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Abstract

Consider a queueing system where customers arrive at a circle according to a ho-
mogeneous Poisson process. After choosing their positions on the circle, according
to a uniform distribution, they wait for a single server who travels on the circle.
The server’s movement is modelled by a Brownian motion with drift. Whenever
the server encounters a customer, he stops and serves this customer. The ser-
vice times are independent, but arbitrarily distributed. The model generalizes the
continuous cyclic polling system (the diffusion coefficient of the Brownian motion
is zero in this case) and can be interpreted as a continuous version of a Markov
polling system. Using Tweedie’s lemma for positive recurrence of Markov chains
with general state space, we show that the system is stable if and only if the traffic
intensity is less than one. Moreover, we derive a stochastic decomposition result
which leads to equilibrium equations for the stationary configuration of customers
on the circle. Steady-state performance characteristics are determined, in particu-
lar the expected number of customers in the system as seen by a travelling server
and at an arbitrary point in time.

Keywords: Single-server queue, spatially distributed arrival points, travelling server,
Brownian motion, embedded Markov chain, stability, Tweedie’s lemma, regen-
erative processes, stochastic decomposition, equilibrium equations, mean queue
length.



1 Introduction

Service systems with spatially distributed arrivals have been investigated in
queueing theory for a long time. In the earlier papers it is assumed that cus-
tomers arrive at a finite number N of spatially distributed service stations
(see e.g. Boxma and Groenendijk [11], Cooper and Murray [15], Eisenberg
[17], Fuhrmann|20], Koheim and Meister 28], Kiihn [32], Takagi [42]). In
most of these papers, a server visits consecutive stations according to a (de-
terministic) polling table. This is a function f : {1,...,m} — {1,..., N},
where m denotes the length of the polling period and f(k) the number of the
station that is served in the kth step. An important special case is the (de-
terministic) cyclic polling system, where m = N and f(k) = (kK mod N)+1.
Later on, also models were investigated in which the server visits the stations
in a random way. For example in Altman and Levy [3], Keilson and Servi
[25], and Tedijanto [43] a cyclic Bernoulli polling model is considered. Al-
though the server uses here a deterministic routing scheme to travel from
station to station, the server only actually ‘visits’ a station (and performs
service if necessary) with a certain probability which can depend on that
station. A more general model of Markov polling is considered in Borovkov
and Schassberger [10] and Boxma and Westrate [12] where it is assumed that
the server chooses the next station according to a Markov transition matrix
(pij ; 4,5 € {1,...,N}). For the special case p;; = p;, see Kleinrock and
Levy [26].

When the number N of stations becomes large, it may be difficult to deter-
mine performance characteristics of such systems, in particular when dealing
with a random routing scheme. Thus, the question arises whether it is easier
to investigate an approximative continuous model (describing the case where
N > 1). In the present paper we give a partial solution of this problem,
assuming that arriving customers are distributed over a circle C' according
to a uniform distribution on C' and that the server’s movement on the circle
is governed by a Brownian motion with drift. This queueing system can be
interpreted as a continuous version of a special case of the Markov polling
models investigated in Borovkov and Schassberger [10], Boxma and Wes-
trate [12] and Kleinrock and Levy [26]. Namely, the Markov polling model
in which the arrival rates, the distributions of service times and the walking
times are the same for each station and where the server visits the stations
according to a random walk, with p;; > 0 only if j = (¢ mod N) +1 or
i = (j mod N)+1. In order to describe general Markov polling by an approx-
imative continuous model, it should be assumed that the server’s movement
on the circle is governed by a more general diffusion process. This will be
the subject of further research.



In Section 2 we present the model of the Brownian server, where the state
of the system is described by a random point configuration on the unit in-
terval. Next, considering the system only at those points in time when a
customer departs from the system, we arrive at a discrete-time Markov chain
(R,) with non-countable state space. Using Tweedie’s lemma for positive
recurrence of Markov chains with general state space, we show in Section 4
that (R,) is ergodic if the traffic intensity is less than one. This gives the
existence of a stationary regenerative process which describes the steady-
state behavior of the system in continuous time, see Section 5. In Section 6
we derive a stochastic decomposition result by introducing three stochastic
clock processes. This leads to equilibrium equations for the stationary con-
figuration of customers in the system. In a sense, these equilibrium equations
correspond to the rate conservation law for stationary semi-martingales (see
e.g. Bardhan and Sigman [7], Mazumdar et al. [35], Miyazawa [36]). With
the help of the equilibrium equations, we can determine not only the sta-
tionary expected number of customers in the system given that the server is
travelling, but also (if the second moment of service times is finite) the sta-
tionary expected number of customers being in the system at an ‘arbitrary
point in time’, see Sections 7 and 8. It turns out that these two performance
characteristics depend in a quite natural way on the parameters that govern
the server’s movement (see Theorems 4 and 6). Moreover, formula (8.6) for
the latter expectation is in accordance with the decomposition property de-
rived in Fuhrmann and Cooper [21] for the M/GI/1 queue with generalized
vacations.

2 The Model

We consider a queueing system where customers arrive at a circle according
to a homogeneous Poisson process with intensity a. The arrival epoch of
the mth customer is denoted by T,, n € IN = {1,2,...}. The arriving
customers drop on a circle C' with circumference one, according to a uniform
distribution independently of each other and of any other random mechanism.
Here they wait for a single server who travels on the circle. The server carries
out a Brownian motion with drift on C'. We assume that the Brownian
motion has drift parameter o' > 0 and variance parameter ¢? > 0, and
that it is stochastically independent of everything else. Whenever the server
meets a customer he stops and serves this customer. The consecutive service
times are i.i.d. non-negative random variables with distribution function
F' and first moment e¢; < oo. The service times are also assumed to be
independent of the arrival process and of the movement of the server (when
travelling). After service completion, the customer is removed from the circle
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and the server resumes his walk. Notice that the movement of the server
neither depends on the number of customers being actually present in the
system nor on their positions.

The cyclic polling system considered in Kroese and Schmidt [29], where the
server moves uni-directionally with constant speed a~! > 0 (when not serv-
ing) can be seen as a special case (0% = 0) of the Brownian server system,
described above. In other words, the Brownian server could also be inter-
preted as a polling one whose movement is disturbed from the outside. Fur-
thermore, for 02 > 0 and a™! = 0 the drunken server model of Kroese and
Schmidt [30] appears, i.e. the server’s movement is governed by a Brownian
motion with zero drift.

We analyze this non-standard class of queueing systems by describing the
positions of waiting customers at time t, relative to the actual position of
the server, by the atoms of a random counting measure W; on C', where we
assume that at time ¢ = 0 we start with the empty state, i.e. Wy(C) = 0.
We thus analyze the system from the point of view of the server. For every
time t we identify the circle C' with the interval [0, 1] in the way that both
0 and 1 are identified with the actual position of the server. That is, for
every t > 0 we cut the circle at the current position of the server and stretch
it onto the interval [0,1]. Specifically, if for a realization w € 2, the server
isin s at time ¢, and if n denotes the number of customers on the circle at
that time, at locations &i,...,&, (for n > 1), then Wi(w,.) is the counting
measure on [0, 1] with atoms at v;,i =1,...,n, where

_ ) &i—s if §&>s
YT 1= (s—¢&) if & <.

In other words,

Y, 6,(B) i n>0
(2.1) Wi (w, B) = { ; s

for every Borel set B € B([0,1]), where

1 ifveB
sm={ 5§ eh

see Kroese and Schmidt [29], [30] for further details. From the view point
of the server (which we will take from now on), the location of the server
is fixed at 0 ( or 1) while the circle ‘rotates’” when the server is not busy.
The customer paths form a stochastic flow on IR, x [0, 1]. Moreover, from
the server’s perspective, the positions of arriving customers form a Poisson
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random measure on IR, x [0,1] with intensity measure (av) x m, where v
denotes the Lebesgue measure on B(/R.), and 7 the uniform distribution

on C.

We adopt the following notational conventions throughout this paper: (X;)
indicates the continuous-time stochastic process (X, ;t € IR,), and (X,)
denotes the random sequence (X,;n € IN).

3 Formulation of the Stability Problem

In Section 5 we investigate the question under what condition there exists a
time-stationary measure-valued process (W;) such that the finite-dimensio-
nal distributions of the processes (W;,5;t > 0) converge in variation to the
corresponding finite-dimensional distributions of (W;) as h tends to infinity.
We show that this question can be answered positively provided that

(3.1) aep < 1.

With the help of a certain majorization technique, we considered related
problems in Kroese and Schmidt [29], [30] where we showed for the special
cases @ > 0, 02 = 0 and o' = 0, ¢ > 0 that, under (3.1), the
measure-valued process (WW;) is regenerative with regeneration periods that
have absolutely continuous distribution and finite expectation. Now, we
present a new and, as we believe, more elegant proof of this fact for the
general case (a™!,0%) € IR%\ {(0,0)}, by applying Tweedie’s generalization
of Foster’s criterion for positive recurrence of a certain embedded measure-
valued Markov chain (see Tweedie [45]).

Note that condition (3.1) is in accordance with the corresponding stability
condition for the ‘usual’ M/G/1 queue. Nevertheless, the classical results for
the M/G/1 queue can not be used directly because in our model, besides
service times, walking times appear. Furthermore, note that in the stability
condition (3.1) the parameters a~! and ¢* do not appear. At the first sight,
this might be surprising. However, an explanation for this is that a slowly
walking server causes the circle to ‘fill up’ with a lot of customers. The fact
that walking times become negligible when the number of customers in the
system is large, is essentially the reason why the stability of the queue is not
influenced by the walk times and, in particular, not by a~! and o?. The
necessity of condition (3.1) is quite clear. This can be seen by comparing
our queue with an ordinary M/G/1 queue (with the same arrival rate and
service time distribution). Such an M/G/1 queue processes the customers
faster than our queue, and is stable only if ae; < 1.
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For queueing systems where arriving customers are continuously distributed
in a non-countable space C, a formal proof of stability is often omitted in the
literature (see e.g. Bertsimas and van Ryzin [9], Coffman and Gilbert [13],
Fuhrmann and Cooper [22], where this problem has been left open). However,
for a related class of queues stability conditions have been known for a long
time (see Eisenberg [17], Kiihn [32], Takagi [42]). In these queues customers
arrive at a finite number of points in C so-called stations. Only recently,
stability conditions for such systems have been systematically analyzed and
generalized (see Altman et al. [1], [2], Borovkov and Schassberger [10], Fricker
and Jaibi [19], Georgiadis and Szpankowski [23], Resing [38], Spieksma and
Tweedie [41]). For the continuous cyclic polling system, we gave a proof
of stability in Kroese and Schmidt [29], see also Coffman and Stolyar [14].
There a stable auxiliary M/GI/ oo queue was constructed which works slower
than the original polling system and for which each empty point (i.e. an
arrival epoch at which the system is empty) is simultaneously an empty
point of polling system. Unfortunately, this construction does not work for
the Brownian server. Next, in Kroese and Schmidt [30] a different, rather
cumbersome majorization has been used to show that also in the drunken-
server case (W;) is regenerative if and only if (3.1) holds.

The present approach to prove stability of the Brownian server model has the
advantage that it works equally elegant for both the cyclic polling and the
drunken (zero drift) server. The idea is to consider the embedded Markov
chain (R,) with Ry = Wy and, for n > 1, R,, = Wy, where U, denotes the
epoch of the nth service completion. The state space (F,E) of this Markov
chain is the set E of all finite counting measures on [0,1] endowed with
the o-algebra & of subsets of E generated by the family of sets {p € F :
©([a,b)) =n} with 0<a<b<1l,ne Ny=1{0,1,2,...}. It is well-known
that E is a metric space which is separable and complete, and that £ is the
o -algebra of its Borel sets (see e.g. Section 1.15 of Matthes et al. [34]).

Next, Tweedie’s lemma (see [45]) is used to show that, for a certain integer
¢ > 0, the Markov chain (X,) with X, = R, is ergodic and, conse-
quently, that the empty state is positive recurrent provided that (3.1) holds.
Because empty points are regeneration epochs, we are able to construct a
time-stationary regenerative process (W;) such that the finite-dimensional
distributions of the processes (Wi4p;t > 0) converge in variation to the
corresponding finite-dimensional distributions of (W;) as h — oco.

Independently of the present paper, in Altman and Levy [4] stability of an-
other continuous polling system has been investigated where the server is
assumed to move according to certain ‘gated-greedy’ and ‘gated-scan’ policy,
respectively.



4 The Embedded Markov Chain (X,)

Let P, be a probability measure under which the embedded Markov chain
(Xn) (as defined in the previous section) starts at state = € E at time
n = 0. The expectation with respect to P, is denoted by E,. Let
74 = min{k > 1 : X; € A} denote the hitting time of a set A € & .
We show that if (3.1) holds, the following conditions (4.1)—(4.4) are satisfied:
There exist a set A € £, a probability measure n on €4 = {DNA: D € &},
a real number € (0,1) and an integer mo € IN such that

(4.1) P (14 <o0)=1 forevery z€FE,
(4.2) sup E ;74 < o0,
€A
and
(4.3) injf4 P (X, € B) > pn(B) forevery B e &jy.
jAS]
Furthermore, there exist integers ni,no,... and an integer k such that

(4.4) /A P (14 =n;) n(dx) >0, ged{mo+ ny,mo+ng,...,mo+n,} =1

where ged(D) denotes the greatest common divisor of the set D .
Let
(4.5) P*(x,D)= P (X, € D)

denote the n-step transition kernels of (X,), and denote P!(z, D) by
P(z,D). It is well-known (see e.g. Athreya and Ney [6], Nummelin [37])
that from (4.1)—(4.4) it follows that the integral equation

(4.6) u(D) = [E P(z,D) u(dz), D€,

has a unique solution p in the set of all probability measures on £ and that

(4.7) sup |P"(z,D) — u(D)] — 0 if n— oo
De¢

for every x € E. Moreover, p is a stationary initial distribution of the
Markov chain (X,,), and no further stationary initial distribution exists, see
also Lindvall [33], Sigman and Wolff [40].
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Now, assuming that (3.1) holds we show that the conditions (4.1)—(4.4) are
fulfilled. In connection with this we use the following generalization of Fos-
ter’s criterion for positive recurrence (cf. Section 6 of Tweedie [45]).

Lemmal Let Ac&,e>0and g: E— IR, bea &—B(IR,) measurable
function such that

(4.8) /Eg(y)P(x, dy) < g(z) — e for every x € A°.
Then

(4.9) E 14 < @ for every x € A°

and

(4.10) E 1y <1+t /AC g(y)P(x,dy) for every z € A.

Thus, (4.1) and (4.2) are proved if we find a set A € £, a constant € > 0,
and a function g : £ — IR, such that (4.8) and

(4.11) sup g(y)P(x,dy) < 0o
€A JAC

hold. For every j € INg, let A; ={p € E:¢([0,1)) =4} denote the set of
counting measures on [0,1) having exactly j atoms.

For clarity we consider the special case of the cyclic polling server first, i.e.
the case where 02 = 0. Let

ax
4.12 =min{j € N:j >

(4.12) ¢=min{j € IV:j>— ael}

We put

(4.13) A= U A; and g(x)=j for z € A;.

Then, for every j > ¢ and for every z € A; we have

Z/kP:cdy z/ (= C+ k)P, dy)

k=j—C J C+k

/g(y (z,dy) =
E

=(J—Q)+ > kP(x,Aj_ciu),
k=0
7



where the sum Y32, kP (z, Aj_¢+x) is equal to the expected number of cus-
tomers which arrive in the time interval (U,, U,1¢) under the condition that
Wy, = x. The length of this time interval is the sum of ( service times,
which are independent of the Poisson input, and of a random variable which
is bounded by the time which the server would need to go around the whole
circle when there is no customer. This time is equal to «. Thus, for every
x € A; with j > ¢ we have

(4.14) i kP(x,Aji_cir) < a(Cer + a)
k=0

and, consequently,

[ 9W)P(,dy) < j +{a(Cer+a) = ¢} = gla) — e,

where ¢ = ((1 — ae;) —aa > 0, i.e. (4.8) holds. Furthermore, for every
x € A; with j < ¢ we have

/Acg(y)P(SCady) = i/A k P(z,dy) < i kP(z, Ay),
k= 7 A

k=0

where the last term is the expected number of customers in the system at
time U,1¢ under the condition that Wy, = . Because x € A; with j < (,
this expected value is not greater than the sum of the following expectations:
The expected number of all customers, which arrive during the ( service
times between U, and U,y , and the expected number of those customers,
which arrive during the corresponding ¢ walk times. Thus, because the sum
of these walk times is not greater than («, we have

(4.15) /.. 9w)P(.dy) < a(er +Ca)

for every = € Ug;é A; and, consequently, (4.11) holds.

Next, we show that (4.3) is fulfilled with mg = 1 and 7 the probability
measure on £, defined by

(4.16) 0(B) = { 0 0un

where 0 denotes the zero-measure on [0,1], with 0([0, 1]) = 0. We therefore
have to show that

(4.17) inf P (X, = 0) > 0.
8



The assumption x € U;:é A; means that, at the considered departure epoch,
less than ( customers are left in the system. Thus, for realizing the event
{X; = 0}, it suffices that during ¢ service times and during ¢ walk times
no customer arrives. Consequently,

(4.18) inf P.(X, =0) > / T emalttea) e (p) > 0,
@ 0

where F¢ denotes the (-fold convolution of the distribution function F of
service times.

Now, it remains to show that (4.4) holds with my = 1. However, this easily
follows from the fact that P (74 = n|Xy = 0) > 0 for every integer n € IN .

For the general Brownian server case, we will use similar arguments to show
that the conditions (4.1)—(4.4) are fulfilled provided that (3.1) holds. Let
(B:) be a Brownian motion with drift —a~! and variance parameter ¢ > 0.
Assume that By = 0. Let V denote the time at which (B;) first attains
one of the values 1 or —1, i.e.
P (V <t)= P(max |B,| > 1).
O<u<t
By v = EV we denote the expectation of the non-negative random variable

V. It is well-known (see e.g. Section 15.3 in Karlin and Taylor [24]) that
v < 0o. Now, by replacing the definition (4.12) of { by

L . ay
4.12 = N :
(4.12') (=min{j € IN:j > 1_a€1}

we can proceed completely analogously in showing that, for the Brownian
server, the conditions (4.1)-(4.4) are fulfilled when (3.1) holds. In par-
ticular, this is due to the fact that, for x € A; with j > ¢, the sum
Yoo kP(x,Aj_c1)) is not greater than the expected number of customers
which arrive during ( service times and during ( switching times, where
the sum of these switching times is stochastically bounded by V' . Thus,

i k P(LL’, Aj_g+k) < CL(C€1 + 7)7

k=0
and (4.8) follows in the same way as in the case of the cyclic polling server.
Moreover, the inequalities (4.15) and (4.18) remain true in a slightly modified

form. Namely, putting again A = U;:é A; and g(x) =j for x € A; |, we
have

/Ac 9(Y) P(z, dy) < a(Cer + ()
9



and N

inf P,(X,=0)> / / e~ AFS(1)dGS (5) > 0,

€A 0 0
where G¢ denotes the (-fold convolution of the distribution function G of
V. This gives (4.11) and, consequently, (4.1)—(4.4).

Remark Unfortunately, for a further kind of server, the so-called greedy
server, who always walks (at constant speed a~!) towards the nearest cus-
tomer, the question remains open whether analogous arguments can be used.
In Coffman and Gilbert [13] the conjecture is formulated that (3.1) is suf-
ficient for stability of the greedy server, but no proof is given. The main
difficulty with the greedy-server model is that the walking discipline is dy-
namic, in the sense that it depends on the actual state of the system. Any
newly arriving customer could change the direction of the server’s movement.
Clearly, it would be possible to provide an analogous proof as above if also for
the greedy server one could show that the mean number of customers which
arrive during the walk times of the server within the interval (U, Up,4¢) is
bounded uniformly with respect to ¢ under the condition that at time U,
we start from a state x € A; with j > ¢, i.e. Wy, ([0,1]) > ¢. On the
other hand, for a certain gated-greedy server it has been recently shown in
Altman and Levy [4] that (3.1) is sufficient for stability. In this case the
server operates in certain cycles, where in each cycle the server serves a cus-
tomer if and only if he is present in the system at the beginning of the cycle.
Within the cycles, the greedy-server approach is considered, i.e. within the
cycles the server always picks for service the closest customer for it. Note
however that from the results of Altman and Levy [4] it can not be concluded
that (3.1) is sufficient for stability of the usual greedy server. A light-traffic
approximation for the greedy server has been derived in Kroese and Schmidt
[31].

5 Limiting Behavior in Continuous Time

By the above consideration it follows in particular that we have for the general
Brownian server model

¢—1
(5.1) sup E,74 <oo with A= ] A4;,
€A j=0

for a certain natural number ¢, provided that (3.1) holds. Now we use this
result to show that, in continuous time, the expected amount of time which
the system needs to return to the empty state is finite.
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We assume again that at time ¢ = 0 we start with the empty state. By
S1, 55, ... we denote the subsequence of those departure epochs at which the

Markov chain (X,,) takes values in the set A = U;:é A;. Then, with the
notation Sy = 0, we have for every n € IV,

E(S, - S, 1) = /A E (S, — Sp1) P (Ws. . € dz).

Observe that the random variable S, —S,,_1 is the sum of (74 service times
and of (74 walk times, where the latter ones can be bounded from the above
by i.i.d. copies of the random time V' at which the Brownian motion (B;)
first attains one of the values 1 or —1. Thus, by Wald’s lemma, we get

E:(:(Sn - Sn—l) S C(el + 7) E:(:TA~
Because of (5.1) this gives
(5.2) E(S,—S,1)<c<oo

uniformly in n. Denote by 7y the smallest (random) natural number such
that the interval (S;,_1,5] contains a departure epoch immediately after
which the system is empty. Then, for the time T which the system needs
to return to the empty state, the inequality 7' < 7 (S, — S,_1) holds.
Thus, we get the bound

ET<cEm

where again Wald’s lemma and (5.2) have been used. Furthermore, we have

0 oo 0 o) k
En=Y Pnzk<Y (1- [ [Tearmicis) <.
k=1 k=1 0 Jo

This gives that the expected return time E T is finite. Thus, using the fact
that each departure epoch immediately after which the system is empty, is a
regeneration epoch of the queueing process (W), we arrive at the following
result.

Theorem 1 The measure-valued process (W;) of the configuration of
customers on the circle is regenerative with regeneration periods that have
absolutely continuous distributions and finite expectations.

Corollary 1  There exists a time-stationary regenerative process (Wt)
which takes its values in the set of all finite counting measures on the in-
terval [0,1] such that the finite-dimensional distributions of the processes
(Wignit > 0) converge in variation to the corresponding finite-dimensional
distributions of (W;) as h tends to infinity.
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The proof of this corollary follows from Theorem 6.3.1 in Berbee [8], where it
is shown that it suffices to prove that a regeneration period has finite expec-
tation and that its distribution is spread out, i.e. that for a certain natural
number n the nfold convolution of this distribution is nonsingular with re-
spect to the Lebesgue measure on the real line (see also Corollary VI.1.4 in
Asmussen [5] for the convergence of the one-dimensional distributions). For
a proof that the limit process (W;) is again regenerative, see Thorisson [44].

6 Equilibrium Equations: Stochastic Decomposition

Important information about the (general) Brownian server system can be
obtained via equilibrium equations. Under the assumptions that the drift
a~! or the variance parameter o2 are equal to zero, characteristics of the
stationary configuration of waiting customers have already been investigated
in Kroese and Schmidt [29], [30]. It turns out that some results obtained in
these two previous papers can be extended to the Brownian-server case with

general (non-zero) drift.

In connection with this, besides the process (W;), we will consider three
other measure-valued processes (Q;), (QY) and (Q}). They are defined by
means of random clocks. First, for any realization w € Q, let B = B,
denote the set of times where the server is not busy. And for i € {0, 1}, let
B = B! denote the set of times {t > 0: W;(w, {i}) = 1} where the server
is busy with a client at i. Now define the clock process (S;) by

(6.1) Sy(w) = /Ot 1 (x)da,

where 15 denotes the indicator function of B. Thus, the clock (S;) only
runs when the server is not busy. Furthermore, let (14) denote the right-
continuous functional inverse of (S;), i.e.

(6.2) v =inf{lu >0:S5, >t}

Then, the process (Q;) with @, = W,, will describe the evolution of the
configuration of waiting customers given that the server is walking. In a
similar way we define the processes (Q}) with Q} = W,;, where

(6.3) vi=inf{lu>0:8" >t}

and

(6.4) Siw) = /Ot 1pi(z)dz,
12



for i = 0,1. The process (Q?) describes the evolution of the configuration of
waiting customers given that the server is busy serving a customer and given
that the server reached this customer walking in the direction of the orienta-
tion of the circle. Analogously, the process (Q!) concerns the case that the
customer who is under service was reached from the opposite direction.

By using similar arguments as in Section 3 one can show that the process (Q;)
is regenerative with regeneration periods which have absolutely continuous
distribution and finite expectation, provided that (3.1) holds.

Assumption For the rest of this paper we assume that the distribution of
the service times is spread out.

Then, if (3.1) is satisfied, proceeding as in Sections 3 to 5 we get that the
processes (QY) and (Q}) are regenerative with regeneration periods hav-
ing spread-out distribution and finite expectation. Thus, from Theorem
6.3.1 in Berbee [8], it follows that there exist time-stationary limit processes
(Qu), (QY) and (Q}) of (Qy),(QF) and (Q;), respectively. For the rest of
the paper we use the notation W = Wy, Q = Qo, Q° = Q) and Q' = Q}.
Let C[0,1] and C2]0,1] denote the family of non-negative continuous and
twice-continuously differentiable functions on [0, 1], respectively. And, for
every f € C.[0,1] and for every random measure M on [0,1], let Mf
denote the integral [, f(z)M(dz).

The following two theorems are generalizations of results obtained in Kroese
and Schmidt [29] and [30]. Theorem 2 gives an intuitive interpretation of
Q,Q" and @', whereas Theorem 3 is a kind of stochastic decomposition
result, linking the Laplace functional of @ to those of Q° and Q!. The
proof is completely analogous to the proofs of similar theorems in Kroese
and Schmidt [29], [30] and we therefore omit them.

Theorem 2 The stationary probability that the server is not busy serving
is given by

(65)  lim P(W,({0,1}) =0) = P(W({0,1}) =0) = 1 - ae,.

Moreover, for any f € C[0,1],

(6.6) lim E (e |W,({0,1}) =0) = lim Ee 9 = Ee 9/
and, for 1 =0,1,

(6.7) lim E (e W, ({i}) =1) = lim Ee 9 = Ee @Y,
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Theorem 3 Let p;, = P(W({i}) = 1) for i € {0,1}. Then, for any
f € C2]0,1] it holds

0 = (1—ae)o’(~5Be QS + LBV Q)
+ (1 —ae))Be ¥ (a™'Qf" — B)

6.8
o B @I - 1) )
b B (e - 1) )

where = a [} (1 — e /®)dz, and Lp denotes the Laplace-Stieltjes trans-
form of F'.

In the general case it seems to be difficult to determine the steady-state
probabilities py and p;. Note however that this problem does not appear
in the special cases 02 =0 and a~! = 0, respectively.

Corollary 2 (Kroese and Schmidt [29]) For the cyclic polling server (o2 =
0) we have py = ae; and p; = 0. Consequently,

0 = (1—ae))Ee ¥ (aQf — B)

BLE(B)
1 —Lp(B)

(6.8))

+ aeEe @7 ((e/© — 1) - p).

Corollary 3 (Kroese and Schmidt [30]) For the drunken server (o' =0)

we have py = p; = %5+ . Thus,

0 = (1= a0’ (3B UQ" + L B (Qf )
— (1 —ae))BEe%/

(6'8//) aeq _00 0 F
+7WQ%“”%%%ﬂ”
—Q 1 BLF(B)

Remark Note that the technique used in Kroese and Schmidt [29], [30] for
proving the equilibrium equations (6.8') and (6.8”) is similar to the method
used in Bardhan and Sigman [7] for proving a rate conservation law for
stationary semi-martingales (see also Mazumdar et al. [35] and Miyazawa
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[36]). In both cases, It6’s formula of stochastic integration is used. However,
observe that two different kinds of stochastic decomposition have been con-
sidered. We have split the time axis with respect to three non-atomic random
measures (by means of the clocks (S;), (SP), (S})), whereas in Bardhan and
Sigman [7] only purely atomic embedded random measures (induced by jump
processes) have been considered.

7 The Expected Number of Customers Seen by the
Walking Server

In Section 8 we derive a formula for E W ([0, 1]). In Kroese and Schmidt [29)],
[30] we obtained such formulas for the special cases 0? =0 and o' =0,
respectively. In both cases we started by analyzing random measure (), the
conditional steady-state configuration of customers given that the server is
walking. Using the equilibrium equations (6.8') and (6.8”), respectively, in
combination with some further specific features of the cyclic polling server
and the zero-drift Brownian server, we derived in both cases the mean mea-
sure mg of @), that is the measure on B[0, 1] defined by mg(A) = EQ(A)
for every A € BJ0,1]. Unfortunately, for the general Brownian server case,
the derivation of mg via the equilibrium equations does not seem to work,
mainly because then the weighting probabilities p, and p; are typically
unknown.

Thus, we present a new approach for determining mg in the general case.
Let (B;) be a Brownian motion with drift —a™' and variance parameter
o2, where (o', 0%) € IR2\{(0,0)}; By = 0. Consider the following particle
system on IR, x [0,1] which is defined recursively and is governed by (B;).
The particle system starts off with a ‘parent particle’ at position z € (0, 1)
at time ¢t = 0. The parent ‘walks’ in the strip IR, x [0,1] until it hits the
level 0 or 1. Then it dies, creating simultaneously a non-negative (random)
number of new particles. These particles also move around and they die
when they hit 0 or 1, possibly creating second-generation offspring, and so
on. The movement of the particles is governed by (B;) in the following way:
Suppose that at time s there are n particles ‘alive’ at positions vy, ..., y,.
Let V denote the first time that one of the processes (y; + By — Bs; t >
s), i = 1,...,n hits the level 0 or 1. Then, the positions of the particles
at time t € [s,V) are given by y; + B; — Bs,...,yn + By — Bs. At time
V' the particle that hits the boundary of the strip IR, x [0,1] dies, and,
simultaneously, J new particles are created at positions (if J(w) > 0)

(,61), - (8,€)).
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Here, J has a compound Poisson distribution with generating function given
by

(7.1) E: = /OO e =g p(u), 0<2<1,
0

where a is the arrival intensity and F' the distribution function of service
times. The ¢&;’s are i.i.d. random variables, uniformly distributed on [0, 1]
and independent of the other stochastic components of the model.

Let L7 denote the counting measure describing the positions at time ¢ of
those particles that are alive at time ¢ and created (possibly via some inter-
mediate generations) by a single parent particle at time 0 and position z.
For any t >0 and f € C,[0,1], define

(7.2) Hy(t) = /0 Gy (t, 7) d,
where Gy(t,z) = ELYf.

From the independence properties of the Poisson arrival process and from the
definition (6.1) of the clock process (S;) it follows that the particle system
described above can be used to express the mean measure mg in terms of
Hy.

Lemma 2 For every f € C,[0,1] it holds that

(7.3) EQf = a/m H(t) dt.
0
Proof For every t > 0 we have
00 1
EQ,f — EZHM}/O Gt — T,y z) de
i=1
o t
= EX Loyt —T) = E [ Hy(t - ) A(ds)

1=1
¢

= a/ H¢(t —s)ds,
0

where T7,T5,... are the arrival epochs of the homogeneous Poisson arrival
measure A with intensity a. Here, the last equality follows from the fact
that the mean measure of the Poisson random measure A is given by ads.
Letting t tend to infinity completes the proof. O

Next we determine the mean measure mg for the special case that e; =0,
i.e. service times vanish. This turns out to be a crucial step in determining
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mg for general e; > 0. In connection with this, we use a well-known result
from the theory of diffusion processes which gives the expectation

Vo
¢t =E [ f(B +x)dt
0

for any = € (0,1) and f € C4[0,1], where V, denotes the exit time from
[0, 1] of the stochastic process (B;+ z,t > 0).

Lemma 3 Let (B;) be a Brownian motion with parameter vector (u,o02) €
IR*\ {(0,0)}. Then, for every x € (0,1) and f € C,[0,1], it holds

{%95 =L = 00) F(y)dy
+ETE (e — 1) f(y)dy} it p#0,0% >0
L1 fly)dy if 41>0,02=0
(7.4) ef =< "
ﬁf(ff(y)dy if £t<0,02=0
Z{x [;(1—=y)f(y)dy
+(1 =) [y yf(y)dy} if 4=0,02>0

where 0 = —2u /0.

For a proof of this lemma and for further details we refer to Sections 15.3
and 15.4 of Karlin and Taylor [24].

For convenience, we will use the notation ¢y = EQf when e; = 0.

Lemma 4 Assume that e¢; = 0. Then,

11— e 22 ylo L )
CLO(/O (m - y)f(y)dy if a > 0,0' >0
1
(75) ¢ = aa/ (1—y)f(y)dy ifa='>0,02=0
0
1
aU_Q/ y(1 —y)f(y)dy if =t =0,0% > 0.
0

Proof Observe that, for e; = 0, the counting measure Ly has the following
simple form

(7.6) Li([e,d]) = 1y, >, e<B,+a<d)

17



where [c¢,d] is an arbitrary interval in [0,1]. Thus, from (7.3) and (7.6) we
get

EQf - a/OOO/OlELffd:):dt
— a/ooo /01E1{Vx>t}f(3t + o) dudt
ie.
(7.7) EQf:a/OlE/vaf(Bﬁx)dtd:):,

for every f € C[0,1]. Consequently, substituting (7.4) into the last integral
and integrating with respect to = gives (7.5). O

Note that (7.5) implies that E @ (for the case e; = 0) has a density v
with respect to the Lebesgue measure on [0,1]. This density has an intuitive
interpretation, yielding another way to prove (7.7) without using the general
representation formula (7.3) in Lemma 2. For this, one should consider a
time-reversed model, looking backward from the actual position of the server.
Notice that for every ¢ > 0 the process (B!;0 < u < t), given by B} =
B;_.,,— By, is again a Brownian motion on [0, ], starting at 0, but now with
drift o' and (the variance parameter is again o?). Let V) denote the
exit time from [—z,1 — 2| of the Brownian motion (B;). We now calculate
an upper and lower bound for E Q;([z — h,z + h]), for all z € (0,1) and
for large ¢ and small h > 0. Let V7, and V;'_, denote the exit time from
[—z—h,1—z+h] and [—z+h, 1 —x—h], respectively, of the Brownian motion
(Bf). Clearly, in the time interval ({t —V;_,}7,¢) the server did not visit
that part of the circle which, seen from the actual position of the server at
time t, is described by the interval [z —h, 2z +h] (here {u}" = max{0,u} ).
Thus,
2ah E (V] _, ANt) < EQi([x — h,x + h]),

where s At = min{s,t}. Analogously,
EQ/([x —h,z+ h]) <2ah E (V] At).

Moreover, both E (VS _, At) and E(V), At) converge to E (V) At)
uniformly in « when h goes to zero. Consequently,

E Qi(dx) =a E (V) Nt)dz.
Letting t — oo in the last expression gives
EQ(dz) =a EV] dz,
18



so that v(z) = a EV}, and (7.7) follows by the standard theory of Brownian
motion.

Theorem 4 In the general case, i.e. if e; > 0, we have

1
1-— aeq ar

(7.8) EQf =

for every f € C.[0,1], where ¢f is given by (7.5).

Proof We use the general representation formula (7.3), together with (7.7).
In connection with this, we first analyze the expectation Gy(t,z) = E L} f
appearing in (7.2). Clearly, we have

(7.9) Gy(t,z) = EL{ flyy,>ey + E Ly flv,<iy-
Moreover, we get
EL{ fliy,>y = E f(Bi + ) l{v,>n
for the first summand in (7.9), and, from (7.1),
E L fly,<y = Ely,<pae Hy(t = Vi)

for the second summand. Because of (7.2) and (7.3), this gives
EQf - a/OOOHf(t)dt
= a/ooo /01 Ef(B; + )1y, >y dx dt
+ a2 /OOO /01 Elyy, <y Hy(t — V,) do dt

1 Vaz 1 o)
- a/ E/ £(B, + ) dtdx+a261/ E [ Hit—V,)dtde.
0 0 0 Ve

where
E Hf(t—Vx)dt:E/ Hy(#) dt.
0

Ve

Thus, from (7.3) and (7.7) we get
EQf=qr+act EQf.

This completes the proof.
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8 The Expected Number of Customers at an Arbitrary
Point in Time

We now use the equilibrium equation (6.8) and Theorem 4 to derive a formula
for the (unconditional) expectation E W([0,1]) of the number of customers
on the circle at ‘an arbitrary point in time’. Note that, in general, this
expectation may be infinite, even when the system is stable, i.e. when con-
dition (3.1) is fulfilled. In this section we will, for any (random) measure M
on B[0,1], abbreviate M([0,1]) to |M]|, and, consequently, E M([0,1]) to

Theorem 5 If (3.1) holds and if the second moment ey = [t?dF(t) of
service time distribution is finite, then E |W| < oc.

Remark  Note that one possibility to prove Theorem 5 is given by the
elegant concepts of ‘ancestral line’ and ‘offspring’ considered in Fuhrmann
and Cooper [21]. Then, the finiteness of the expectation E|W| follows
from the decomposition formula (4) in Fuhrmann and Cooper [21], because
Theorem 4 of the present paper yields that E|Q| < oo and because the
stationary mean queue length in the ‘usual’ M/G/1 queue is finite provided
that e; < co. We remark however that the decomposition formula mentioned
has been derived in Fuhrmann and Cooper [21] in a somewhat informal way
because the authors of that paper simply assume the existence of a steady
state giving no arguments which would show under what conditions this
assumption is satisfied. Moreover, the notions ‘random departing customer’
and ‘random point in time’ considered in Fuhrmann and Cooper [21] remain
vague without using a general point-process setting which includes the notion
of Palm distribution, see e.g. Franken et al. [18], Konig and Schmidt [27]. In
the present paper we decided to give a separate proof of Theorem 5 (and of
Theorem 6) because our approach seems to work also for certain non-Poisson
arrival processes, e.g. in the case when the arrival epochs of customers form a
Markov modulated Poisson process. Furthermore, observe that the expected
total workload at an arbitrary point in time can be derived fairly easily, once
we have a formula for E|Q)]. See Kroese and Schmidt [31], where this has
been discussed in detail.

Proof of Theorem 5  Consider again the embedded Markov chain (R,,)
introduced in Section 3, where R, denotes the configuration of customers
on the circle at (= immediately after) the nth service completion. From
the results obtained in Section 4 it follows that also the Markov chain (R,,)
is ergodic in the sense that the corresponding n step transition probabilities
converge in variation to the limit distribution p given by (4.6) (that is, to
the same limit distribution as (X)) ).
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Next, let us denote by ([U,, Wy,]) the time-stationary point process of de-
parture epochs marked by the customer configurations at departure epochs,
where the distribution of ([U,, Wy, ]) is given by the inversion formula for
Palm distributions of marked point processes (see e.g. formula (6.3.2) in
Berbee [8] or, in a more general context, Theorem 1.2.9 in Franken et al.
[18]). Note that, in Section 3, we used the same notation U, for the non-
stationary case. But, it seems that there will be no confusion.

The limit distribution p given by (4.6) of the embedded Markov chain (R,,)
can be seen as the Palm mark distribution of the stationary marked point
process ([U,, Wy, ]). Thus, from the PASTA property of stationary queueing
systems with Poisson arrival process (see e.g. Theorems 4.1.1 and 4.3.1 in
Franken et al. [18]) it follows that the distribution of W is equal to pu.
Consequently, we have

(8.1 EW| = [ |¢l n(dg).

Thus, it suffices to show that the right-hand side of (8.1) is finite. For
proving this we can use a general criterion for the existence of moments of
stationary Markov chains with general state space (see Theorem 1 of Tweedie
[46]). Namely, it suffices that for some set A € £ with 0 < p(A) and
Jalelu(dy) < oo, some € € (0,1) and some measurable function g : E —
R, with g(p) > €|p|, p € A° the following holds:

(8.2) /Acg(y) P(e,dy) < g(@) — elp| for every ¢ € A°
and
(8.3) sup [ g(y)P(p,dy) < oo,

pEA JA°

where P(p,dy) denotes the transition probabilities of the Markov chain
(X,) with X,, = R¢,, considered in Section 4. Note that p is the stationary
initial distribution both of (R,) and (X,), where ( is given by (4.12').

For a certain natural number (; > ¢, which will be specified later, we put

Go—1
(8.4) A= |J A; and g(p)=j* for p € A;,
=0

where A; = {¢ € E : |p| = j}. Then, similarly as in Section 4, for every
Jj > Co and for every ¢ € A;, we have

LawPedn =3 [ G- C+hPPody)

J—C+k

21



GO 20 - O S kP Ay + SR P(o, Ay )

k=0 k=0
< 52 —2j(¢ —aer —ay) +¢,

where
c=(" = (20 = Da(Cer + a) + a®(Ces + (%€} + 2aler + a?)

is a finite constant. Consequently, for ¢ = ( —ae;( — ay > 0 we have

(8.5) | 9w)Pe.dy) < * = ¢

for every j > (o and ¢ € A;, where (o =min{j € IN : j > (,j > ce '}
Thus, the conditions (8.2) and (8.3) are satisfied. This finishes the proof of
Theorem 5. O

Corollary 4  The expectations E|Q°| and FE |Q!| are finite provided
that the conditions of Theorem 5 are fulfilled.

Remark Note that the notion PASTA (Poisson Arrivals See Time Aver-
ages) was coined in Wolff [48] whereas the priciple itself, applied in (8.1), to
prove that certain embedded and non-embedded stationary queueing charac-
teristics coincide, without calculating them explicitely, was introduced con-
siderably earlier (see Schassberger [39], Wolff [47]). A general point-process
approach to this question is given in Franken et al. [18], see also Chapters 9
and 10 of Konig and Schmidt [27].

Theorem 6 Under the conditions of Theorem 5, the expected number of
customers on the ring in the ‘stationary situation’ is

2

X X a~ €9
ae —
1—ae P TN o1 Zaer)

(8.6) E\W|=

where ¢ is given by (7.5) with f(z) =1, i.e.

1 241
aa(l ey ad 2+ ) if a7 >0,0%>0
G = % if a1>0,02=0
6#“2 if a1=0,02>0,
ag

Remarks 1° Note that from the individual ergodic theorem (see e.g. The-
orem 1.3.12 of Franken et al. [18]) it follows that

1
(8.7) lim —

§—00 g

/8|Wt|dt: E|W|
0
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with probability one. Thus, FE |W| is an important performance character-
istic.

2° It is well-known that, for the stationary mean queue length E W, in
the ‘usual’ single-server queue M/G/1 with arrival intensity a and first two
moments e, e; of service times, it holds

a’e,
EW,,, =ae; + ———.
? Y201 — aey)

Thus, because of (7.8), the formula (4,23) can be written in the form
(8.8) E|\W|= E|Q|+ EW,

which is in accordance with the decomposition property derived in Fuhrmann
and Cooper [21] for the M/G/1 queue with generalized server vacations.
In particular, it follows from (8.8) that the difference between the mean
queue lengths E |W| and E|Q|, at an arbitrary point in time and given
that the server is walking, respectively, does not depend on the parameters

(a7t 0%) € IRZ\ {(0,0)}.

3° From (7.8) and (8.6) we see that FE |Q| and E |W|, depend on the pa-
rameter vector (o', 0?) € IR%\ {(0,0)} in the same way as the expectation

E [} Vidx of the time that a (a~!,¢?)-Brownian motion, starting from a
uniform distribution on (0,1), hits 0 or 1. In particular, for fixed 0% > 0,
the expectations E |Q| and E |W]| are, as a function of a™!, increasing on
a certain interval (0,0) and decreasing on (4, 00), where § = 0 if 0% =0,
and § > 0 if 0% > 0. Moreover, for fixed a™! > 0, E|Q| and E|W|
behave analogously as a function of 2. If a~! and o2, respectively, tend to
infinity, then E |W| converges to the stationary mean queue length in the
‘usual’ M/G/1-queue.

Proof of Theorem 6 For p € (0,1) we consider the function f € C2[0,1]
with f(x) = p. Then, (6.8) takes the form

0 =—B(1—ae,)Ee*4

b Bl (@ - )
Q! BLr(B)

+ prBe (e - 1)m - B),
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where 3 = a(1 — e™?). This is equivalent to
0 = (1—ae)Ee?®(1— Lp(p)
(8.9) + poBe ?l[(1— Lp(B)) — (¢ — 1)Lp(B)]
+ piEe?[(1— Lp(B)) — (¢ — 1)Lp(B)]

Because FE|Q| < oo (see Theorem 4) and because from Theorem 5 it follows
that the expectations E |Q°] and E |Q'| are finite as well, we get from the
quadratic terms of a Taylor series expansion of (8.9) with respect to p that

a262
0 = —(1—aey)ae1 E|Q| — ae(1 —aey) — 5
+ (1= ae))(poE|Q°| + pL EIQ'),
taking into account that py + p; = ae;. Thus,
0 1 a’es
(8.10) po E|Q°|+pi E|Q'| = ae1 E|Q| + aer + 57—
2(1 — aey)

Now, because
E|W|=(1-ae) E|Q|+p E|Q°| +p E|Q"],
(8.6) follows from (7.8) and (8.10). This completes the proof. O

Remark 1° Note that the expression

(ae)) ™ (po B1Q" + 1 E1Q])

can be interpreted as the conditional steady-state expectation of the number
of customers on the circle given that the server is busy serving a customer
(and, consequently, not walking). Let us denote this conditional expectation
by E|Q®|. Then, (8.10) says that the relationship between E|Q®)| and
the corresponding conditional expectation E |Q| given that the server is idle
(i.e. walking) has the form

aeo

11 E|Q¥| = E 14—
(8 ) ‘Q ‘ ‘Q|+ _'_ 261(1—CL€1)

Thus, similar to the behavior of E|W| — E|Q|, the difference between
E|Q®| and E|Q| does not depend on the parameters (o', 0?) € IR \

{(0,0)}.

2° In Kroese and Schmidt [29], instead of the approach stated in Section 7
of the present paper, the equilibrium equation (6.8") has been used to de-
termine the mean measure mg of (), where the main idea is to consider
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an appropriately chosen test function f. One might think that, by consid-
ering an appropriate f in (6.8), it should be also possible to express the
mean measure of Q° by that of ). However, this seems to be a compli-
cated problem. Note that, in case that this problem would be solved, one

could determine the mean measure of W, too (and not only the expectation
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