
Methodol Comput Appl Probab (2006) 8: 383–407
DOI 10.1007/s11009-006-9753-0

The Cross-Entropy Method for Continuous
Multi-Extremal Optimization

Dirk P. Kroese · Sergey Porotsky ·
Reuven Y. Rubinstein

Received: 3 November 2004 / Revised: 22 February 2006 / Accepted: 22 February 2006
© Springer Science + Business Media, LLC 2006

Abstract In recent years, the cross-entropy method has been successfully applied
to a wide range of discrete optimization tasks. In this paper we consider the cross-
entropy method in the context of continuous optimization. We demonstrate the
effectiveness of the cross-entropy method for solving difficult continuous multi-
extremal optimization problems, including those with non-linear constraints.

Keywords Cross-entropy · Continuous optimization ·
Multi-extremal objective function · Dynamic smoothing · Constrained optimization ·
Nonlinear constraints · Acceptance–rejection · Penalty function

AMS 2000 Subject Classification Primary 65C05, 65K99 · Secondary 94A17

1 Introduction

The cross-entropy (CE) method (Rubinstein and Kroese, 2004) was motivated by
Rubinstein (1997), where an adaptive variance minimization algorithm for estimating
probabilities of rare events for stochastic networks was presented. It was modified in
Rubinstein (1999) to solve combinatorial optimization problems.

The main idea behind using CE for continuous multi-extremal optimization is
the same as the one for combinatorial optimization, namely to first associate with
each optimization problem a rare event estimation problem—the so-called associated

D. P. Kroese
Department of Mathematics, The University of Queensland, Brisbane 4072, Australia

S. Porotsky
Optimata Ltd., 11 Tuval St., Ramat Gan 52522, Israel

R. Y. Rubinstein (B)
Faculty of Industrial Engineering and Management, Technion, Haifa, Israel
e-mail: ierrr01@ie.technion.ac.il

384 Methodol Comput Appl Probab (2006) 8: 383–407

stochastic problem (ASP)—and then to tackle this ASP efficiently by an adaptive
algorithm. The principle outcome of this approach is the construction of a random
sequence of solutions which converges probabilistically to the optimal or near-
optimal solution.

As soon as the ASP is defined, the CE method involves the following two iterative
phases:

1. Generation of a sample of random data (trajectories, vectors, etc.) according to
a specified random mechanism.

2. Updating the parameters of the random mechanism, typically parameters of pdfs,
on the basis of the data, to produce a “better” sample in the next iteration.

The CE method has been successfully applied to a variety of problems in combina-
torial optimization and rare-event estimation, the latter with both light- and heavy-
tailed distributions. Applications areas include buffer allocation, queueing models
of telecommunication systems, neural computation, control and navigation, DNA
sequence alignment, signal processing, scheduling, vehicle routing, reinforcement
learning, project management and reliability systems. References and more details
on applications and theory can be found in the CE tutorial (de Boer et al., 2005)
and the recent CE monograph (Rubinstein and Kroese, 2004). It is important to note
that the CE method deals successfully with both deterministic problems, such as the
traveling salesman problem, and noisy (i.e., simulation-based) problems, such as the
buffer allocation problem.

The goal of this paper is to demonstrate the quite accurate performance of the CE
method for solving difficult continuous multi-extremal problems, both constrained
and unconstrained. In particular we show numerically that typically it finds the
optimal (or near-optimal) solution very fast and provides more accurate results than
those reported in the literature.

It is out of the scope of this paper to review the huge literature on analyti-
cal/deterministic methods for solving optimization problem. Many of these methods
are based on gradient or pseudo-gradient techniques. Examples are Line Search,
Gradient Descent, Newton-Type Methods, Variable Metric, Conjugate Gradient
etc. The main drawback of gradient-based methods is that they, by their nature, do
not cope well with optimization problems that have non-convex objective functions
and/or many local optima. Such multi-extremal continuous optimization problems
arise abundantly in applications. A popular and convenient approach to these type
of problems is to use random search techniques. The basic idea behind such methods
is to systematically partition the feasible region into smaller subregions and then
to move from one subregion to another based on information obtained by random
search. Well-known examples include simulated annealing (Aarts and Korst, 1989),
threshold acceptance, (Dueck and Scheur, 1990), genetic algorithms (Goldberg,
1989), tabu search (Glover and Laguna, 1993), ant colony method (Dorigo et al.,
1996), and the stochastic comparison method (Gong et al., 1992).

We would like to stress that it is not our intention to compare the method with
other local or global optimization techniques. The main point that we want to make
is that the CE approach is not only based on fundamental principles (cross-entropy
distance, maximum likelihood, etc.), but is also very easy to program (with far fewer
parameters than many other global optimization heuristics), and gives consistently

Methodol Comput Appl Probab (2006) 8: 383–407 385

accurate results, and is therefore worth considering when faced with a difficult
optimization problem.

The rest of this paper is organized as follows. Section 2 presents an overview
of the CE method. In Section 3 we give the main algorithm for continuous multi-
extremal optimization using multi-dimensional normal sampling with independent
components. A particular emphasis is put on the issue of different updating pro-
cedures for the parameters of the sampling distribution, with the aim to prevent
premature shrinkage to a degenerate distribution. In Section 4 we present numerical
results with the CE Algorithm for both unconstrained and constrained programs.
We demonstrate the high accuracy of CE using two approaches to constrained
optimization: the acceptance-rejection approach and the penalty approach.

2 The Main CE Algorithm for Optimization

The main idea of the CE method for optimization can be stated as follows: Suppose
we wish to maximize some “performance” function S(x) over all elements/states x in
some set X . Let us denote the maximum by γ ∗, thus

γ ∗ = max
x∈X

S(x) . (1)

To proceed with CE, we first randomize our deterministic problem by defining
a family of pdfs { f (·; v), v ∈ V} on the set X . Next, we associate with Eq. (1) the
estimation of

�(γ) = Pu(S(X) � γ) = Eu I{S(X)�γ }, (2)

the so-called associated stochastic problem (ASP). Here, X is a random vector with
pdf f (·; u), for some u ∈ V (for example, X could be a normal random vector)
and γ is a known or unknown parameter. Note that there are in fact two possible
estimation problems associated with Eq. (2). For a given γ we can estimate �, or
alternatively, for a given � we can estimate γ , the root of Eq. (2). Let us consider the
problem of estimating � for a certain γ close to γ ∗. Then, typically {S(X) � γ } is a
rare event, and estimation of � is a non-trivial problem. The CE method solves this
efficiently by making adaptive changes to the probability density function according
to the Kullback–Leibler CE, thus creating a sequence f (·; u), f (·; v1), f (·; v2), . . .

of pdfs that are “steered” in the direction of the theoretically optimal density
f (·; v∗) corresponding to the degenerate density at an optimal point. In fact, the CE
method generates a sequence of tuples {(γt, vt)}, which converges quickly to a small
neighborhood of the optimal tuple (γ ∗, v∗). More specifically, we initialize by setting
v0 = u, choosing a not very small quantity �, say � = 10−2, and then we proceed
as follows:

1. Adaptive updating of γt. For a fixed vt−1, let γt be the (1 − �)-quantile of S(X)

under vt−1. That is, γt satisfies

Pvt−1(S(X) � γt) � �, (3)

Pvt−1(S(X) � γt) � 1 − �, (4)

where X ∼ f (·; vt−1).

386 Methodol Comput Appl Probab (2006) 8: 383–407

A simple estimator of γt, denoted γ̂t, can be obtained by drawing a random
sample X1, . . . , XN from f (·; vt−1) and evaluating the sample (1 − �)-quantile of
the performances as

γ̂t = S(�(1−�)N �). (5)

2. Adaptive updating of vt. For fixed γt and vt−1, derive vt from the solution of the
program

max
v

D(v) = max
v

Evt−1 I{S(X)�γt} ln f (X; v) . (6)

The stochastic counterpart of Eq. (6) is as follows: for fixed γ̂t and v̂t−1 (the
estimate of vt−1), derive v̂t from the following program

max
v

D̂(v) = max
v

1
N

N∑
i=1

I{S(Xi)�γ̂t} ln f (Xi; v) . (7)

Instead of updating the parameter vector v directly via the solution of Eq. (7) we
use the following smoothed version

v̂t = αṽt + (1 − α)̂vt−1, ∀ i = 1, . . . n, (8)

where ṽt is the parameter vector obtained from the solution of Eq. (7), and α is called
the smoothing parameter, with 0.7 < α ≤ 1. Clearly, for α = 1 we have our original
updating rule. The reason for using the smoothed Eq. (8) instead of the original up-
dating rule is twofold: (a) to smooth out the values of v̂t, (b) to reduce the probability
that some component v̂t,i of v̂t will be zero or one at the first few iterations. This is
particularly important when v̂t is a vector or matrix of probabilities. Note that for
0 < α ≤ 1 we always have that v̂t,i > 0, while for α = 1 one might have (even at
the first iterations) that either v̂t,i = 0 or v̂t,i = 1 for some indices i. As result, the
algorithm will converge to a wrong solution. Thus, the main CE optimization algo-
rithm, which includes smoothed updating of parameter vector v can be summarized
as follows.

3 Continuous Multi-Extremal Optimization

Here we apply the CE Algorithm 1 to continuous multi-extremal optimization
problems (1), for both (a) unconstrained and (b) constrained problems with non-
linear boundaries. We assume henceforth that each x = (x1, . . . , xn) is a real-valued
vector and that X is a subset of R

n.

3.1 (a) The Unconstrained Case

In this case generation of a random vector X = (X1, . . . , Xn) ∈ X is straightforward.
The easiest way is to generate the coordinates independently (say from an arbitrary
2-parameter distribution), such that by applying Algorithm 1 the joint distribution
converges to the degenerated distribution in “close” vicinity to the point x∗ where the
global extremum is attained. Examples of such distributions are the normal, double-
exponential and beta distributions.

Methodol Comput Appl Probab (2006) 8: 383–407 387

Algorithm 1 Generic CE Algorithm for Optimization
1. Choose some v̂0. Set t = 1.

2. Generate a sample X1, . . . , XN from the density f (·; v̂t−1) and compute the
sample (1 − �)-quantile γ̂t of the performances according to Eq. (5).

3. Use the same sample X1, . . . , XN and solve the stochastic program (7). Denote
the solution by ṽt.

4. Apply Eq. (8) to smooth out the vector ṽt.

5. Repeat steps 2–4 until a pre-specified stopping criterion is met.

The parameter updating step (7) translates into the following: Given a random
sample of size N, the parameters are updated based on the Nelite = � N best
performing samples. These are called the elite samples. The updated parameters are
found to be the maximal likelihood estimates (MLEs) of the elite samples (Rubinstein
and Kroese, 2004). In particular, for the normal distribution, the parameter updating
is especially simple. Namely, the parameters µ and σ 2 are updated as the sample
mean and sample variance of the elite samples, see formulas (10) and (11) below.

While applying CE algorithm, the mean vector µ̂t should converge to x∗ and the
vector of standard deviations σ̂ t to the zero vector. In short, we should obtain a
degenerated pdf with all mass concentrated in the vicinity of the point x∗.

Example 3.1 (Normal Updating) Consider optimization of the function S given by

S(x) = e−(x−2)2 + 0.8 e−(x+2)2
, x ∈ R . (9)

Note that S has a local maximum at point −2.00 (approximately) and a global
maximum at 2.00. At each stage t of the CE procedure we simulate a sample
X1, . . . , XN from a N(µ̂t−1, σ̂

2
t−1) distribution, and update µ̂t and σ̂ t as the mean

and standard deviation of the elite samples. A simple Matlab implementation is
given in Appendix A. The CE procedure is illustrated in Fig. 1, using starting
values µ̂0 = −6, σ̂0 = 100 and CE parameters α = 0.7, Nelite = 10 and N = 100.
Algorithm 2 is stopped when the standard deviation becomes smaller than
ε = 0.05. We observe that the vector (µ̂t, σ̂ t) quickly converges to the optimal
(µ∗, σ ∗) = (2.00, 0), easily avoiding the local maximum.

It is important to realize that the sampling distribution can be quite arbitrary,
and does not need to be related to the function that is being optimized. The normal
(Gaussian) distribution is convenient because it gives easy updating formulas. How-
ever, when the objective function has multiple global optima, a CE algorithm with
a normal sampling distribution will typically oscillate before eventually moving to-
wards one of the global maxima. This is because the normal distribution is unimodal.
The following example illustrates that using a mixture sampling distribution can
alleviate this oscillatory behavior, allowing convergence to multiple global optima.

388 Methodol Comput Appl Probab (2006) 8: 383–407

Fig. 1 Continuous
multi-extremal optimization

Example 3.2 (Normal Mixture Updating) Suppose that the sampling distribution is a
mixture of two normal distributions:

f (x) = p
e− 1

2

(
x−µ1

σ1

)2

√
2πσ 2

1

+ (1 − p)
e− 1

2

(
x−µ2

σ2

)2

√
2πσ 2

2

,

where 0 � p � 1, σk � 0, µk ∈ R, for k = 1, 2.
The maximum likelihood estimates for the parameters—to be used in a CE

procedure—are not of a simple form. Hence a mixture distribution seems an in-
convenient candidate for a sampling distribution. However, there is a simple way
around this, via the introduction of an “auxiliary” random variable Y so that the
joint pdf of X ∼ f (x) and Y has a simpler form. This technique is sometimes called
augmentation. To apply augmentation here, observe that one may sample from the
mixture by first flipping a coin with probability of heads p. If the coin turns out to
be heads, then draw from a N(µ1, σ

2
1) distribution, and if it is tails, draw from a

N(µ2, σ
2
2). If Y ∈ {1, 2} selects between the two normal distributions, then the joint

density of X and Y is of a simple form that allows easy formulas for the maximum
likelihood estimates. In particular, suppose we partition the elite samples into E1 and
E2. (Note that either could be empty; the only requirement is that |E1| + |E2| = Nelite.)

Methodol Comput Appl Probab (2006) 8: 383–407 389

Fig. 2 A function with two global maxima

Then, the maximum likelihood estimates of the parameters of the mixture, based on
the elite sample, are

µ̂k = |Ek|−1
∑
x∈Ek

x, k = 1, 2,

σ̂ 2
k = |Ek|−1

∑
x∈Ek

(x − µ̂k)
2 , k = 1, 2,

and

p̂ = |E1|
|E1| + |E2| .

(In the case that |Ek| = 0, then the parameters for the kth mixture component are
irrelevant, since the pdf has reverted to a single Gaussian component at this stage.)

As an example, consider the function

S(x) = 150 e− x2
5 + 2 x2 − x4

200
,

depicted in Fig. 2, which has three local maxima, one at 0 and the other two at
approximately ±10

√
2 ≈ ±14.1421. The latter ones are global maxima.

Table 1 illustrates the evolution of the corresponding CE algorithm with pa-
rameters initial parameters µ1 = −7, µ2 = 7, σ 2

1 = σ 2
2 = 9 and p = 1/2, and CE

parameters N = 300 and Nelite = 30. The algorithm is stopped when both σ1 and σ2

are less than ε = 10−5. The initial parameters should be chosen such that the samples

Table 1 Convergence of the
parameters of the mixture
sampling distribution

p µ1 σ 2
1 µ2 σ 2

2

0.50 -7.0000 9.0000 7.0000 9.0000
0.33 -11.5239 1.8247 11.7226 0.7772
0.66 -13.8287 0.3143 13.8346 0.1524
0.46 -14.1409 5.76e-4 14.1339 5.91e-4
0.40 -14.1424 1.65e-6 14.1421 1.71e-6
0.40 -14.1421 5.97e-9 14.1421 6.57e-9
0.40 -14.1421 3.17e-11 14.1421 3.09e-11

390 Methodol Comput Appl Probab (2006) 8: 383–407

from N(µ1, σ
2
1) and N(µ2, σ

2
2) can be readily distinguished from each other. We see

from Table 1 that the sampling distribution converges rapidly to the degenerate
distribution concentrated at both global maxima.

The normal updating procedure in Example 3.1 is easily adapted to the multidi-
mensional case. Specifically, when the components of the random vectors X1, . . . , XN

are chosen independently, updating of the parameters can be done separately for
each component. The pseudocode for the continuous CE procedure, using normal
updating (with independent components) is given in Algorithm 2. The n-dimensional
normal distribution with independent components, mean vector µ = (µ1, . . . , µn)

and variance vector σ 2 = (σ 2
1 , . . . , σ 2

n) is denoted by N(µ, σ 2).

3.2 Modifications

We found numerically that the smoothing procedure with the fixed smoothing
parameter α works well in many cases, but fails in some other cases. Various modifi-
cations/heuristics have been proposed to prevent the sampling pdf from converging
to a suboptimal solution. We mention here two useful modifications.

1. Dynamic Smoothing. Different smoothing schemes for µ and σ may be em-
ployed. For example, for µ one can use the ordinary fixed smoothing parameter
α, (0.5 ≤ α ≤ 0.9) as in Eq. (12), while the variance σ 2 is updated using the
following dynamic smoothing

βt = β − β

(
1 − 1

t

)q

, (13)

Algorithm 2 CE Algorithm for Continuous Optimization

1: initialize: Choose µ̂0 and σ̂ 2
0. Set t := 0.

2: repeat:
3: draw: Increase t by 1. Generate a random sample X1, . . . , XN from the

N(µ̂t−1, σ̂
2
t−1) distribution.

4: select: Let I be the indices of the Nelite best performing (=elite) samples.
5: update: for all j = 1, . . . , n let

µ̃tj :=
∑
i∈I

Xij/N elite (10)

and

σ̃ 2
tj :=

∑
i∈I

(Xij − µtj)
2/N elite. (11)

6: smooth:

µ̂t := αµ̃t + (1 − α)µ̂t−1, σ̂ t := ασ̃ t + (1 − α)σ̂ t−1 (12)

7: until: max j(σ tj) < ε

Methodol Comput Appl Probab (2006) 8: 383–407 391

where q is an integer (typically between 5 and 10) and β is a smoothing constant
(typically between 0.8 and 0.99).
The reason for using the dynamic smoothing (13) for σ instead of a fixed
smoothing can be explained as follows. With a fixed α as per Eq. (12) the
convergence to a degenerate distribution will typically happen too quickly, which
will in turn result into a sub-optimal solution. The goal of Eq. (13) is precisely to
prevent this. It is readily seen that by choosing for σ the βt smoothed updating
instead of α one, the convergence to the degenerate case will have a polynomial
speed instead of exponential.

2. Injection. The injection method (Botev and Kroese, 2004) is another simple way
to avoid premature “shrinkage” of the distribution, by increasing the variance
at certain stages in the CE algorithm. More precisely, let S∗

t denote the best
performance found at the tth iteration, and σ ∗

t denote the largest standard
deviation at the tth iteration. If σ ∗

t is sufficiently small, and S∗
t − S∗

t−1 is also
small, then add some small value to each standard deviation, for example a
constant δ or the value c |S∗

t − S∗
t−1|, for some fixed δ and c. An advantage of

using injection over modified smoothing is that the latter is usually faster without
losing accuracy.

Examples where the fixed smoothing scheme works perfectly are simple functions
such as Eq. (9) or the following trigonometric function

S(x) =
n∑

i=1

8 sin2(η(xi − x∗
i))

2 + 6 sin2(2η(xi − x∗
i))

2 + µ(xi − x∗
i)

2 . (14)

An example where dynamic smoothing or injection is essential is the Rosenbrock
function:

S(x) =
n−1∑
i=1

100 (xi+1 − x2
i)

2 + (xi − 1)2 . (15)

Another example (arising from chemistry) where dynamic smoothing is important
is the Hougen least squares function:

S(x) = 1
13

13∑
i=1

(
ri − x1 zi2 − zi3/x5

1 + x2 zi1 + x3 zi2 + x4 zi3

)2

, (16)

where the ri and zi are given in Table 2.
The minimal value for S is 0.02299, which is attained at

x∗ = (1.2526, 0.0628, 0.0400, 0.1124, 1.1914).

This function arises from the following non-linear regression problem (Bates and
Watts, 1988): The reaction rate r of a certain chemical reaction depends on three
input variables: quantities of hydrogen z1, n-pentane z2, and isopentane z3. The
functional relationship is given by the Hougen function:

r = x1 z2 − z3/x5

1 + x2 z1 + x3 z2 + x4 z3
,

where x1, . . . , x5 are the unknown parameters. The objective is to estimate the model
parameters {xi} from the data, as given in Table 2. The estimation is done via the least

392 Methodol Comput Appl Probab (2006) 8: 383–407

Table 2 Data for the
Hougen function z1 z2 z3 r

470 300 10 8.55
285 80 10 3.79
470 300 120 4.82
470 80 120 0.02
470 80 10 2.75
100 190 10 14.39
100 80 65 2.54
470 190 65 4.35
100 300 54 13.00
100 300 120 8.50
100 80 120 0.05
285 300 10 11.32
285 190 120 3.13

squares method. The objective function in Eq. (16) is simply the average sum of the
squared deviations, to be used in the least squares minimization problem.

A final example where the CE algorithm can be used is the clustering problem.
Here, given some d-dimensional data z1, . . . , zn, the objective is to select K d-
dimensional cluster “centers” (also called centroids), such that the function

S(c1, . . . , cK) =
K∑

j=1

∑
z∈R j

||z − c j||2 (17)

is minimized, where R j = {z : ||z − c j|| < ||z − ck||, k
= j}. That is, R j is the set of
data points that are closer to c j than to any other centroid. Clustering problems are
highly multi-extremal, and standard approximation techniques, such as the K-means
algorithm and Linear Vector Quantization (see, for example, Webb, 1999), usually
find only local minima.

The graphical representations of the Rosenbrock and the trigonometric functions
for η = 7, µ = 1, x∗

i = x∗ = 0.9 in the two-dimensional case are given in Figs. 3
and 4, respectively. It is not difficult to see that in the n-dimensional case the
global minimum for the Rosenbrock and the trigonometric function is attained at
points x∗ = (1, 1, . . . , 1) and x∗ = (0.9, 0.9, . . . , 0.9), respectively. The corresponding
minimal function values are S(x∗) = 0. If not stated otherwise we assume (as in
Rubinstein, 1999) for the trigonometric function that η = 7, µ = 1.

3.3 (b) The Constrained Case

We consider the case where X in Eq.(1) is a (non-linear) region defined by the
following system of inequalities:

Gi(x) � 0, i = 1, . . . , L . (18)

To solve the program (1) with constraints (18), we can apply two approaches: the
acceptance–Rejection and the penalty approach.

Methodol Comput Appl Probab (2006) 8: 383–407 393

Fig. 3 Rosenbrock’s function in R
2 for −1 � xi � 1

3.3.1 Acceptance–Rejection Approach

Suppose that the feasible region is simply an n-dimensional rectangle: X = [a, b]n.
A straightforward method for solving Eq. (1) with such simple constraints is use
the acceptance–rejection (AR) method, which works as follows: Generate a random

Fig. 4 The trigonometric function in R
2 with η = 7, µ = 1, x∗

i = x∗ = 0.9 and −1 � xi � 1

394 Methodol Comput Appl Probab (2006) 8: 383–407

vector X from a normal distribution with given parameters µ and σ 2, then accept
or reject it depending on whether the sample falls or not in the interval of interest.
The accepted sample can be viewed as the one generated from the truncated normal
distribution. A pleasant feature of such acceptance–rejection method is that the
updating rules for the CE method remain exactly the same as for the untruncated
case, see Rubinstein and Kroese (2004). In short, sampling from a truncated normal
distribution on the interval [a, b] (we write N(µ, σ 2, a, b)) incurs the same updating
rules (mean and variance of the elite samples) as for the untruncated case.

It is important to note that the AR method can also be used when X is not a
rectangle. We can simply define a rectangle R that (hopefully) contains the optimal
value and sample from R, e.g., via the AR method, or by sampling directly from
the truncated distribution, and by rejecting samples from R that do not satisfy the
constraints. However, R should not be chosen too large either, because else too many
samples are rejected.

3.3.2 Penalty Approach

This approach is more generally applicable. the idea is to modify the objective
function as follows:

S̃(x) = S(x) +
L∑

i=1

Pi(x) , (19)

where the {Pi} are penalty functions. Specifically, the ith penalty function Pi (corre-
sponding to the ith constraint) is defined as

Pi(x) = Hi max(Gi(x), 0) (20)

and Hi > 0 measures the importance (cost) of the ith penalty. We shall call such
penalty approach, the proportional penalty approach to distinguish it from the so-
called constant penalty approach, where the penalty is constant, i.e., S̃(x) = S(x) +
H I{X/∈X }, for some constant H.

Clearly that as soon as the constrained problem (1), Eq. (18) is reduced to the
unconstrained one (1)—using Eq. (19) instead of S—we can apply again Algorithm 2.

4 Numerical Results

In this section we present numerical results with the CE Algorithm 2 for both
unconstrained and constrained programs (1) and (1), Eq. (18), respectively. As
mentioned, the latter case is solved directly via the AR method, or is translated into
an unconstrained problem by using the penalty method (19). We shall apply the AR
approach to several examples where the constraints are relatively simple.

Unless otherwise specified, for each test case we used the following parameters:
N = 100 n, α = 0.8, β = 0.7. For n < 50, we set Nelite = 10 and q = 5, while for
50 ≤ n ≤ 100, we set Nelite = 20 and q = 6. We found that (5–10)% deviation of all
the above parameters from result to similar accuracy of the Algorithm 2. But, more
importantly, we did not have to “tweak” each set of parameter to each problem.
For each problem we first attempted the simple (fixed) smoothing, and if this was
unsatisfactory we applied a modification such as dynamic smoothing or injection.

Methodol Comput Appl Probab (2006) 8: 383–407 395

The CE algorithm is very insensitive to the choice of initial means and standard
deviations, provided that the initial standard deviation is chosen large enough. For
example, on an interval [l, r] the initial standard deviation could be chosen as 5 (r − l)
and the initial mean uniformly in [l, r].

In the tables S∗
t denotes the best (that is, smallest) function value found in iteration

t, γ̂t the worst of the elite performances, and µ̂t the vector of means at the tth
iteration. The experiments were conducted on a 2.4 GHz computer, using a similar
Matlab implementation as in appendix B.

4.1 Unconstrained Optimization

Here we present simulation results with the trigonometric and Rosenbrock function.
Table 3 presents the evolution of Algorithm 1 (with fixed smoothing) for the
trigonometric function with η = 7, µ = 1 and n = 10. The algorithm was stopped
when all standard deviations were smaller than ε = 10−5. In repeated experi-
ments the global minimum was consistently found in less than 1 second. Differ-
ent values for the parameters µ and ν had little effect on the excellent accuracy
of the method. The final solution as observed to be accurate to at least five
digits.

Table 4 presents the evolution of Algorithm 2 (with fixed smoothing) for the
minimization of the Rosenbrock function. The tolerance ε is taken to be 10−5. In
contrast to the Trigonometric case, the standard (constant α) implementation does
not work. Note that in this case the algorithm happens to gets stuck near function
value 7.5; repeated experiments gave other sub-optimal values.

However, with dynamic smoothing (see Table 5) the CE algorithm finds the
the global minimum consistently, in less than 3 s, using ε = 10−3. It is interesting
to note that always the first component converges first, then the second, third
etc. In this case the final mean vector is (1.0013, 1.0002, 0.9995, 1.0002, 0.9980,

0.9969, 0.9929, 0.9865, 0.9738, 0.9466), with a function value of 0.014.

We next present some numerical results for a clustering problem. In particular,
we consider the d = 2-dimensional spiral data set from from Stork and Yom-Tov
(2004), with K = 5 clusters. As mentioned before, the clustering problem is a highly
multi-extremal optimization problem with the centroids being the decision variables
(thus the domain of the objective function is here R

10). The sampling distribution
is a product of K = 5 bivariate normal distributions with independent components.
The following CE parameters were used: N = 800, Nelite = 20, α = 0.7. The algorithm
was stopped when the performance no longer changed in two decimal places for
ten iterations, or if the largest standard deviation was less than η = 10−4. To prevent
premature stopping the injection method was used with c = 50 and δ = 0.05; for more
details see Kroese et al. (2005). The sampling distribution was initialized in such a
way that it was close to the uniform pdf on the bounding box of the data. Table 6
shows the results of ten trials of the CE algorithm and also of multiple trials of two
well-known clustering algorithms: K-means (KM) and Linear Vector Quantization
(LVQ). These were initialized analogously to the CE algorithm. In the table min,
max and mean are the minimum, maximum and mean of the replications (10 in the
case of CE; many more for the other algorithms). CPU gives the total CPU time in
seconds. The last column lists the average number of iterations required for each
replication. Each algorithm was run for the same amount of time. We see that CE

396 Methodol Comput Appl Probab (2006) 8: 383–407

T
ab

le
3

T
he

ev
ol

ut
io

n
of

al
go

ri
th

m
2

fo
r

th
e

tr
ig

on
om

et
ri

c
fu

nc
ti

on
w

it
h

η
=

7,
µ

=
1

an
d

n
=

10
,u

si
ng

a
fix

ed
sm

oo
th

in
g

pa
ra

m
et

er
α

=
0.

8

t
γ̂

t
S∗ t

µ̂
t

1
26

,2
17

.2
39

16
,4

07
.1

05
-3

2.
34

3.
39

-2
7.

24
-7

.5
9

9.
50

33
.2

6
1.

17
22

.7
0

19
.4

8
-1

3.
05

2
9,

54
7.

86
7

7,
30

1.
76

6
8.

64
-1

2.
50

-1
0.

70
-8

.5
9

-1
.0

7
-7

.0
5

2.
16

13
.7

0
15

.8
4

-2
3.

97
3

3,
22

3.
55

8
1,

72
8.

21
6

-4
.1

9
-4

.6
5

2.
23

0.
55

-1
.9

1
-0

.2
6

-4
.6

5
-3

.5
7

1.
96

0.
31

4
94

5.
18

6
46

1.
57

4
1.

69
-3

.1
8

-1
.8

4
1.

46
-0

.2
1

-3
.1

5
0.

00
-1

.6
8

3.
82

-2
.0

1
5

39
4.

99
0

24
8.

21
9

-2
.6

2
-2

.1
0

1.
04

3.
88

1.
89

0.
23

1.
08

-0
.4

9
-0

.8
4

-0
.6

3
6

16
7.

77
5

11
6.

92
4

0.
77

0.
92

-0
.8

1
1.

23
1.

03
1.

14
2.

30
0.

80
1.

04
-0

.0
2

7
87

.4
74

66
.7

61
0.

16
0.

09
0.

80
0.

38
0.

91
1.

02
0.

95
0.

50
0.

71
1.

53
8

56
.9

99
41

.8
34

0.
56

0.
57

1.
15

0.
13

0.
90

0.
64

1.
15

0.
60

0.
24

0.
99

9
44

.0
42

27
.4

12
0.

43
0.

56
0.

59
0.

32
1.

05
1.

54
0.

66
1.

00
0.

09
1.

27
10

40
.5

06
27

.3
86

0.
80

0.
83

0.
72

0.
47

0.
82

1.
33

1.
34

0.
88

0.
41

0.
80

11
35

.4
28

21
.3

44
0.

62
0.

96
0.

66
0.

58
0.

97
1.

03
0.

92
0.

87
0.

63
0.

86
12

28
.8

79
22

.2
46

0.
60

0.
81

0.
76

0.
46

1.
01

0.
91

1.
15

0.
81

0.
31

0.
76

13
23

.0
12

14
.3

74
0.

98
0.

81
0.

63
0.

69
0.

97
0.

91
1.

18
0.

91
0.

48
0.

97
14

15
.4

62
3.

78
7

0.
82

0.
91

0.
72

0.
77

0.
88

0.
90

1.
07

0.
92

0.
94

0.
95

15
7.

93
7

1.
51

0
0.

89
0.

91
0.

90
0.

84
0.

85
0.

91
0.

97
0.

93
0.

91
0.

97
16

1.
82

3
0.

73
1

0.
90

0.
90

0.
84

0.
90

0.
90

0.
92

0.
90

0.
85

0.
91

0.
99

17
0.

34
2

0.
08

0
0.

92
0.

90
0.

89
0.

92
0.

90
0.

92
0.

91
0.

88
0.

89
0.

91
18

0.
04

1
0.

01
5

0.
90

0.
91

0.
89

0.
91

0.
91

0.
91

0.
88

0.
89

0.
90

0.
90

19
0.

00
5

0.
00

3
0.

89
0.

90
0.

90
0.

90
0.

91
0.

90
0.

90
0.

90
0.

89
0.

90
20

0.
00

1
0.

00
1

0.
90

0.
91

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

21
0.

00
0

0.
00

0
0.

90
0.

90
0.

90
0.

90
0.

90
0.

90
0.

90
0.

90
0.

90
0.

90
22

0.
00

0
0.

00
0

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

0.
90

23
0.

00
0

0.
00

0
0.

90
0.

90
0.

90
0.

90
0.

90
0.

90
0.

90
0.

90
0.

90
0.

90

Methodol Comput Appl Probab (2006) 8: 383–407 397

T
ab

le
4

T
he

ev
ol

ut
io

n
of

al
go

ri
th

m
2

w
it

h
fix

ed
sm

oo
th

in
g,

fo
r

th
e

R
os

en
br

oc
k

fu
nc

ti
on

w
it

h
n

=
10

t
S∗ t

µ̂
t

1
4,

35
6,

85
5,

56
2.

85
7

29
.6

8
15

.7
0

-8
.6

5
-7

.4
9

-1
2.

20
20

.5
6

-2
.6

8
18

.4
8

25
.8

2
28

.0
4

2
23

0,
12

5,
21

8.
08

0
9.

25
-6

.3
3

-9
.5

8
6.

75
11

.8
9

3.
50

-1
.1

0
0.

72
4.

54
58

.6
4

3
9,

90
7,

24
4.

59
4

-2
.1

8
-8

.3
6

2.
14

-0
.2

6
2.

13
4.

20
5.

14
0.

69
0.

12
84

.6
4

4
1,

45
5,

48
5.

75
6

2.
50

-1
.5

3
-1

.6
1

0.
96

3.
04

2.
32

0.
77

3.
04

-1
.1

2
81

.5
6

5
23

9,
93

6.
83

6
0.

40
-1

.9
9

-0
.9

1
-1

.0
2

3.
06

0.
24

-0
.3

9
1.

90
1.

00
12

8.
16

6
91

,1
15

.5
42

0.
71

-1
.0

7
-0

.1
6

-0
.2

0
0.

13
0.

22
-0

.6
8

0.
97

-4
.0

5
71

.7
4

7
24

,3
08

.9
11

-0
.3

2
-0

.7
8

0.
74

0.
33

0.
07

0.
00

-0
.2

4
0.

61
0.

63
37

.1
8

8
3,

12
2.

84
7

0.
02

-0
.2

6
0.

38
0.

17
-0

.1
0

0.
18

-0
.3

6
1.

28
2.

93
15

.1
3

9
1,

51
0.

49
0

0.
14

0.
33

-0
.0

7
0.

05
0.

21
0.

15
-0

.4
7

1.
43

1.
94

8.
83

10
29

3.
47

5
0.

13
0.

33
0.

19
0.

04
0.

39
-0

.1
9

-0
.2

3
0.

85
1.

20
2.

55
11

16
6.

79
4

0.
01

0.
36

0.
19

0.
15

0.
25

-0
.0

8
-0

.1
7

0.
89

1.
15

1.
80

12
10

1.
82

8
0.

13
0.

24
0.

11
0.

19
0.

30
0.

01
0.

07
0.

71
0.

57
0.

66
13

39
.9

09
0.

06
0.

16
0.

05
0.

15
0.

12
0.

10
0.

19
0.

54
0.

51
0.

32
14

40
.7

96
0.

03
0.

20
0.

11
0.

13
0.

13
0.

00
0.

04
0.

43
0.

36
0.

23
15

23
.4

82
0.

05
0.

17
0.

03
0.

11
0.

07
0.

00
0.

10
0.

32
0.

25
0.

10
16

18
.2

94
0.

21
0.

16
0.

05
0.

09
0.

05
0.

04
0.

02
0.

23
0.

16
0.

08
17

12
.3

54
0.

28
0.

11
0.

05
0.

05
0.

04
0.

01
0.

03
0.

14
0.

12
0.

06
18

9.
12

7
0.

35
0.

13
0.

04
0.

03
0.

03
0.

01
0.

03
0.

08
0.

07
0.

05
19

8.
72

4
0.

39
0.

15
0.

04
0.

03
0.

02
0.

02
0.

04
0.

05
0.

02
0.

02
20

8.
04

7
0.

44
0.

19
0.

04
0.

02
0.

01
0.

03
0.

02
0.

03
0.

03
0.

01
21

7.
82

0
0.

47
0.

22
0.

05
0.

01
0.

01
0.

02
0.

02
0.

02
0.

02
0.

01
22

7.
72

6
0.

50
0.

25
0.

06
0.

01
0.

01
0.

01
0.

01
0.

02
0.

02
0.

01
23

7.
63

4
0.

51
0.

26
0.

07
0.

01
0.

01
0.

01
0.

01
0.

01
0.

02
0.

01
24

7.
57

8
0.

52
0.

27
0.

07
0.

02
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
25

7.
55

5
0.

52
0.

27
0.

07
0.

02
0.

01
0.

01
0.

01
0.

01
0.

01
0.

00
26

7.
51

9
0.

53
0.

28
0.

08
0.

02
0.

01
0.

01
0.

01
0.

01
0.

01
0.

00
27

7.
52

1
0.

53
0.

28
0.

08
0.

02
0.

01
0.

01
0.

01
0.

01
0.

01
0.

00
28

7.
51

2
0.

53
0.

28
0.

08
0.

02
0.

01
0.

01
0.

01
0.

01
0.

01
0.

00
29

7.
50

3
0.

53
0.

28
0.

08
0.

02
0.

01
0.

01
0.

01
0.

01
0.

01
0.

00

398 Methodol Comput Appl Probab (2006) 8: 383–407

Table 5 The evolution of algorithm 2 with dynamic smoothing for the Rosenbrock function with
n = 10

t γ̂t S∗
t µ̂t

100 21.097 16.287 0.31 0.15 0.06 -0.06 0.01 0.02 -0.00 -0.07 0.11 0.03
200 7.219 6.391 0.86 0.74 0.53 0.29 0.10 0.04 0.00 -0.00 0.02 -0.00
300 3.403 3.002 0.98 0.96 0.93 0.86 0.74 0.54 0.30 0.10 0.03 -0.01
400 1.063 0.864 1.00 0.99 0.99 0.97 0.94 0.88 0.77 0.59 0.35 0.12
500 0.418 0.312 1.00 0.99 0.99 0.98 0.97 0.94 0.88 0.77 0.59 0.35
600 0.249 0.193 1.00 1.00 1.00 0.99 0.98 0.96 0.93 0.85 0.73 0.52
700 0.115 0.070 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.92 0.84 0.69
800 0.063 0.043 1.00 1.00 1.00 1.00 0.99 0.99 0.97 0.95 0.90 0.81
900 0.037 0.023 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.91
1,000 0.024 0.012 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.95

outperforms both KM and LVQ in accuracy: it attains a lower minimum, even after
allowing the other algorithms to restart many times from different initial positions.

Figure 5 depicts the highest scoring CE solution along with example solutions for
KM, FKM and LVQ (with scores 170.7639 , 159.9211 and 160.7755 respectively). For
more details on the application of CE to clustering and vector quantization we refer
to Kroese et al. (2005).

4.2 Acceptance–Rejection

We use the AR method to minimize the Hougen least squares function, constrained
to the 5-dimensional rectangle [0, 2]. Table 7 depicts the evolution of the Algorithm 2
(with dynamic smoothing). The tollerance was set to ε = 10−7. In repeated exper-
iments the global minimum was reliably found. The initial parameter vectors are
µ̂0 = 1 and σ̂ 0 = 2. The simulation time for 8,000 iterations was 30 s.

Below we consider two more examples, where the AR method has been success-
fully applied.

Example 4.1 The following optimization test problem is selected from Hock and
Schittkowski (1981), Problem 112 on page 121, which uses optimization methods
from Schittkowski (1980), such as line-search algorithms, unconstrained optimiza-
tion, quadratic programming, penalty methods, multiplier methods and the gener-
alized reduced gradient methods. Some other references (that indicate where this
problem is originally from and where additional information or test results can be
found) are Bracken and McCormick (1968); Himmelblau (1972); White (1992).

Table 6 Spiral data set (494 points), with K = 5 clusters

min max mean trials CPU av its

CE 159.3 161.172 159.489 10 212 37.9
KM 161.097 234.419 165.01 11,570 212 15.4005
LVQ 160.212 236.086 167.983 13,090 212 9.3427

Methodol Comput Appl Probab (2006) 8: 383–407 399

Fig. 5 The CE results for vector quantization of the 2-D Spiral data set on 494 points. Circles
designate the final cluster centers (centroids) produced by CE. Crosses are cluster centers produced
by the KM algorithm, and diamonds for LVQ

The nonlinear programming problem is to find x so as to minimize the objective
function

S(x) =
10∑
j=1

x j

(
c j + ln

x j

x1 + · · · + x10

)
,

subject to the following set of constraints:

x1 + 2x2 + 2x3 + x6 + x10 − 2 = 0,

x4 + 2x5 + x6 + x7 − 1 = 0,

x3 + x7 + x8 + 2x9 + x10 − 1 = 0,

x j ≥ 0.000001, j = 1, . . . , 10,

where the constants {ci} are given in Table 8.
The best known solution in Hock and Schittkowski (1981) was

x∗ = (0.01773548, 0.08200180, 0.8825646, 0.0007233256, 0.4907851,

0.0004335469, 0.01727298, 0.007765639, 0.01984929, 0.05269826),

400 Methodol Comput Appl Probab (2006) 8: 383–407

Table 7 The evolution of algorithm 2 for the Hougen least squares function using constant
smoothing

t S∗
t µ̂t

500 0.02311 1.45482 0.07294 0.04723 0.12983 1.02368
1,000 0.02304 1.37263 0.06881 0.04431 0.12277 1.08589
1,500 0.02301 1.32930 0.06663 0.04277 0.11903 1.12177
2,000 0.02300 1.30294 0.06531 0.04184 0.11676 1.14476
2,500 0.02300 1.28579 0.06444 0.04123 0.11528 1.16019
3,000 0.02299 1.27412 0.06386 0.04081 0.11427 1.17098
3,500 0.02299 1.26619 0.06346 0.04053 0.11359 1.17843
4,000 0.02299 1.26092 0.06319 0.04034 0.11314 1.18341
4,500 0.02299 1.25739 0.06302 0.04022 0.11283 1.18677
5,000 0.02299 1.25526 0.06291 0.04014 0.11264 1.18881
5,500 0.02299 1.25406 0.06285 0.04010 0.11254 1.18996
6,000 0.02299 1.25339 0.06282 0.04008 0.11248 1.19061
6,500 0.02299 1.25303 0.06280 0.04006 0.11245 1.19095
7,000 0.02299 1.25278 0.06279 0.04005 0.11243 1.19120
7,500 0.02299 1.25269 0.06278 0.04005 0.11242 1.19128
8,000 0.02299 1.25264 0.06278 0.04005 0.11242 1.19132

with S(x∗) = −47.707579. However, using genetic algorithms (Michalewicz, 1996)
finds a better solution:

x∗ = (0.04034785, 0.15386976, 0.77497089, 0.00167479, 0.48468539,

0.00068965, 0.02826479, 0.01849179, 0.03849563, 0.10128126),

with S(x∗) = −47.760765. A single run of 1,000 iterations took 56 s of CPU time.
Using the CE method—with constant smoothing—we can find an even better
solution (using a comparable amount of time as Michalewicz, 1996):

x∗ = (0.04067247, 0.14765159, 0.78323637, 0.00141368, 0.48526222,

0.00069291, 0.02736897, 0.01794290, 0.03729653, 0.09685870)

and S(x∗) = −47.76109081 (using ε = 10−8).
We now explain in more detail how the CE method is applied to this problem. The

first step is to reduce the search space by expressing x1, x4, x8 in terms of the other
seven variables:

x1 = 2 − (2x2 + 2x3 + x6 + x10),

x4 = 1 − (2x5 + x6 + x7),

x8 = 1 − (x3 + x7 + 2x9 + x10).

Table 8 Constants for test problem 112

c1 = −6.089; c2 = −17.164; c3 = −34.054; c4 = −5.914; c5 = −24.721;
c6 = −14.986; c7 = −24.100; c8 = −10.708; c9 = −26.662; c10 = −22.179.

Methodol Comput Appl Probab (2006) 8: 383–407 401

Hence, we have reduced the original problem of ten variables to that of a function of
seven variables, which are subject to the following linear constraints:

x2, x3, x5, x6, x7, x9, x10 ≥ 0.000001,

2 − (2x2 + 2x3 + x6 + x10) ≥ 0.000001,

1 − (2x5 + x6 + x7) ≥ 0.000001,

1 − (x3 + x7 + 2x9 + x10) ≥ 0.000001.

The next step is to choose an appropriate rectangular search space R. The samples
are drawn from a truncated normal distribution (with independent components) on
this space. Thus, each component is drawn independently from a truncated normal
distribution on some interval, either by sampling directly from this distribution, or by
sampling from the ordinary normal distribution followed by the acceptance–rejection
method. The rectangle R does not have to be a subspace of the 7-dimensional search
space given above. In this particular case we choose R such that

0.000001 ≤ x2 ≤ 0.5,

0.5 ≤ x3 ≤ 0.9,

0.000001 ≤ x5 ≤ 0.5,

0.000001 ≤ x6 ≤ 0.001,

0.000001 ≤ x7 ≤ 0.05,

0.000001 ≤ x9 ≤ 0.05,

0.000001 ≤ x10 ≤ 0.5.

We now apply Algorithm 2 on the multi-dimensional rectangle R, rejecting
samples that do not satisfy the constraints.

Example 4.2 This test example with non-linear constraints is taken from Hock
and Schittkowski (1981), Problem 63 on page 85. Other sources of reference are
Himmelblau (1972); Paviani (1969); Sheela and Ramaoorthy (1975). The objective
function is:

S(x) = 1000 − x2
1 − 2x2

2 − x2
3 − x1x2 − x1x3,

subject to the constraints:

8x1 + 14x2 + 7x3 − 56 = 0,

x2
1 + x2

2 + x2
3 − 25 = 0,

x j ≥ 0, j = 1, 2, 3.

Similar to the previous test example, we eliminate two variables x2 and x3 and
express them in terms of x1, which we constrain to an interval. For the latter we
choose 0 � x1 � 5. For x2 and x3 we have either

x2 =
224 − 32x1 − 2

√
2989 + 896x1 − 309x2

1

70
,

x3 =
2
(

28 − 4x1 +
√

2989 + 896x1 − 309x2
1

)
35

,

402 Methodol Comput Appl Probab (2006) 8: 383–407

Table 9 Evolution of the CE method for problem 63, using dynamic smoothing

t S∗
t xt

3 961.715568341919 3.496826535945 0.218483551317 3.566659713430
6 961.715172566952 3.511034947979 0.217074975981 3.553238678918
9 961.715172130248 3.512301551911 0.216973631926 3.551993819679
12 961.715172130932 3.512049391288 0.216993664593 3.552241937912
15 961.715172130091 3.512143711972 0.216986164164 3.552149143705
18 961.715172130114 3.512117071139 0.216988281388 3.552175355923
21 961.715172130124 3.512126761278 0.216987510817 3.552165822620

or

x2 =
224 − 32x1 + 2

√
2989 + 896x1 − 309x2

1

70
,

x3 =
2
(

28 − 4x1 −
√

2989 + 896x1 − 309x2
1

)
35

.

Each vector X in the CE algorithm is now drawn as follows: First, we draw X1

according to a truncated normal distribution on [0,5]. Then, we choose either the first
or the second solution for (X2, X3) above, with equal probability. The best known
global solution in Hock and Schittkowski (1981) is

x∗ = (3.512118414, 0.2169881741, 3.552174034),

with S(x∗) = 961.7151721.
Table 9 shows the progress of the CE algorithm (using dynamic smoothing). The

initial parameters are: mean µ̂0 = (0, 0, 0) and standard deviation σ̂ 0 = (1, 1, 1). It
took less than 1 s to find the solution

x∗ = (3.512120196, 0.216988032, 3.552172282),

with S(x∗) = 961.715172130054, using a tolerance of ε = 10−6. Fixed smoothing is
somewhat less accurate, giving typically only the first three significant digits.

4.3 Penalty Method

Here we apply the proportional penalty approach to the constrained minimization of
the Rosenbrock function of dimension 10.

Table 10 displays the results of eight experiments, listing for each experiment the
constraints, the minimal value obtained by Algorithm 2 (with dynamic smoothing),
and the CPU time. In all experiments we used ε = 10−3 and H = 1,000, except in
the third one, where H = 2,000. Repeated experiments found consistently the same
values, indicating that the true global minimum was reached in each case.

We note that results using constant penalty approach, that is, using performance
function S̃(x) = S(x) + H I{x∈X }, were not as good as the ones listed above. The
reason is that with the constant penalty approach it can happen that (almost) all
samples fall outside X and therefore incur a (large) penalty. This is very similar to
the AR approach when (almost) all samples are rejected.

Methodol Comput Appl Probab (2006) 8: 383–407 403

Table 10 Constrained
Rosenbrock problems Constraints S∗

T secs

∑10
j=1 x j � −8 1,517.8 20∑10
j=1 x j � −10 2,677.4 14∑10
j=1 x j � −15 7,489.4 20∑10
j=1 x j � 15 1.32 4∑10
j=1 x j � −8,

∑10
j=1 x2

j � 8 1,517.8 27∑10
j=1 x j � −8,

∑10
j=1 x2

j � 15 1,764.0 4∑10
j=1 x j � −8,

∑10
j=1 x2

j � 22.5 2,337.6 5∑10
j=1 x j � 15,

∑10
j=1 x2

j � 22.5 0.241 4

We have repeated Example 4.1 with the penalty approach. Specifically, x1, x4 and
x8 are again expressed in terms of the other seven variables, but now the latter
ones are generated according to an ordinary (untruncated) normal distribution;
and a proportional penalty is added to the objective function, for each of the ten
constraints. Actually, because of the occurrence of the logarithm in the objective
function, many samples yield complex values. For this reason we only consider the
real part of the modified function. We found that the penalty approach with constant
smoothing works even better than the AR approach, provided that the smoothing
parameter for σ is chosen not too large, say 0.2. Setting ε = 10−8 and Hi = 1,000, the
penalty approach yielded the solution

x∗ = (0.0406680568, 0.1477303255, 0.7831533568, 0.00141421020.4852466432

0.0006931926, 0.0273993108, 0.0179472407, 0.0373143529, 0.0968713859),

with S(x∗) = −47.7610908594, in 12 s. This is the best known solution thus far.

5 Conclusions and Directions for Future Research

We applied the CE method for continuous multi-extremal unconstrained and con-
strained optimization problems with linear and nonlinear constraints. We demon-
strated its high accuracy and gave an example where CE finds a better solution than
reported in the literature. We have focused on two different updating schemes—
called fixed and dynamic smoothing—for the parameters µ and σ 2 of the normal
pdf. Fixed smoothing is typically significantly faster than dynamic smoothing, and
should be attempted first. We have showed that dynamic smoothing consistently
gives accurate answers, in cases where the fixed smoothing approach fails. We
have deliberately refrained from “tuning” the parameters. Undoubtedly this will
further improve the accuracy and speed of the algorithm, but by using the same CE
parameters for all problems, and by employing the (in essence) same simple Matlab
implementation throughout, we emphasized the robustness, elegance and versatility
of the CE method.

We believe that the CE method for continuous optimization is especially useful
for tackling problems with complicated constraints. We have focused on two ap-
proaches: the acceptance-rejection and the proportional penalty approach for the

404 Methodol Comput Appl Probab (2006) 8: 383–407

constrained optimization. Both methods have their merits, although the constant
penalty approach is more generally applicable.

The theoretical convergence properties of the CE method are not yet fully
understood. A few results on this can be found in Rubinstein and Kroese (2004)
and Margolin (2005). Although this will be an important topic for future research,
we believe that from a practical point of view the merit of the CE method has been
demonstrated clearly by the increasing body of numerical evidence. However, the
CE method is still evolving, and many new modifications and applications are being
developed. An extensive numerical study on the various CE modifications and the
choice of parameters, for a large range of test problems, is another topic for future
research.

A Matlab Example Code

An example Matlab CE program, to find the global maximum of the function S in
Eq. (9).

S = inline(’exp(-(x-2).^2) + 0.8*exp(-(x+2).^2)’);
mu = -6;
sigma = 10;
Nel = 10;
N = 100;
eps = 1E-8;
tic
t=0;
while sigma > eps

t = t+1;
x = mu + sigma*randn(N,1);
SX = S(x);
sortSX = sortrows([x SX],2);
Xel = sortSX((N - Nel + 1):N,1);
mu = mean(Xel);
sigma = std(Xel);
fprintf(’%g %6.9f %6.9f %6.9f \n’, t, S(mu),mu, sigma)

end
mu
toc

B Main CE Program

Most of the Matlab programs used for this paper were based on the program below. For
the clustering problem the injection modification was used instead of dynamic smoothing.

clear all
format long g
n=10; % select dimension
Nel = 10, N = 100*n, alpha = 0.8 , beta = 0.7, q = 5;
eps = 1e-3;
mu = -2 + 4*rand(1,n); % select initial mu

Methodol Comput Appl Probab (2006) 8: 383–407 405

sigma = 100.0*ones(1,n); % select initial sigma
mu_last = mu;
sigma_last = sigma;
X_best_overall = zeros(1,n);
S_best_overall = 1E10;
t = 0
tic
while sigma > eps

t = t+1;
mu = alpha*mu + (1-alpha)*mu_last;
B_mod = beta - beta*(1-1/t)^q;
sigma = B_mod*sigma + (1-B_mod)*sigma_last ; % dynamic smoothing

% sigma= alpha*sigma + (1-alpha)*sigma_last ; % fixed smoothing
X = ones(N,1)*mu + randn(N,n)*diag(sigma); % generate samples
SA = Rosen(X); % select performance function
[S_sort,I_sort] = sort(SA);
gam = S_sort(Nel);
S_best = S_sort(1);
if (S_best < S_best_overall)

S_best_overall = S_best;
X_best_overall = X(I_sort(1),:);

end
mu_last = mu;
sigma_last = sigma;
Xel = X(I_sort(1:Nel),:);
mu = mean(Xel);
sigma = std(Xel);
if mod(t,100)==0 % print each 100 iterations

fprintf(’%d %5.4f’,t,S_best);
fprintf(’ %5.4f’,mu)
fprintf(’\n’)

end;
end
toc
fprintf(’%d %9.8f\n’t,S_best_overall);
fprintf(’ %9.8f’,X_best_overall)
fprintf(’\n’)

C Functions

Below we list three test functions (the trigonometric, the Rosenbrock, and the Hougen
least squares function) that can be used in conjunction with the main CE program above.

function out = Trigo(X) %trigometric function
r = [];
for i = 1:size(X,2) ,
r = [8*sin(7*(X(:,i)- 0.9).^2).^2 + ...

+ 6*sin(14*(X(:,i)- 0.9).^2).^2 + (X(:,i) - 0.9).^2, r];
end;
out = sum(r,2);

406 Methodol Comput Appl Probab (2006) 8: 383–407

function out = Rosen(X)
r=[];
for i = 1:size(X,2)-1
r = [100*(X(:,i+1)-X(:,i).^2).^2+(X(:,i)-1).^2,r];
end
out = sum(r,2);

function out = Hougen1(X)
r = [8.55, 3.79, 4.82, 0.02, 2.75, 14.39, 2.54, 4.35, 13.00, 8.50, ...

0.05, 11.32, 3.13];
z = [470, 300, 10;

285, 80, 10;
470, 300,120;
470, 80,120;
470, 80, 10;
100, 190, 10;
100, 80, 65;
470, 190, 65;
100, 300, 54;
100, 300,120;
100, 80,120;
285, 300, 10;
285, 190,120]’;

s = 0;
for i = 1:13
s = s + (r(i) - ((X(:,1)*z(2,i) - z(3,i)./X(:,5))./(1 + X(:,2)*z(1,i)...

+ X(:,3)*z(2,i)+ X(:,4)*z(3,i)))).^2 ;
end
out = (s + 10*sum(max(-X(:,:),0),2) + 10*sum(max(X(:,:)-2,0),2))/13;

Acknowledgements We would like to thank Jenny Liu and Thomas Taimre for conducting various
CE experiments on constrained and unconstrained optimization. This Research was supported by
the Israel Science Foundation (ISF) Grant No. 191-565 and the Australian Research Council (ARC)
Grant DP0556631.

References

E. H. L. Aarts, and J. H. M. Korst, Simulated Annealing and Boltzmann Machines, Wiley: New York,
1989.

D. Bates, and D. Watts, Nonlinear Regression Analysis and Its Applications, Wiley: New York, 1988.
Z. Botev, and D. P. Kroese, Global likelihood optimization via the cross-entropy method, with an

application to mixture models. In R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters,
(eds.), Proceedings of the 2004 Winter Simulation Conference, pp. 529–535, IEEE: Washington,
District of Columbia, 2004.

J. Bracken, and G. P. McCormick, Selected Applications of Nonlinear Programming. Wiley: New
York, 1968.

P. T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial on the cross-entropy
method,” Annals of Operations Research vol. 134(1) pp. 19–67, 2005.

M. Dorigo, V. Maniezzo, and A. Colorni, “The ant system: optimization by a colony of cooperating
agents,” IEEE Transactions on Systems, Man, and Cybernetics—Part B vol. 26(1) pp. 29–41, 1996.

G. Dueck, and T. Scheur, “Threshold accepting: a general purpose optimization algorithm appearing
superior to simulated annealing,” Journal of Computational Physics vol. 90, pp. 161–175, 1990.

Methodol Comput Appl Probab (2006) 8: 383–407 407

F. Glover, and M. L. Laguna, Modern Heuristic Techniques for Combinatorial Optimization, Chapter
3: Tabu search. Blackwell Scientific: London, UK, 1993.

D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley:
Reading, Massachusetts, 1989.

W. B. Gong, Y. C. Ho, and W. Zhai, Stochastic comparison algorithm for discrete optimization with
estimation. In Proceedings of the 31st IEEE Conference on Decision and Control, pp. 795–800,
1992.

D. M. Himmelblau, Applied Nonlinear Programming. McGrawHill: New York, 1972.
W. Hock, and K. Schittkowski, Test Examples for Nonlinear Programming Codes, volume 197.

Springer: Berlin Heidelberg New York, 1981.
D. P. Kroese, R. Y. Rubinstein, and T. Taimre, Application of the cross-entropy method to clustering

and vector quantization. (To appear in Journal of Global Optimization) 2006.
L. Margolin, “On the convergence of the cross-entropy method,” Annals of Operations Research

vol. 134(1) pp. 201–214, 2005.
Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd edn. Springer:

Berlin Heidelberg New York, 1996.
D. A. Paviani, A New Method for the Solution of the General Nonlinear Programming Problem. Ph.D.

thesis, The University of Texas, Austin, Texas, 1969.
R. Y. Rubinstein, “Optimization of computer simulation models with rare events,” European Journal

of Operational Research vol. 99 pp. 89–112, 1997.
R. Y. Rubinstein, The cross-entropy method for combinatorial and continuous optimization.

Methodology and Computing in Applied Probability vol. 2 pp. 127–190, 1999.
R. Y. Rubinstein, and D. P. Kroese, The Cross-Entropy Method: A Unified Approach to Combinato-

rial Optimization, Monte-Carlo Simulation and Machine Learning. Springer: Berlin Heidelberg
New York, 2004.

K. Schittkowski, Nonlinear Programming Codes, volume 183. Springer: Berlin Heidelberg New
York, 1980.

B. V. Sheela, and P. Ramaoorthy, “Swift - a new constrained optimization technique,” Computer
Methods in Applied Mechanics and Engineering vol. 6(3) pp. 309–318, 1975.

D. G. Stork, and E. Yom-Tov, Computer Manual to Accompany Pattern Classification. Wiley: New
York, 2004.

A. Webb, Statistical Pattern Recognition. Arnold: London, 1999.
D. White, Markov Decision Process. Wiley: New York, 1992.

	The Cross-Entropy Method for Continuous Multi-Extremal Optimization
	Abstract
	Introduction
	The Main CE Algorithm for Optimization
	Continuous Multi-Extremal Optimization
	(a) The Unconstrained Case
	Modifications
	(b) The Constrained Case
	Acceptance--Rejection Approach
	Penalty Approach

	Numerical Results
	Unconstrained Optimization
	Acceptance--Rejection
	Penalty Method

	Conclusions and Directions for Future Research
	A Matlab Example Code
	B Main CE Program
	C Functions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

