we will be able to derive several important 
performance measures for the different models. In connection with this, we use 
the fact that (in both models) (Q) is a semi-martingale w.r.t, the filtration gener- 
ated by (W~), and that f o r f e  V, for some set V __ C+[O, 1], the limits 

L1 = - l i m  1E~e-W=:dC= ~" and 
t~o~ t 0 

1 1 ie-W=:d[ C, C]= L2 = lim t E  ~ o 

exist (here ~ denotes the It6-integral sign, and [C, C] the quadratic variation 
process of (C,)). The proof that (C 0 is a semi-martingale is given in Sections 6 
and 7. Specifically: for the polling system (C 0 is of bounded variation for every 
continuously differentiable f on [0, 1] (see (6.1)), and for the Brownian-server 
system we have that for every twice-continuously differentiable function f on 
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[0, 1], Ct can be written in the form ~ FflBs + Ht, where (Fs) is a left-continuous 
process, (Bt) a Brownian motion on {t > 0: Wt{0} = W~{1} = 0, Wf[0, lJ > 0} 
and constant elsewhere, and Ht a process of bounded variation, all processes 
being adapted to the to the filtration generated by (W,), see (7.1). In Sections 6 
and 7 it is also shown that L1 and Lz are well-defined. Notice that since (Ct) is 
of bounded variation for the polling-server model, the It6-integral in L t becomes 
in this case an ordinary (stochastic) integral, and, moreover, L 2 = 0. 

Theorem 5.2: Let p~ = P(W{i} = 1), i = 0, 1, then the following relationship holds 
for all f ~ V: 

0 = L1 + L2 -- flEe -w:  + 
flLv(fl) 

1 -- Lp(fl) 
(po(e:(O)- 1)Ee-Q~ 

+ pl(e :(1) - 1)Ee-Q'r , (5.9) 

where g = a S~ n(dx)(1 - e-:(x)), and Lp denotes the Laplace-Stieltjes transform 
ofF.  

Proof" Stochastic intensities, compensators etc. are always w.r.t, the filtration 
generated by (Wt). The theorem is proved analogously to Theorem 3.3 of [10]. 
We therefore only sketch the main ideas. Because (Ct) is a semi-martingale, it 
follows from (5.8) that (W~f) is also a semi-martingale. By It6's formula (see 
appendix) and (5.8) we have 

1 i e -Ws:d[C ,  CJs e-W': = e-W~ - i e -WJ dCs + 2 o 

+ ~ [ e - W J - e - W ~ - : ] ,  (5.10) 
O < s < t  

where this last sum can be written as 

(e -:(r - 1)e-WT,-:I(o,q(Ti) + (e :(~ -- 1) i e -Ws- f  dD~ 
i=1  0 

+ (e :(1) - 1) i e -Y~- :dD~ �9 (5.11) 
0 

Notice that ~i is independent of T~ and WT,-, and has distribution n on [0, 1]. 
The next step is to take expectations on both sides of (5.10), with (5.11) substi- 
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tuted into (5.10). The expectation of the infinite sum in (5.11) is equal to 
-fla-~E~toe-W~-: dA~, so that we get 

Ee-W'Y=Ee-WoY-Eie~WJ dC~+~Eie-WJd[C,C] , - f l -Eie  -w*-f dA~ 
o a o 

+ (e f'~ -- I)E i e-W'-: dD~ + (e:'1) - I)E i e-W" :dD) . 
o o 

(5.12) 

We convert, by (A.8), the expectations of the stochastic integrals in the last three 
terms of (5.12) into expectations of (stochastic) integrals w.r.t, the compensators 
of the counting processes (At), (D ~ and (D:), respectively. The compensator of 
(D~), i = 1, 2, is very similar to the compensator of a renewal process, and is given 
(in an adjusted form) by Lemma 3.1 of [10]. The compensator of(At) is just (at). 
Finally, after the conversion, we divide the left- and right-hand side of (5.12) by 
t and let t ~ oo. The proof is then completed through application of the KRT 
and Theorem 3.1, analogously to the proof Theorem 5.3 of [1(3]. �9 

Remark 5.2: Notice that in the polling-server case, by (5.3), we have Po = ael and 
pl = 0 in (5.9). For the Brownian-server model we limit ourselves to distribu- 
tions n that are symmetric around 1/2, in which case, by symmetry, Po = Pl = 
ael/2. 

Next, we specify the continuous process (Ct) for the two different server types. 
Using Theorem 5.1, this will give us important information about the queueing 
systems. 

6 Polling-Server 

In this model the server (when not busy) travels at constant speed ~-1 in the 
direction of the orientation on C. For the case that g is the uniform distribution 
on [0, 1], a complete solution was found in [10]. The more general polling 
model that we consider here (n is an arbitrary diffuse distribution on [0, 1]) can 
be analyzed in exactly the same way as the former model. We therefore only 
present the main results. 

Since the server only travels in the direction of the orientation on C, we 
immediately have that P(W{1} = 1)= 0. Therefore Q1 plays no role here. 
Clearly, (Ct) (defined in Section 5) is a process of bounded variation, hence its 
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quadrat ic  var ia t ion vanishes. Moreover ,  we have a lmost  surely, for f ~ C+ ~ [0, 1] 
(the set of positive cont inuously  differentiable functions on [0, 1]) 

d 
C, = - ~ - l l z ( t  ) Wtf '  . (6.1) 

The  p roof  of  (6.1) goes as follows. Recall that  Z(co) is the set of  times where the 
server is not busy. First  observe that  (Ct(m)) is constant  on Z(co). Next,  suppose 
that  I Wt(co)t = n > 0 on Z(~o). Let x 1 . . . . .  x,, be the a toms of Wt(co), then 

W,(co)f = ~ f ( x , )  
i=1 

and, for sufficiently small h > O, 

~+h(OJ)f = ~ f ( x i -  a-lh)= ~ f(x,)- h~ -i ~ if(x,)+ o(h) 
/=1 /=1 /=1 

= W t ( ~ ) f -  h~t -1Wt(co)f '  + o(h) . 

Therefore  

lim W~+hf -- W J  _ _ _l W, f ' , on Z . 
h~O h 

This is valid if ]~(~)1  > 0, but  trivially also when I Wt(~)] = 0, so that  (6.1) 
follows. The  following theorem is a specification of Theorem 5.2. 

Theorem 6.1." For all f ~ C~ [0, 1] we have, 

= (1 - ae l )E e -Q/~ - lQ f f  ' - flEe - w l  + ae 1 1 fl~L~)(fl) (e~(~ - 1)Ee-e~ ' 0 

(6.2) 

where fi = a ~ 7~(dx)(1 - e-I(x)), and Lv  denotes the Laplace-Stiel t jes  transform 
o f F .  

Proof: By (6.1) we have that  (C,) is a (continuous) process of bounded  var ia t ion 
(hence a semi-martingale),  and consequently that  L2 = 0 in Theo rem 5.2. More-  
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over, by Remark 5.2 we have P0 = ael and pl = 0 in (5.9). It remains therefore 
to be shown that, for a l l f ~  C1+[0, 1] 

L1 = t~lim -lt E i e-Wsf dCs = -(1 - ae:)~-: Ee-QfQf ' , (6.3) 

since then (6.2) is immediate from Theorem 5.2. Let Y and Y' be the lengths of 
the first regeneration periods of (Q,) and (W~), respectively, as in the proof of 
Theorem 5.1. Then (6.3) follows by the following set of equalities: 

L1 = _~-1 lim 1-E i d s e - W J I z ( s ) W j  ' 
t~oo t 0 

= __~-1 lim E(e-WJIz( t )WJ' )= _~-1 1 i' , ~  -Ey, E ds e-Wsf lz(s) Wf f  ' 
0 

_ _ ~ - 1  1 Y 
~ y : E  ! ds e-Q':Qsf ' = - a - l ( 1  - ael)Ee-QfQJ ' . 

The first equality follows from (6.1), the second one from the time-averaging 
property of the regenerative process (e- W'Ylz(t ) W~f') (cf. Theorem V. 3.1. of [ 1 ] ). 
The third equality is a result of the KRT applied to (e-W'Ylz(t)Wtf'). The fourth 
equality follows from the definition of Q, as a time-change of Wt. And the last 
equality is a result of the KRT, the Continuous Mapping Theorem (CMT) (cf. 
[4], p. 618) and Theorem 5.1, taking into consideration that Y is also the first 
regeneration cycle of (e-Q'fQJ'). II 

Since Theorem 6.1 shows that the distribution of QO (and hence also the 
distribution of W) is completely determined by that of Q, it suffices to concen- 
trate on Q. The next theorem determines the law of Q in terms of a computable 
expression for its Laplace functional. 

Theorem 6.2: Let G be the function defined by 

G(z) = Ee -"t:-')x , z ~ [0, 1] , (6.3) 

X being a random variable with dr. F. Then the Laplace functional of Q is given by 

Ee -Q: = exp - as : ds{1 - K(s)} , (6.4) 
0 
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where K is the unique solution to 

K(t) = 

7r(dx)G(K(t x)) 

f o r O < t  < l 

for t>_ 1 , 

(6.5) 

Theorems 6.1 and 6.2 (in combination with Remark 5.1) completely describe the 
probability law of the r.c.m, of waiting customers. Moment measures of Q and 
W can be derived at least numerically, but some performance measures can be 
given explicitly. The next corollary can be derived from Theorem 6.1 alone, 
analogously to Theorem 5.1 in [103. A similar approach is used in Corollary 7.1 
for the Brownian-server case. 

Corollary 6.1: The mean measure of  Q is given by 

act 
EQ(dx) - 1 - ael zt[x' 1] dx . (6.6) 

The expected number of  customers on the ring is 

a2e2/2 + cta ~ rc(dx)x 
EI WI = ael + (6.7) 

1 - ae 1 

Corollary 6.2." When ~ is the uniform distribution on [0, 1], we can even f ind 
explicit second-order results, namely (see Corollary 6.1 of I-8]) 

o~a 1 
var Q.f - [ dx(1 - x ) f  2(x) + - -  

1 a e  1 5 
cta3e2 ! dy dx f (x )  

1 ~ e x  

cta'el e2 _ x ) f ( x ) )  2 
+ (~ ~ ae~-)2 ( i  dx(1 (6.8) 

Moreover, when 7r is the uniform distribution on [0, 1] and when the service is 
constant, an explicit expression for the Laplace functional of  Q is given by 

] _ ae 1 ~a/e~ 
Ee-Qf = e-Of 1 -- ael ~ dy e-h(Y)/] ' (6.9) 
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where c: = a a ~ d x ( 1  - x)(1 - e-:(~)), 
positive measurable function f on [0, 1]. 

h(y) = ae: ~Yo dx(1 - e-:(x)), 
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for every 
[] 

7 Brownian-Server 

In this model the (idle) server carries out a Brownian motion on the circle which 
is completely independent of everything else, with zero drift and variance param- 
eter a2. We take n here symmetrical on [0, 1] w.r.t. 1/2, so that, in view of (5.3), 
by symmetry we have P(W{0} = 1) = P(W{1} = 1) = ae~/2. Unlike the polling 
model, no complete solution (in terms of the Laplace functional of W) is known 
for the Brownian-server model. One could still, as in the polling case (cf. [10]), 
analyze the system as a stochastic flow, in which particles are born, move and 
die in some random way, but the dependencies between the particles complicate 
the analysis severely. However, important information about the behavior of the 
system can still be derived. The following theorem is again a direct consequence 
of Theorem 5.2. 

Theorem 7.1." For all f ~ C+2 [0, 1] we have, 

o=,, . e . , . . ( ' . + ' , . e O : , , , . ) , . . :  

1 flLF(fl) ((e:(O)_ 1)Ee_eOZ + (eZ(1) - 1)Ee_e,:) 
+ ~ae: 1 -- LF(B) ' 

where, fl = a ~ n(dx)(1 - e-:(~)), and L e is the Laplace-Stieltjes transform of  f . 

Proof" Notice first that (Ct) is no longer of bounded variation. Therefore, spec- 
ifying the behaviour (C~) by pathwise arguments, as in (6.2), is no longer valid. 
However, using It6's formula we can show that (C,) satisfies a simple stochastic 
differential equation. 

Obviously (C~) is constant on Z (Z as is Sections 5 and 6). Next, suppose that 
I WtJ = n > 0, with atoms at Xl ( t  ) . . . . .  X,(t), for some t ~ Z. L e t f  G C2[0, 1]. We 
can write Wtf as f (X: ( t ) )  + .. .  + f (X,( t )) ,  By It6's formula (in stochastic differ- 
ential form) we have for every i = 1 . . . . .  n 

1 tt df(Xi(t)) = f ' (X, ( t ) )  dXi(t ) + ~ f  (Xi(t))d[Xi, Xi] , 

= ~ f ' ( x , ( t ) )  de ,  + �89 at ,  
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where B is a s tandard  Brownian motion.  Consequently,  

: 2 , . :  ;,, dt)iz(t) dC t = (aWtf '  dB t + :a  vvtj (7.1) 

which is also true for t for which [Wtj = 0. This shows that  (Ct) is a (continuous) 
semi-mart ingale  (see also Remark  5.3). As a consequence of (7.1) we have, by 
(A.6), the following quadrat ic  var ia t ion of (Ct) 

[C, C] t = a2 i du l z (u)(W, f ' )  2 . (7.2) 
0 

Since by symmet ry  P(W{0} -- 1) = P(W{1} = 1) = ael/2, Theorem 7.1 follows 
from Theorem 5.2, if we can prove  that  

L 1 + L  2 = l i m  t - E  e - W J d C s + E ~  e -WJd[C,C]s  
I --* rX3 

(1 1 ) 
= (1 - ael)a 2 - ~ E e - e : O f f  " + ~Ee-e : (Qf ' )  2 . (7.3) 

By (A.7) we have E~toe-Ws:Wtf ' dB t = 0, so that  by (7.1) and (7.2) L :  + L 2 is 
equal to 

lim t 7 o 0 (7.4) 

Let Y and Y' be defined as in the p roof  of Theorem 5.1. The p roof  of  (7.3) 
now goes analogously  to the p roof  of Theorem 6.1. Consider  the regenerative 
processes (X:) = (e-W,:Iz(t){ - W~f" + (W,/ ' )z})  and (iX',) = ( e -O- ' : { -QJ"  + 
(Qtf ')  2 }). By the K R T  and the C M T  we have that  (Art) converges in distr ibution 
to a r a n d o m  variable U = e - Q : { -  Qf"  + (Qf,)2 }. By the t ime-average proper-  
ties of regenerative processes, the definition of Q, and Theorem 5.1, (7.4) therefore 
becomes 

a 2 1 r' ~z 2 E Y 1 r a 2 
~ E y ,  E ! d s X ' ~ -  2 E Y ' E y E ! d s X ' = 2  ( m - a e l ) E U  , (7.5) 

which proves  (7.3). �9 
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Corollary 7.1: The mean measure of  Q is given by 

oe, 
EQ(dx) 2 ~ 7r(dy)(y - x) + x dx 

and the expected number of  waiting customers is 

aft-2 1 a2e2 
E I W I  - { rt(dy)y(1 - y) + ael + 

ae l~ ) (1 2(1 ael )  l 
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(7.6) 

(7.7) 

Proof." Since Theorem 7.1 also holds for functions pf  where p is an arbi t rary  small 
positive number  we have in part icular  for all f e C+ 2 [0, 1] 

1 2 n 1 1 
0 = - ~ a  E Q f  (1 - ael) - a ~ [ n(dx)f(x)  + ~a(f(O) + f(1))  

which can be rewritten as 

') E Q f "  1 (1 a-o._ae =2 ! (dx-  rc(dx))f(x) + ! dxx (1 -  x)f"(x) . (7.8) 

By part ial  integrat ion (recall here that  ~r is symmetr ic  w.r.t, symmet ry  point  1/2) 
we can write the first integral on the r ight-hand side of (7.8) as 

i o o ,79,  

so that, after interchanging the integrat ion-order ,  we find from (7.8) and (7.9) 
that, for a rb i t ra ry  f e C2[0, 1], 

- 2xn [0, x] aa-  2 E Q ( d x ) f " ( x )  = d x  (1 ~a~)l)  + 2 r~(dy)y + x f " ( x )  , 
o o 

which proves  (7.6). Moreover ,  let f ( x )  = p, p > 0 in Theorem 7.1, then for all 
p > O ,  

1 a(1 - e-V)Lr(a(1 - e-P))(e p _ 1) 
0 = - a ( 1  - e-P)Ee -plwl + ~ae I 1 - LF(a(1 -- e-P)) 

X (Ee-PlQ~ Ee -plQ~I) . (7.10) 
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Since by symmetry Ee -plQ~ = Ee -plQll, we have by Remark 5.1, 

Ee -plwl = (1 -- a e l ) E e  -plQI + a e t E e  -ptQ~ . (7.11) 

Substituting (7.11) into (7.10) yields, after dividing right- and left-hand side of 
(7.10) by - a ( 1  - e-P), that 

(a(1  ~ eP)LF(a(1 -- e-P)) ) 
O=(1-ael)Ee -plc21+ el \ 1--Lv(a(1-e-~)) + a Ee -"le~ . 

Since this is true for all p > O, we must have in particular that 

1 1 
0 = - (1  - a e l ) E t Q  ] + e l ( e l  1 - a)ElQ~ - ~ a e ~  e 2 + ( a -  e~ l ) e l  . (7.12) 

Moreover, by (7.1 1) 

EIWI = (1 - ae l )EIQ[  + a e l E l Q ~  , (7.13) 

and by (7.6) 

af t -2  1 
EIQt  - [ rc(dy)y(1 - y) , (7.14) 

(1 ae l )  b 

so that (7.7) follows from (7.12)-(7.14). 

8 Conclusion/Remarks 

Random counting measures provide a convenient way to describe the positions 
of waiting customers for these zero-buffer cyclic server models. A complete 
solution for the polling-server model was found, in terms of Theorems 6.1 and 
6.2. Numerical results will be given in a separate paper. When ~ is absolutely 
continuous w.r.t, the Lebesgue measure we can rewrite (6.5) in terms of a (non- 
linear) difference-differential equation, which can be solved efficiently by Runge- 
Kutta methods. However, it is not unlikely that an analytic solution of (6.5) 
exists for every F (remember that in the constant service time case (6.9) gives such 
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a solution). In fact, by taking el = 1 and expanding K and (6.4) in terms o fa  < 1, 
one can, by subsequently solving (6.5), find as many terms of the expansion of K 
as one wishes. This is, unfortunately, a very laborious work, and no clear 
structure in the solution procedure has been found yet. 

For  the Brownian-server model we derived the mean measure of Q, which 
gives a good indication how the customers are "on the average" distributed over 
the circle. Moreover, the exact expectation for the number of waiting customers 
was derived, which is one of the main performance measures. If rr is not symmet- 
ric, we are left with one unknown parameter  P(W{0} = 1) in Theorem 7.1, but 
apart  from that, the analysis stays the same. The unknown constant could for 
example be estimated by simulation, which then gives an estimation for EQ. 

Other performance measures (such as the waiting times of the customers) can 
be tackled by the same approach. For  some results on waiting times in the 
constant service time, with 7r uniform, we refer to [2]. Formulas for the mean 
waiting time in scanning-server systems have been derived in [13]. 

Remark  8.1: When the service times are zero, the measures W and Q can be taken 
as one and the same. Moreover, it is easy to see that W must be a Poisson Random 
Measure  on [0, 1] in the polling-server case. In particular, W is completely 
specified by its mean measure, which is given in (6.6) with el = 0. In the Brownian- 
server case, W is in general not Poisson when el = 0. However, the mean mea- 
sure of W can still be given (in (7.6), with et = 0). For  example, suppose that 7t is 
the uniform distribution on [0, 1] and el = 0. Then W has mean measure 

EW(dx)  = a,(1 - x) dx , for x e [0, 13 , 

in the polling-server case, and 

EW(dx)  = aa-2x(1 - x) dx , for x e [0, 13 , 

in the Brownian-server case. Hence the mean measure has a linear density in the 
polling-server case and a quadratic density in the Brownian-server case. The 
models in which the service times are negligible, are also referred to as snow-plow 
models, cf. [3]. 

A similar approach can be used to study the "greedy-server" model, where the 
server always travels to the nearest customer (at constant speed). The stability 
of this model seems to be difficult to prove, and one usually (carefully) ignores 
this issue. In particular, it seems to us that the method of Section 4 (proving 
stability through an auxiliary M/G/oo - t ype  batch queue), does not work in this 
case. A variant on the greedy-server system is the "semi-greedy-server" model 
where the greedy server can only decide to change direction when he is busy. For  
this model stability is perhaps easier to prove. However, when one assumes that 
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the greedy-server system is stable when the traffic intensity is less than 1, one 
can, by the methods developed here and in [10], find lower bounds for the 
expected number of waiting customers and their mean measure. Finally, the case 
where z is an atomic distributions on [0, 1] could shed some new light on the 
cyclic server model. 

Appendix 

Throughout the appendix and throughout the paper ((2, ~ ,  P) denotes the 
probability space in the background. For any topological space E, N(E) denotes 
either the Borel a-algebra on E or the set of non-negative measurable functions 
on E. The indicator function corresponding to a set A is written as IA. The 
Lebesgue measure of a Borel set A of N" (m e N) is denoted by Leb(A) .  We will 
frequently write/~f for the integral of a function f with respect to a (random) 
measure/~. First, we give some basic definitions and results on random measures. 
A reference is for example [4]. 

Let (E, g) be a measurable space, for definiteness we assume that E is Polish 
and that g is the Borel a-algebra on E (or the set of non-negative g-measurable 
numerical functions). A mapping M from f2 x g into N+ is called a random 

measure on (E, g) if 

a) B ~ M(co, B) is a measure on (E, g) for every co ~ O, and 
b) co --, M(co, B) is a random variable for every B ~ g. 

According to Fubini's theorem 

Mf(co) = ~ M(co, d x ) f ( x )  , co ~ 1-2 , (A.1) 
E 

defines a positive random variable M f  for each positive g-measurable function 
f,  and 

#(A)  = E M ( A )  = ~ P(dco)M(co, A) , A e (A.2) 

defines a measure/~ on (E, g), which is called the mean measure  of M. 
M is called a random countin9 measure if for almost every co, there exists a 

countable set D(co) such that 

M(co, A ) =  ~ f i x (A ) ,  (A.3) 
x e D(aJ)  
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where 6x denotes the Dirac  measure  at x E E. When  the sets D(~o) are locally 
finite, M is called a point process. A r a n d o m  measure  M is said to be a Poisson 
random measure (on (E, g)) with mean measure (or intensity measure) ~ if 

(a) M(A)  has the Poisson distr ibution with mean  #(A) for all A E g, and 
(b) M(A1) . . . . .  M ( A , )  are independent  whenever  A 1 . . . . .  A, s ~ are disjoint, this 

being true for every n > 2. 

Theorem A.I: The probability law of  random measure M on (E, ~) is completely 
specified by its Laplace functional L defined by 

L f  = Ee -Mr , f ~ g . 

Moreover ,  the Laplace functional of a Poisson r andom measure  on (E, g) with 
mean  measure  p is given by 

L f  = exp - ~/~(dx)(1 - e -:~)) , for all f e d o . (A.4) 
E 

We further restrict ourselves to the case where E = •+. Let ~-  = (~)t_>o be an 
augmented  and r ight-cont inuous filtration (cf. [11]). Adaptedness,  martingales,  
compensa to r s  etc. are always with respect to this filtration. Let  ~3 denote the 
collection of all real valued adapted  processes on ~+ whose every pa th  t ~ Xt(co ) 
is r ight-continuous and left-limited. Let L denote the collection of all adapted real 
valued processes on ~+ whose every pa th  is left-continuous and right-limited. 

We give some basic results in stochastic integration. The definitions and 
proofs can be found for example  in [11]. 

Theorem A.2: (It6's formula)  Let  X ~ D be a semi-martingale and let f ~ be a twice 
continuously differentiable function, then the process f ( X )  is a semi-martingale as 
well, and 

f (X , )  = f ( X o )  + f ' (X s_ )  d X  s + f " (X~_)d[X ,  X]~ 
0 

f 1 . 2" + ~ (Xs) - f (Xs_)  - U'(Xs_)AXs - ~ f  (Xs_)(AXs) } , (A.5) 
O<s<_t 

where ~ denotes the I t6-integral  sign, [-X, X]  the quadrat ic  var ia t ion process of 
X,  A X  s = Xs - Xs_ for s > O and A X  o = 0 .  
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Let B denote the standard Brownian motion, and let F e L. It is well-known 
that, since B is a local LZ-martingale, the stochastic process ~ F dB is a local 
LZ-martingale as well, with quadratic variation 

[# F dB, ~ r dB], = i F~ ds . (A.6) 
0 

In particular we have 

t 

E ~ Fs dBs = 0 , for all t _> 0 . (A.7) 
0 

The next theorem is one of the main theorems of stochastic integration w.r.t. 
point processes, where now a point process N is considered as a counting process 
instead of a random counting measure. 

Theorem A.3: Let N e • be a point process with compensator A. Then for all 
F e L ,  

E ~ F~dN~= E ~ F~dA~ . (A.8) 

In many cases of practical interest A is given by 

A, = i 2sds , t > O , 
0 

where ()~s) is called the stochastic intensity of N. When N is a renewal (counting) 
process, then A is given by Theorem 13.2 III of [4]. 
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