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Abstract—Consider a network of unreliable links, each of  p rarity parameter for CE
which comes with a certain price and reliability. Given a fixel
budget, which links should be purchased in order to maximize |. INTRODUCTION
the system’s reliability? We introduce a new approach, baston

. ) ) APID developments and improvements in information
the Cross-Entropy method, which can deal effectively with he

constraints and noise (introduced when estimating the redibil- and communication technologies in recent years have

ities via simulation) in this difficult combinatorial optim ization resulted in increased capacities and higher concentration

problem. Numerical results demonstrate the effectivenessf the  traffic in telecommunication networks. Operating failuias

proposed technique. such high-capacity networks can affect the quality of smrvi

Index Terms—Network Reliability, Cross-Entropy Method,  f 3 |arge number of consumers. Consequently, the careful

Monte Carlo Simulation, Noisy Optimization, Merge Process . o . .
planning of a network’s infrastructure and the detailedysia

of its reliability become more and more important, in order t

NOTATION
i purchase probability of link ensure that consumers obtain the best service possible.
¢ cost of linki One of the most basic and useful approaches to network
Cmax  total budget reliability analysis is to represent the network as an wadéd
m, nnumber of [links, nodes] graph with unreliable links. The reliability of the netwoik
N sample size for CE usually defined as the probability that certain nodes in the
i reliability of link i graph are connected by functioning links.
r network reliability ~ ¢* optimal) This paper is concerned with netwopkanning where the
- network topology ~ £* optimal, X random) objective is to maximize the network’s reliability, subj¢o a
y system state X random) fixed budget. More precisely: given a fixed amount of money,
o smoothing parameter for CE and starting with a non-existent network, the question ixtwh
P structure function of topology: network links should be purchased in order to maximize the

reliability of the finished network. Each link carries a pre-
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objective. It is well known that such a problem is NP hartb networks for which the system reliability can either balev
[1], and it is also APX-Complete [2]. For small networks etxaaiated exactly, or sharp reliability bounds can be estadtish
methods, such as branch-and-bound, dynamic programming@iancela and Urquhart [17] employed a Simulated Annealing
convexification, may be successful (see for example [3]); bischeme to obtain a more reliable alternative network, garen
since the complexity of the problem increases exponentialiser-defined network topology. Dengét al. used a Genetic
with the number of links, such methods quickly becomaAlgorithm to optimize the design of communication network
infeasible for moderate and large-scale problems. topologies subject to the minimum reliability requirement

Second, for large networks the value of the objective funEL8l- Yeh et al. [19] proposed a method based on a Genetic

tion — that is, the network reliability — becomes difficult orAl90rithm to optimize thek—node set reliability subject to

impractical to evaluate [4], [5]. A viable option then is teeu & SPecified capacity constraint. Reichelt al. [20] used a

simulation to estimate the network reliability, for exampia Cenetic Algorithm in combination with a repair heuristic to

the Crude Monte Carlo (CMC) technique. This noisy versidfiinimize the network cost subject to a specified network

of the problem is not even in NP, because the value of a givgﬂiability constraint. Other heuristics can be found i1]f2

solution is hard to Compute. Moreover, for hlghly reliable To our know|edge, no Simp|e a|g0rithm is known that can
networks — which typically occur in communication networkgackle at the same timehe combinatorial, constraint and
— CMC requires a very large simulation effort in order tgoisy aspects of the NPP, and the purpose of this paper is

estimate the reliability accurately. to introduce such a method, and provide a new and effective

A number of simulation techniques have been develop@gproach to network planning. Our approach is based on
to address the network reliability estimation problem. Fdhe Cross-Entropy(CE) method [22], which was introduced
example, Kumamotet al. [6] proposed a simple techniquein [23] as an adaptive technique for estimating probabditi
called Dagger Samplingo improve the efficiency of CMC of rare events in complex stochastic networks. It was soon
simulation. Fishman [7] introduceBrocedure Q which can realized [24], [25] that it could be used not only for rareve
provide reliability estimates as well as bounds. Colbourd a Simulation but for solving difficult combinatorial optimazon
Harms [8] proposed a technique that provides progressn@blems as well. Moreover, (and this is especially relevan
bounds that eventually converge to an exact reliabilitpeal for the NPP) the CE method is well-suited to solvingisy
Elperin et al. [9], [10] developedEvolution Modelsfor esti- Optimization problems; examples are the Buffer Allocation
mating the reliability of highly reliable networks. Heit al. Problem [26], the Vehicle Routing Problem [27], and the
[11], [12] proposed a hybrid scheme that provides boun&$ochastic Shortest Path Problem [28]. For the NPP we will
and can provide a speed-up by several orders of magnit@sider both the deterministic case, where the network rel
in certain classes of networks. They also proposed anoti@ility can be computed exactly, and the noisy case where it
scheme [13] which employs the Cross-Entropy technique ifoestimated via simulation. A tutorial on the CE method can
speed-up the estimation in general classes of networkerOthe found in [29], which is also available on-line from the CE

relevant references on network reliability include [14]5], homepagehtt p://www. cenet hod. or g.

[16]. The rest of the paper is organized as follows: In Section Il
The literature on network planning — rather than reliapilitwe formulate the NPP in mathematical terms. In Section Il

estimation — is not extensive, and virtually all studiestger we present the CE approach to the problem. This is further



developed in Section IV for the noisy case, in particulahwitassigns to each state vectpthe state of the system (working
respect to variance reduction techniques such as Perontati 1 or failed = 0). That is,

Monte Carlo and the Merge Process. Section V focuses on 1 if all the terminal nodes are connected,

implementation issues with regard to speeding up the algo%(y) = @)

0 otherwise.
rithm. We illustrate the effectiveness of the CE approach vi
Now, consider the situation wittandomstates, where each

a number of numerical experiments in Section VI. Finally,

purchased linke works with probabilityp.. Let Y, be random
in Section VII we present our conclusion and directions for

state of linke, and letY be the corresponding random state
future work.

vector. The reliability of the network defined by purchase

vectorex is given b
Il. PROBLEM DESCRIPTION 9 y

Consider an undirected graghV, £), with set) of nodes r(x) =E[pe(Y)] = zy: pe(y) Pr{Y =y} (2)
(vertices), and sef of links (edges). Suppose the number of \ye assume from now on that the links faiindependently,
links is |€] = m. Without loss of generality we may labelihat is, v is a vector of s-independent Bernoulli random
the links 1,...,m. Let £ C V be a set ofterminal nodes. sriaples, with success probability for each purchased link
With each of the links is associatedcastc, andreliability . and 0 otherwise. Defining, = (z1p1,...,Zmpm) as the
Pe- The objective is to purchase those links that optimize tR@ctor of probabilities of the components B, for a given

reliability of the network — defined as the probability thaprchase vectar, we write Y ~ Ber(p,,). It follows that for

all the terminal nodes are connected by functioning links ezchz, the reliability is computed as

subject to a total budgef,,.x. Let ¢ = (¢1,...,cn) denote (@) = Z ( )1"_”[( (L — )1 @)
vector of link costs, angh = (p1,...,p.) the vector of link n " vely =1 b b ’
reliabilities. where0? := 1. Our main purpose is to determine
We introduce the following notation. For each liaket x, mea?r(gﬁ) , @)
x

be such that

subject to the constraint on the total budget
1 if link e is purchased,

e )
. ZeCe < Chax - (5)
0 otherwise. gy
We call the vectote = (1, ..., z,,) the purchase vectorThe Let r* := r(x*) denote the optimal reliability of the network,
set of all possible purchase vectors is denotedtby wherez* is the optimal purchase vector.

To identify the operational links, we define for each link
I1l. CROSSENTROPY APPROACH
the link stateby

In this section we show how the CE method can be used to

1 iflink e is functioning solve the constrained combinatorial optimization probldn

Ye =
0 otherwise (5). The CE method consists of two steps which are iterated:
Note that for each linke that isnot purchased, the statge 1) generate random purchase vectirs, ..., X y accord-
is per definition equal to 0. The vecter = (y1,...,ym) IS ing to some specified random mechanism, and

called thestate vector For each purchase vectarlet ¢, be 2) update the parameters of this mechanism in order to

the structure functiorof the purchased system. This function obtain better system reliabilities in the next iteration.



An efficient method to generate random purchase vect@isove; compute the performancesX;), i = 1,..., N and
that satisfy (5) is as follows: First, generate a “uniformfet
permutation(es, ..., ey) of (1,...,m), by s-independently At = T([1-p)N1)> (6)

drawing m numbers from the uniform distribution offd, 1] .
wherery < ... < r(yy are the order statistics of the perfor-

and lettinge;, . . ., e,, correspond to the indices of the ordered . i L
mances. The reference vector is updated via CE minimization

observations. Second, given such a permutation, flip a coin . . )
which (see [22]) reduces to the following: For a given fixed

with success probability.., to decide whether to purchase
a;_1 and-, let

link e; or not. If successful and if there is enough money

available to purchase link;, set X., = 1, that is, link e; atj = Ba,  [Xj [7(X) = 7] .

is purchased; otherwise seéf., = 0. We repeat the above pp estimatora; of a; is computed via

rocedure for linkses, e3, etc. For each linke; we check N ~ X..

P e I e S Eh e A

t,) — N ) .7_17"'am5 (7)
S L ox s

=1 {r(X)>7}

and if so, we purchase the link with probability,. The \where we use theamerandom sample as in (6), and where

main algorithm for generating a random purchase vectogusily, . is the j-th coordinate ofX ;. The main CE algorithm for

whether the remaining budget allows us to purchase the link,

uniform permutation is thus summarized as follows: optimizing (4) using the above generation algorithm is thus
Algorithm 1 [Generation Algorithm] summarized as follows:
1) Generate a uniform random permutatigay, ..., e,).  Algorithm 2 [Main CE Algorithm].
Setk = 1.

1) Initialize ay. Set t=1 (iteration counter).

k—1
2) CaleulateC' = ce, + 30,1 Xe,ce,- 2) Generate a random sampl&,,..., Xy using Algo-

3) If C < Cmaxa draw Xek ~ Ber(aek). Otherwise set rithm 1, with a = at—l- Compute the Samplél _ p)_

Xe, = 0. guantile of performances; using (6).

4) If k¥ = m, then stop; otherwise set = k£ + 1 and 3) Use thesame sample to updat@,, using (7).

reiterate from step 2. 4) If

The usual CE procedure [22] is to construct a sequence max(min(as, 1 —a;)) < 3 (8)
of reference vector§a;,t > 0} (i.e., purchase probability for some small fixeds, then stop (IetT’ be the final

vectors), such tha t > converges to the degenerate . . . .
) ta,,t = 0} 9 9 iteration); otherwise set = ¢ + 1 and reiterate from

(i.e., binary) probability vector* that corresponds to the step 2

optimal purchase vectat* = a*. The sequence of reference

: . : . . Note that the cost vectar, reliability of links p, the initial
vectors is obtained via a two-step procedure, involving an

. N reference vectotiy, the sample sizeV, total budgetCi.x,
auxiliary sequence of reliability level§y;, ¢ > 0} that tends 0 P 9 °

. N . the rarity parametep, and the stopping parametérneed to
to the optimal reliabilityv* = r* at the same time as the yp P pping p 18

{a:} tend toa*. At each iteratiory, for a givena;_1, v is be specified in advance.
the (1 — p)-quantile of performances (reliabilities). TypicallyRemark 1 [Smoothed Updating]instead of updating directly
p is chosen between 0.01 and 0.1. An estimatoof v; is using (7), one may choose to use smoothed updating
the corresponding sampié — p)-quantile. That is, generate aprocedure

random sampleX 4, ..., Xy using the generation algorithm a=aa;+(1—a)a (9)



TABLE |

LINK COSTS AND RELIABILITIES

{ Ci Di { Ci Di ( Ci Pi

1| 331 | 09951 || 6 | 335 | 0.9958 || 11 | 330 | 0.9947

2| 347 | 09968 || 7 | 332 | 0.9952|| 12 | 325 | 0.9937

3| 327 | 09942 | 8 | 302 | 0.9902 || 13 | 324 | 0.9935

4| 340 | 0.9959 || 9 | 344 | 0.9964 || 14 | 350 | 0.9973
Fig. 1. 6-node complete graph. 5 | 2000 | 0.9908 || 10 | 315 | 0.9917 || 15 | 312 | 0.9912
where a, is the parameter vector obtained via (7) amds IV. NOISY OPTIMIZATION

called thesmoothing parametett is easily seen that fax = 1 As mentioned in the introduction, for networks involving
the original updating procedure is obtained. By setting treelarge number of links the exact evaluation of the network
smoothing parameter betweén< o < 1 we take the past reliability is in general not feasible, and simulation bees a
into account when updating the parameter vector. viable option. In the corresponding simulation-basedmjzia-

I L ) tion problem the objective function (the network reliatyijiis
Remark 2 [Unreliability]. In many applications the link and

N ) . thus corrupted by noise. In this section we show how the CE
network reliabilities are close to 1. The appropriate gityatd

. o method can be easily modified to tackle sumdisy NPPs.
consider is then the netwotknreliability 7 = 1 — r. In such

) . . o In order to adapt Algorithm 2 we again, at iteration
case Algorithm 2 can be readily modified to minimize the

I . o t, generate a random sampl¥,,..., Xy according the
unreliability, rather than to maximize the reliability. &lonly

) ) Ber(a;_1)-distribution. However, the corresponding perfor-
differences are thaf; now represents the samptequantile

. . . mances (network reliabilities) are now not computed eyactl
of the unreliabilities, and that(X ;) > 4 in (7) is replaced

_ ) but estimated. For example, estimation via CMC involves, fo
with 7(X;) < 4.
each vectorX;, drawing a random sample of state vectors

Example 1. On offer is a 6-node fully connected graphy, 'y, each according to Ber(py.)-distribution, and

given in Figure 1. The two black nodes in the graph réRsstimating the performance as
resent the terminal nodes. The network is functioning if R 1 K _

the two terminal nodes are connected by operational links. PX) = K ;cPXi(Yj)’ i=1...N (10)
The link costs and reliabilities are given in Table I. The The updating formula is similar to (7). The only difference
total budgetC,.., is equal to1500. The optimal purchase is thatr(X ;) is replaced withr(X ;). Therefore the updating

vector can be calculated (by total enumeration) todfe= formula at¢-th iteration is given by

. . N
(1,0,1,0,0,0,0,0,1,0,0,0,0,1,0), which gives a network g Yim1 Lixe 550 Xid i1 . 1)
G = ~ , =1,...,m.
unreliability of 7 = 1 — r* = 7.1967e-05. The four black i1 I{?-(x%)z;t}
links form the optimal network. The main CE algorithm for estimating the reliability of a

Table Il displays the evolution of the purchase probabilitg}etwOrk is summarized as follows:

vector for this problem. We used the following CE parameteralgorithm 3 [Noisy Version of the CE Algorithm]
N =750, p=0.1, a = 0.7, 8 = 0.05 and we tooka, = 1) Initialize @,. Sett = 1 (iteration counter).
(0.5,...,0.5). We see that a¢ — oo, 3; anda; quickly  2) Generate a random samplX,..., Xy using Algo-

approaches™ andz™ respectively. rithm 1. Let7q,...,7(n) be the order statistics of



TABLE Il

THE EVOLUTION OF THECE ALGORITHM WITH Crax = 1500, N = 750, p = 0.1, o = 0.7, AND 3 = 0.05

t ,’;t a
0 050 050 050 050 050 050 050 050 050 050 050 0500 0850 0.50
1 | 8.484e-03| 0.60 0.29 048 028 015 024 022 0.27 059 024 031 0304 0D49 0.36
2 | 8.482e-03| 0.80 0.18 0.34 018 005 018 0.17 0.18 0.80 0.19 018 0.193 0.0.36 0.33
3| 8.482e-03| 0.92 014 0.34 014 001 018 024 011 0.92 0.07 007 0104 0035 0.33
4 | 4.927e-03| 0.98 0.07 053 0.13 000 007 041 0.05 095 0.02 0.02 00410053 017
5| 7.197e-05| 0.99 0.02 0.86 004 000 002 012 0.02 0.98 001 001 0010 0086 0.05
6 | 7.197e-05| 1.00 0.01 096 001 000 0.01 0.04 0.00 100 0.00 000 0000 0096 0.02
7(X1),...,7(Xn). Lety =T (ra—pn7)- using (13) is simple: In the early stages of the simulatiomemv
3) Use thesame sample to updat@; using(11). Nunique = N, we takeK ~ Kp;, to quickly narrow the

4) Stop if (8) holds for some small fixed (let T" be the search space. During the course of the simulation the search
final iteration); otherwise set = ¢ + 1 and reiterate space becomes smaller and the algorithm starts to generate
from step 2. networks with similar topologies and performances, so that

rNunique decreases. When this starts to happ€ns increased

We could takear as our final purchase vector, if the latte

were binary. Sincéiy is close to, but not exactly binary, Weautomatlcally to accurately distinguish between netwavith

roundar to the nearest binary vector, denote the solution bS)'/rnllar reliabilities.
a”, and take this rounded vector as our solution for the NPP.It is important to realize that CMC only works satisfactory

If, in addition, we wish to obtain an estimate of the optimalvhen the network reliability is neither too small nor toogar

reliability »*, we generate a (larger) samp¥,,..., Yy, Forexample, consider a highly reliable network. For anegiv
from Ber(a®), and estimate* via purchase vectorr the CMC estimator of the (very small)
~ 1 unreliability7(x) = 1—r(x), which is the appropriate quantity
= (V). (12) _ o
L) to consider here, is given by

Remark 3 [Choice of K]. Note that the simulation time 1 M

(o) = 7y 20— wul¥),

can be reduced by choosing a relatively sm&llin (10), —

say K = 100 in Example 1. However, this corresponds to and the correspondingrelative error is

relatively large variance of the reliability estimator, iain in Var(T(z _7F
LV A( (z)) _ 1_ 7(x) ~ 1 (14)
E[F(x)] 7(z) N1

turn could lead to a suboptimal convergence of the algorithm 7(x) N1’

On the other hand, choosing a largetr say K = 20000 in  Which shows that for = 0.01, say, we need a sample size of
Example 1, can increase the accuracy and chance of locafideastVi ~ 10/7(z), which can be prohibitively large.
an optimal solution but at a cost of increased simulatioretim

) ) ) Permutation Monte Carlo
To overcome this, one may choosé adaptively by setting

A more efficient way of estimating the network unreliability
K = min{[Kumin X N/Nusiquel, Kmax} 33 i highly reliable networks i®ermutation Monte Carl¢PMC)
where Nynique 1S the number of unique networks generate[®]. The idea is as follows. Consider a network with struetur
with no repetitions and<,,i, and K. are the minimum and function as in (1), and reliability: = »(x) as in (2). Let!

maximum values of< allowed in the simulation. The idea ofbe the number of purchased links and &t be the set of



purchased links. We assume here tha{x) = 1, so that the follows that Pr{T. > 1} = exp{log(l — pc)} = 1 — pe.
purchased network functions if all its links work. Now, obse Therefore, the probability of link being operational at time
adynamicnetworkG(V, £) in which each purchased linkhas ¢ = 1 is p., and hence the probability that the network is
an exponential repair time with repair rat¢e) = —log(1 — functioning at timet = 1 is precisely thenetwork reliability.
pe). The repair rate for each linkthat is not purchased is setBy conditioning onIl we have

to A(e) = oo, so that the link does not become operational in . _ E[p(Y (1))]

finite time. At timet = 0 all links are failed. Assume that all (16)

= Pr{ll=n}Pr{p(Y (1)) = 1| =},
repair times arg-independent of each other. The state @it w

time ¢ is denoted byY.(¢) and the state of the link set at and
time ¢ is given by the vectol'(¢), defined in a similar way r=1-r

(17)
as before. ThenY (¢)) is a Markov process with state space = ZPr{H =7} Pr{e(Y (1)) =0|II = =}.

0,1}™. This process is called tHeonstruction ProceséCP ) L .
(0.1} P CP) Using the definitions of4; and b(w), we can write the last

of the network. N : e
probability in terms of convolutions of exponential dibtrtion

Let II denote theorder in which the links are con- .
functions. Namely, for any > 0 we have

structed (become operational) in finite time, andAgt Ay +

Ay,...,Ag + ---+ A;_; be the times at which those links Pr{p(Y (t)) =0|Il ==}

are constructed. Hence thel;} aresojourn timesof (Y (¢)). =Pr{Ag+ -+ Ayx)_1 > t| I =7}
IT is a random variable which takes values in the space —1- Conv {1—exp[-AE&)t]) (18)
o 0<i<b(m)—1 At
{(e1,...,e)) €{1,....m} 1 e; #ej,5 # i} Lot
For any suchr = (eq,...,¢;) define
G(m) = Prip(Y (1)) = 0|1l =}, (19)
5() = gw,

as given in (18). Equation (17) can then be rewritten as
51':51'71\{61'}, 1§i§l71,

7 = E[G(IT)], (20)

Let and this shows how the CP simulation scheme works. Namely,

1 (K) i i i istri
b(r) = H}iﬂ{sﬁ(gw V&) =1} let 1Y, ... II be s-independent identically distributed

random vectors, each distributed accordingltoThen
be thecritical number of =, that is, the number of repairs

K
_ 1 ,L-
required to bring the system up in the order specifiedrby T= > Gm®) (21)
=1

From the general theory of Markov processes it is not difficul ) . .
g y P “s an unbiased estimator fat, where eachG(IT)) can be

to see that . . .
calculated as the convolution of exponential functions.

l .
Pr{ll = 7} = ]:[1 A?Si)l) : (15)

Moreover, conditional on{ll = =}, the sojourn times Merge Process

Ag, ..., A;_1 ares-independent and each; is exponentially A careful study of the evolution of the CP shows that many

distributed with parametex(&;), ¢ =0,...,1 — 1. of the results remain valid when we combine various states
Recall that each link has an exponential repair ratée) = to form “super-states” at various stages of the process. The

—log(1l — p.). Let T, be the corresponding repair time. Itmathematical formulation is as follows (see [9], [30] for o
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(@ oo = (b) o1 =
Fig. 2. A brid twork, th titien= {{a}, {b, c,d}}, and it
ig ridge network, the proper partitien= {{a}, { 1}, and its (1@} (b} e} () ). (b, ¢} {d}).

corresponding closuré, = {3,4,5}.

details): Given the grapl(V,£) and a subsetF C & of e/l 1/?)\4

edges, a partitior = {V1,...,V,} of V is said to beproper /@ @< i >Q
5 2 5

(with respect toF) if each induced subgrapé(V;) of the @/ \4:)/

subgraphG(V, F) is connected. Lef; be the edge-set of the

(€ o2 = (d) o3 = {{a.b,c.,d}.
{{a.t}, {c.d}}.

“SUper_Statq;ig. 3. A possible transition sequence of the NIR(t)).

o is to identify it with the graphG(V, F,), as in Figure 2.

induced subgrap8(V;). The setF, = Ule F; of edgesis the

closureof F. The easiest way to visualize the

Here 7 = {3,5}, which induces the proper partition = For example, consider the bridge network given in Figure 2.
{{a},{b,c,d}}, so thatF; = ) andF, = {3,4,5} andF, = The network is operational when the two black nodes are
{3,4,5}. connected by operational links. A possible transition sege

Let I.(G) be the collection of all proper partitions of, from the initial state is shown in Figure 3.
ordered by the relatiow < 7 < F, C F,, wherer is  The network becomes operational upon the transition from
obtained by merging components @f oy 10 03. Thereforeh(d) = 3.

Recall the CRY (¢)) of the network defined by. The CP Since(Y (1)) = ¢(Y(t)), the probability that the network
induces a Markov proceds/(t)) on L(G), called theMerge s not functioning at timet = 1 is equal to the network

ProcesgMP). Initially, this process starts in the super-st@§e ynreliability. Thus the network unreliability can be weitt as

in which all nodes are isolated from each other, and it ends
in the super-state,, corresponding to the original network T %:Pr{@ = 03Prie(¥(1)) =016 = 0}. 2)
with all edges functioning. Furthermore, at any time> 0, For anyt > 0, we can write the last probability as

@ (Y (1) = ¢ (Y(2)).

For eachs € L(G), the sojourn time inc has an expo- e (Y1) | }

nential distribution with parametex(c) = > ... A(e), s- =1 og?g?»?@‘{—l{l ~exp[=A(y) 1) (23)

independent of other partitions, whefg = £ — F, and the Let

transition from a current partitios to one of its successors

Gup(0) = Pr{pY(1) =0|O© = 0}. (24)
occurs with probability
A(o) — A7) as given in (23). Equation (22) can be rewritten as
Ao)
. . 7 =E[Gup(0)] (25)
We define atrajectory of (Y(¢t)) as a sequencé =
(00,...,0u0y), Whereb(#) is equal to the number of transi-where® is the random trajectory iGY(¢)). Let ©4,...,0x

tions required in order for the network to become operationde the s-independent and identically distributed random tra-



jectories, each distributed according@o Then

K
~ 1
T=1 ; Gaip (0;) (26)

is an unbiased estimator for. A simple way of generating

such trajectories is by first generating a random vedior

exactly as in the CP. The sequence of distinct partitions

. . . . . Fig. 4. Example network.
obtained from the order in which the links come up (given

by IT) determines a unique trajecto#y. %—7\ ‘ 7
4 1 14
9

14 ¢
o o
V. IMPLEMENTATION |SSUES 2 15 2
11—(@/ 11

Algorithm 3 is designed to find a single optimal solution.

(a) Network A. (b) Network B.
However, there are situations where the purchase protyabili 74@\ 74@\
of a certain linki, @;;, i € {1,...,m}, could oscillate for ! N o R
a very long time before converging to either 0 or 1, namely e\\24 > %4
when O— 11—
1) many of the candidate networks have reliabilities that (c) Network C. (d) Network D.
are very close to the optimal network reliability; Fig. 5. Candidate networks.

2) there are superfluous links in the network, that is, links

that do not affect the overall network reliability. As an example, consider the 6-node fully connected graph

. L , _given in Figure 4.
The result of such oscillatory behavior is that the simolati

L N . . . The black and gray solid lines indicate that the purchase
time increases significantly. In this section, we introdtwe

robabilities of these links lie in the rangék — 3, 1] and
algorithms, the hybrid CE algorithm and the superfluous Iir& Hies S¢ finks e 9¢s— 1]

. . . 0, 7] respectively. The two dashed links indicate that the cor-
removal algorithm, which can reduce the computatlonalreffo[ fl resp y

responding purchase probabilities lie in the intefyall — 5.

In such case, we terminate the main CE loo teps 2 and 3
A. Hybrid CE Method su Se, w ' ' p (steps

of the algorithm) and generate all candidate networks, hame

In the situation where only one optimal network exists L
the four networks shown in Figure 5.

but where many networks can be purchased whose network o )
We then evaluate the network unreliabilities to determine

(un)reliabilities are very close to the optimal one, thevedats ) ) )
which network topology is optimal.

of the purchase probability vector could oscillate, and thi ) ) ) o o
The main hybrid CE algorithm for estimating the reliability

would increase the computational effort. In such cases, one _ )
of a network is thus summarized as follows:
may terminate the algorithm once the number of purchase
probabilities that lie betweefs, 1 — 4] falls below a certain Algorithm 4 [Hybrid CE Method]
threshold, sayd, and then generatall candidate networks 1) Initialize aq. Sett = 1.
according to the purchase probability vector. We evaluage t 2) Generate a random samplX,..., Xy using Algo-
performances of these networks and take the network with the  rithm 1, witha = a;_;. Compute the samplél — p)-

best performance as our final solution to the problem. quantile of performances; using (6).
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Fig. 7. A graphG with 8 blocks.

Fig. 6. System with three terminal nodes denoted by blaclesiod

3) Use thesame sample to updat@;, using (7).
4) If the number of purchase probabilities in the range
[8,1 — 3] is less than or equal to a certain threshold,

proceed to the next step (I8t be the final iteration);

otherwise set = ¢ + 1 and reiterate from step 2.
. . Fig. 8. The block-cutvertex tree df.
5) Generate all candidate networks according to the pur—'g & Dlocketiveriex free
chase probability vecto@; and evaluate the network i
related to a well-understood problem in graph theory, ngmel

unreliabilities. Output the network with the smallest ) . _ )
that of identifying theblocksin a graph [31]. To illustrate the

unrefiability as a solution to the problem. concepts, consider Figure 7. The open circles in the gragh ar
the so-calleccutvertices When any of these is removed, the
B. Superfluous Links graph separates into disjoint components. A similar conisep
We next discuss the role stiperfluoudinks in a purchased that of abridge an edge whose deletion separates the graph.
network. These are links that do not affect the overall nétwoA subgraph is called #lock if it is (a) a bridge including
reliability, whether they are functioning or not. As an ex#ey its endvertices, (b) a complete graph with 3 vertices, or (c)
consider the 8-node network with 3 terminal nodes in Figure & graph with 4 or more vertices such that no single vertex
In this network, there are five superfluous links in totakeparates it. Examples of each of the cases (a), (b) andgc) ar
namely links 1, 4, 5, 8, and 9. Since these links do ngiven in the figure as3;, B, and Bs, respectively.
affect the reliability of the network, the CE algorithm cdul  The next step in the analysis is to fornblack-cutvertex tree
unnecessarily, have difficulty deciding whether or not te- puwhose vertices are identified with the blocks and cutvestafe
chase them. In particular, the purchase probabilities e$¢h the graph, and whose edges join cutvertices to blocks. Eigur
links, @.; with i € {1,4,5,8,9}, could oscillate for a long gives the block-cutvertex of the graghof Figure 7. The large
time before they converge to either 0 or 1. This increases thiack and grey vertices correspond to blocks; the smallevhit
computational effort significantly. Note that we only need tvertices correspond to the cutvertices. The three bladicesr
consider removing superfluous links whep(x) = 1; thatis, are theterminal blocks which need to be connected in order
if all terminal nodes are connected given that all purchasést the system to function.

links are indeed functioning. The procedure for removing superfluous links now becomes

Fortunately, the identification of superfluous links can beear: If a block is either (a) an isolated block (a block of
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degree 0), (b) an end block which contains no terminal node, VI. NUMERICAL EXPERIMENTS

or (c) an end node which contains exactly one terminal node , )
In this section, we present three test cases. For all tegscas
and its adjacent block contains the same terminal node ck blo o )
we compare the performance of the deterministic CE algorith

can be removed. We repeat this procedure until all supeluou _ _ .

(CE-DET) and the hybrid CE algorithm (CE-HYBRID) with
blocks are removed from the block-cutvertex tree. Therstexi ) ] ] ] )

those of the noisy versions using CMC simulation (CE-CMC)
efficient algorithms for finding all the blocks in a graph,.e.g ] ) ]

and MP simulation (CE-MP). Thus, in the former case the
Algorithm 3.2 of [32].

system reliabilities for each purchase vector are estidneite
The following algorithm can be applied to remove supeGrude Monte Carlo simulation, and in the latter case via the
fluous links from the graph. Merge Process. In step 5 of the hybrid CE algorithm, we rank

the candidate networks using either a deterministic amgbroa

Algorithm 5 [Superfluous Link Removal
g [Sup ] (CE-HYBRID-DET) or MP simulation (CE-HYBRID-MP).

All experiments were repeated 15 times in order to assess
1) Find all isolated blocks and remove from the block-
the variability and accuracy of the statistics.
cutvertex tree.

) ) ) Test Case 1:For the first experiment we return to Exam-
2) Find all single degree blocks that do not contain any

. ple 1, where the optimal purchase vector is givenaby=
terminal node and remove from the block-cutvertex tree.

) ] (1,0,1,0,0,0,0,0,1,0,0,0,0,1,0), which gives a minimum
3) Let G; be an unmarked single degree block in the block-

) ) network unreliability of/* = 7.1967e-05. The corresponding
cutvertex tree that contains exactly one terminal node

] . _ optimal network is depicted in Figure 1.
and proceed to step 4. Terminate if no such block exists.

) ) We take the same CE parameters as in Example 1 and
4) Let G, be the block to which Gis connected. If @

. . set Kin = 1000, Kpnax = 2000, and § = 4. In CE-
contains the same terminal node as,rune G;

) ) HYBRID-MP, 20000 samples were used to rank candidate
otherwise mark @ to keep in the block-cutvertex tree.

Return to step 2. solutions. Tables IIl and IV show typical evolutions of CE-
CMC and CE-MP respectively. As was the case with the
Note that a superfluous link in a network definedabgoes deterministic version (see Table I), both methods fourel th
not mean that the link is also superfluousiih By removing Optimal purchase vector very quickly. The entry “0.000” in
a superfluous link with probability 1, the computationabeff Table Ill means that the corresponding network unreligbili
decreases, because the corresponding purchase prgbaoilitwas estimated (via CMC) as 0. Note that this can occur when
longer oscillates. However, like in the hybrid CE methodhe sample sizd( is relatively small.
the accuracy could be negatively affected if the purchaseTable V summarizes the statistics over 15 independent
probability converges too quickly to 0, which might lead teeplications. Here “Method” represents the method used in
a suboptimal solution. To overcome this difficulty, one cbulsimulation; “worst” is the worst network unreliability cihed
choose to remove the link with probability delP< delP< 1. over the 15 replications; “best” is the best unreliability-o
In Section VI, we investigate at what probability superflsoutained in simulation; “meafi()” is the average number of
link should be removed in order to obtain the maximuriierations; and “how often” is the number of times the method

performance of the algorithms with minimum computationaibtained the optimal solution.

effort. Each method performed exceptionally well, obtaining the
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TABLE Il

A TYPICAL EVOLUTION OF CE-CMCFOR TEST PROBLEML

t ,’;t a

0 050 050 050 050 050 050 050 050 050 050 050 05000850 0.50
1| 7.386e-03| 0.44 047 045 031 015 036 022 021 050 0.22 022 0436 050 0.32
2 | 7.062e-03| 0.50 047 050 021 005 023 017 0.11 049 0.13 0.08 0367 0.059 0.8
3 | 5.236e-03| 0.62 046 054 020 0.01 013 0.18 0.06 060 008 0.02 0.358 0061 0.08
4 | 4.000e-03| 0.72 043 069 0.15 0.00 008 0.12 0.02 072 004 0.01 03020065 0.02
5 0.000 0.90 025 080 0.04 000 0.02 0.04 001 090 0.01 0.00 02110.079 0.01
6 | 1.000e-03| 096 0.14 088 001 000 001 001 000 096 0.00 0.00 0.130 0.0.88 0.00
7 0.000 099 004 097 000 000 000 000 000 099 0.00 0.00 0.0400.09 0.00
8 0.000 1.00 001 099 000 000 0.00 000 000 100 0.00 0.00 0.0100.099 0.00

TABLE IV

A TYPICAL EVOLUTION OF CE-MPFOR TEST PROBLEML

t Yt a;

0 050 050 050 050 050 050 050 050 050 050 050 05000850 0.50
1| 8593e-03| 0.36 0.28 064 037 015 028 028 025 036 030 023 0.364 063 0.32
2 | 8.415e-03| 0.39 028 069 022 005 009 021 011 040 019 014 0.2530.0.70 0.25
3 | 8.330e-03| 042 015 089 009 001 004 016 003 042 017 005 0315 0.0.88 0.10
4 | 5.747e-03| 0.61 0.12 092 006 000 001 028 001 060 0.08 0.02 0.140 0.0.94 0.07
5| 6.968e-05| 0.88 0.04 098 0.02 0.00 0.00 008 000 0.88 0.02 0.00 0.043 0098 0.02
6 | 7.285e-05| 0.97 0.01 099 001 0.00 0.00 0.03 000 096 001 0.00 0.011009 0.01

TABLE V 26 :
NUMERICAL RESULTS FOR TEST CASH 1 28‘ 5
D ~ =)
H Method worst best ‘ mean(") ‘ how often H
10
CE-DET 7.1967e-05| 7.1967e-05 6.93 15 1 10 44
CE-CMC 8.0411e-01| 7.1967e-05 6.87 14 3 39
CE-MP 7.1967e-05| 7.1967e-05 5.80 15
CE-HYBRID-DET | 8.0430e-05| 7.1967e-05 7.40 13 4 12
CE-HYBRID-MP 8.0430e-05| 7.1967e-05 6.93 14 2 2 5 45
C o 23 1
35
19 11

optimal purchase vector in most of replications. This sug- i
gests that the proposed noisy CE algorithms using the Cl\/f@ 9. Network topology for test case 2.

simulation and MP simulation and the hybrid CE algorithm

can perform as effectively and reliably as the deterministi Test Case 2Test case 2 is concerned with the 10-node fully
version. Thes-relative error in the reliability estimation (for connected network with 4 terminal nodes depicted in Figure 9
K = 1500) was around 30 to 79 for CMC and2% for CE- This test case is a lot harder than the previous one, not only
MP. Thus even with this amount of uncertainty all algorithmisecause there arg*> candidate networks, but also because
can effectively locate the optimal network topology forsthimany of these candidate networks have unreliabilities dhat

problem. very close to the best found solution (less thar © away).
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TABLE VI
THE PSEUDO CODE FOR GENERATING THE COST AND PROBABILITY
VECTORS FOR TEST CASE

10, 1

while 7 < m
t—1+1
b— 1 — 7654321 (mod 987 +14)/10°
if b>099andb#p, foralk=1,...,5—1

do
pj b
then ¢ ¢; < 20/ exp(8v/1 —b)
Je—=3j+1

Fig. 11. Network with 24 nodes and 51 links.

TABLE VI
PSEUDO CODE FOR GENERATING THE LINK COST AND RELIABILITIES FR

CASE3

10, <1

while j < m

t—1+1

b«—1—765432 (mod 9876-|—i)/105

if b>0.99andb#pyg, forallk=1,...,5—1

do
pj b
then ¢ ¢; < 20/ exp(8v/1 —b)
Je—=3j+1

Fig. 10. The best found network for test case 2.

performed reliably, obtaining 12 and 11 times respectivily
The total budget i€nax = 250, and we take the following t6,nq that CE-DET did not perform as well as other methods.

CE parametersN = 2250, Kwin = 3000, Kmax = One reason is that the speed of convergence was too fast.

10000, p = 0.05, a = 0.7, § = 0.05, andd = 4. In CE-  gypariments showed that by choosing smaliesaya = 0.5,

HYBRID-MP, 50000 samples were used to rank candidagg=_peT performed as well as its noisy counterpart,

solutions. Table VI gives the pseudo code for generating theTest Case 3:The network topology for test case 3, taken

link costs and reliabilities. from the survivable fixed telecommunication network design

Based on 15 independent trials, the best found solution fig§rary websiteht t p://sndlib.zib. de/, comprises 24
test case 2 is given in Figure 10, with a network unreliapilitygdes, 51 links and 5 terminal nodes, see Figure 11.
of 8.7396e-13. In this problem, we investigate how superfluous link re-
The results of 15 replications for each method are summaoval (Algorithm 5) affects the overall performance of the
rized in Table VII, with the exception of CE-CMC, whichmethods, using different values for delP. For this test case
failed to produce a solution — the reason is that CM@e use the following CE parameterd = 3000, K, =
simulation required too large a computational effort (tsat 1000, K., = 10000, p = 0.05, o = 0.7, 8 = 0.05, and
a large sample size) to accurately estimate the very smal= 4. The total budgeC,,., = 5000. In CE-HYBRID-MP,
network unreliability; cf. (14). 10° samples were used to rank candidate solutions. The pseudo
It is encouraging that CE-HYBRID-DET obtained the bestode for generating andp is given below.
found network in all trials. CE-MP and CE-HYBRID-MP The best found solution for test case 3 is given in Figure 12,
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TABLE VI

NUMERICAL RESULTS FOR TEST CASE2

H Method worst best ‘ mean(’) ‘ how often H
CE-DET 1.31706557e-12| 8.73960309e-13] 16.14 7
CE-MP 1.18106167e-12| 8.73960309e-13] 18.33 12

CE-HYBRID-DET | 8.73960310e-13| 8.73960310e-13| 14.93 15
CE-HYBRID-MP | 1.16903365e-12| 8.73960309e-13| 14.36 11

about 0.01 a sample size of at ledst = 50000 would be
required, which would significantly increase the compotaei
effort.

In contrast to CE-MP, the other three methods performed
as well with0.2 < delP < 0.5 as with delP = 0, obtaining

the best found or near-best solutions around the same number

of times. This shows that by removing superfluous links with
probability 0.2 < delP < 0.5, we were able to reduce the
Fig. 12. The best found network for test case 3. computational time up tG5% without affecting the accuracy
of the methods.

with a network unreliability of 1.58635e-05. . . ) )
Moreover, both hybrid CE algorithms, with or without su-

Table IX shows the numerical results for test case 3, . o :
perfluous link removal, significantly reduced the compotati

averaged over 15 independent replications for differehies time, without affecting significantly the accuracy.
of delP. Here “how often” is the number of times the method
obtained the best found solution or near-best solutioret, th VII. CONCLUSIONS ANDFUTURE RESEARCH
is, solutions whose network unreliabilities are less théh In this paper, we proposed a CE approach for solving the
away from the best found solution. “CPU” denotes the averaffetwork Planning Problem, which is a difficult constrained
simulation time in seconds. combinatorial optimization problem with a noisy objective
We see that applying Algorithm 5 achieves significarfunction. This noise is introduced when the objective fiorct
reduction in computational time. However for values of delRhe system reliability) is estimated rather than evaldate
> 0.8, all four methods failed to obtain the best found oexactly. We reviewed several techniques for reducing this
near-best solutions. The reason is that some of the linksrinise. We explained how the deterministic version of the CE
the network may have been considered as superfluous ligkgorithm (when the objective function is known) could be
in early iterations. This caused the purchase probalsilitie readily modified to handle the noisy situation. The numerica
converge to O very quickly. This can be avoided by takingesults showed that the noisy CE algorithm can perform as
smaller delP. It is interesting to note that CE-MP performeeffectively and reliably as its deterministic counterpatte
worse with superfluous link removal than without. A likelyproposed two techniques to speed up the convergence of the
reason is that the-relative error in the network reliability algorithm: probabilistic superfluous links removal and tgb
estimator was quite large, so that the networks could not B&. Experiments showed that with an appropriate choice of

accurately ranked. However, to decrease the relative #ororparameters these techniques can speed up the optimization
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TABLE IX

NUMERICAL RESULTS FOR TEST CASE3 WITH DIFFERENT VALUES FOR DELP

H deIP‘ Method worst best ‘ mean(") ‘ how often‘ CPU H

CE-DET 1.58635e-05| 1.58635e-05| 14.87 15 21680

0.00 CE-MP 1.61361e-05| 1.58644e-05| 165.33 11 13086
CE-HYBRID-DET | 1.61025e-05| 1.58635e-05| 31.13 13 3062
CE-HYBRID-MP 1.61023e-05| 1.58635e-05 28.47 8 2829
CE-DET 1.58635e-05| 1.58635e-05| 15.93 15 14254

0.20 CE-MP 1.61337e-05| 1.58664e-05| 159.27 2 9579
CE-HYBRID-DET | 1.61021e-05| 1.58635e-05| 21.80 14 4113
CE-HYBRID-MP 1.61024e-05| 1.58635e-05( 29.33 9 2868
CE-DET 1.58635e-05| 1.58635e-05| 16.27 15 8206

0.40 CE-MP 1.61327e-05| 1.58669e-05| 123.47 1 6602
CE-HYBRID-DET | 1.61021e-05| 1.58635e-05| 21.00 12 1976
CE-HYBRID-MP 1.61025e-05| 1.58635e-05( 20.07 11 1886
CE-DET 1.58635e-05| 1.58635e-05 17.47 15 5176

0.50 CE-MP 1.61335e-05| 1.61278e-05| 103.33 0 5505
CE-HYBRID-DET | 1.61021e-05| 1.58635e-05| 19.47 10 1730
CE-HYBRID-MP 1.61025e-05| 1.58635e-05( 17.33 8 1527
CE-DET 1.61024e-05| 1.58635e-05( 16.40 12 1817

0.60 CE-MP 1.61371e-05| 1.61272e-05| 111.93 0 4759
CE-HYBRID-DET | 1.61025e-05| 1.58635e-05| 16.60 9 1236
CE-HYBRID-MP 1.61272e-05| 1.58635e-05( 14.60 7 1106
CE-DET 1.61272e-05| 1.61024e-05( 10.27 0 360

0.80 CE-MP 1.61385e-05| 1.61272e-05| 87.07 0 3006
CE-HYBRID-DET | 1.61272e-05| 1.61021e-05 9.53 0 430
CE-HYBRID-MP 1.61291e-05| 1.61023e-05 9.80 0 515
CE-DET 1.61272e-05| 1.61272e-05 9.00 0 299

1.00 CE-MP 1.61330e-05| 1.61272e-05| 73.87 0 2418
CE-HYBRID-DET | 1.61272e-05| 1.61272e-05 8.00 0 349
CE-HYBRID-MP 1.61280e-05| 1.61272e-05 7.87 0 360

process by over 300% with very little impact on the accuragpther than the exact values of their reliabilities. In sarases
of the algorithm. the former are easier to estimate than the latter. This dealdl

to an improvement of the performance of the CE algorithm.

We have taken a pragmatic approach regarding convergenc&yrther improvement could be achieved by examining at
observing that numerically the CE algorithms tends to cojhat stage in the simulation one should start using supergluo
verge in a global rather than a local sense. Although sevefigk removal, and what value of delP should be taken. Finally
CE convergence results are discussed in [33], [34], thi&toRjeveloping an efficient rare event paradigm that can reduce
remains an interesting challenge for future research. ot ihe noise in the network reliability estimation with relety

possible direction is to investigate whethetiability ranking 0w computational effort is another important area for fetu

[35] can further improve the performance of the algorithmgegearch.

Here only the relative rankings of the networks are impdrtan



(1]

(2]

(3]

(4

(5]

(6]

(7]

(8]

&l

[10]

(11]

[12]

(23]

[14]

[15]

[16]

REFERENCES

M. R. Garey and D. S. Johnso@omputers and Intractability: A Guide
to the Theory of NP-CompletenessSan Francisco: Freeman, 1979.
M. Bern and P. Plassman, “The steiner problem with edggtles 1 and
2,” Information Processing Lettersol. 32, pp. 171-176, 1989.

D. Li, X. L. Sun, and K. McKinnon, “An exact solution mettio
for reliability optimization in complex systemsAnnals of Operations
Researchvol. 133, pp. 129 — 144, 2005.

C. J. Colbourn,The Combinatorics of Network Reliability Oxford
University Press, 1987.

J. S. Provan and M. O. Ball, “The complexity of countingts@and of
computing the probability that a graph is connecteslAM Journal of
Computing vol. 12, pp. 777-787, 1982.

H. Kumamoto, K. Tanaka, K. Inoue, and E. J. Henley, “Dagsgmpling
Monte Carlo for system unavailability evaluationEEE Transactions
on Reliability vol. R-29, no. 2, pp. 376-380, 1980.

G. Fishman, “A Monte Carlo sampling plan for estimatingtwork

reliability,” Operations Researctvol. 34, no. 4, pp. 581-594, Jul-Aug

1986.

C. J. Colbourn and D. D. Harms, “Evaluating performaili Most
probable states and bound§glecommunication Systemeol. 2, pp.
275-300, 1994.

T. Elperin, I. B. Gertsbakh, and M. Lomonosov, “Estineeti of net-
work reliability using graph evolution modelslEEE Transactions on
Reliability, vol. 40, no. 5, pp. 572-581, Dec 1991.

——, “An evolution model for Monte Carlo estimation of @ifibrium
network renewal parameterd?robability in the Engineering and Infor-
mational Sciencesvol. 6, pp. 457-469, 1992.

K.-P. Hui, N. Bean, M. Kraetzl, and D. P. Kroese, “Theetreut and
merge algorithm for estimation of network reliabilityProbability in
the Engineering and Informational Sciencesl. 17, no. 1, pp. 24-45,
2003.

——, “Network reliability estimation using the tree cw@nd merge
algorithm with importance samplingProceedings. Fourth International
Workshop on Design of Reliable Communication Netwqrgs254-262,
2003.

——, “The cross-entropy method for network reliabiligstimation,”
Annals of Operations Researctol. 134, no. 1, pp. 101-118, 2005.
W.-C. Yeh, “A new Monte Carlo method for the network edility,” Pro-
ceedings of First International Conference on Informatifechnologies
and Applications(ICITA2002)November 2002.

C. Srivaree-ratana and A. E. Smith, “Estimating athieal network

reliability using a neural network,Proceedings of the 1998 IEEE

International Conference on Systems, Man, and Cybernetas5, pp.
47344740, October 1998.

I. B. Gertsbakh,Statistical Reliability Theory New York: Marcel
Dekker, Inc., 1989.

16

[17] H. Cancela and M. E. Urquhart, “Simulated annealingdommunica-
tion network reliability improvements,” iProceedings of the XXI Latin
American Conference On InformaticsCLEI-SBC, July 1995.

[18] B. Dengiz, F. Altiparmak, and A. E. Smith, “Local seardenetic

algorithm for optimal design of reliable networksEEE Transactions

on Evolutionary Computatignvol. 1, no. 3, pp. 179-188, September

1997.

[19] Y.-S. Yeh, C. C. Chiu, and R.-S. Chen, “A genetic aldumit for k-

node set reliability optimization with capacity consttadr a distributed

system,” Proc. Natl. Sci. Counc. ROC(Ayol. 25, no. 1, pp. 27-34,

2001.

[20] D. Reichelt, F. Rothlauf, and P. Bmilkowsky, “Desiggimeliable com-

munication networks with a genetic algorithm using a repaiaristic,”

in Evolutionary Computation in Combinatorial OptimizatiorSpringer-

Verlag Heidelberg, 2004.

[21] W. Kuo and V. Prasad, “An annotated overview of systestiability

optimization,” IEEE Trans. Reliability pp. 176-187, 2000.

[22] R.Y. Rubinstein and D. P. Kroes€&he Cross-Entropy Method: A unified

approach to Combinatorial Optimization, Monte Carlo Siatidn and

Machine Learning New York: Springer Verlag, 2004.

[23] R. Y. Rubinstein, “Optimization of computer simulatianodels with

rare events,”"European Journal of Operations Resegralol. 99, pp.

89-112, 1997.

[24] ——, “The simulated entropy method for combinatorialasontinuous

optimization,” Methodology and Computing in Applied Probability

vol. 2, pp. 127-190, 1999.

[25] ——, “Combinatorial optimisation, cross-entropy, suand rare events,”

in Stochastic Optimization: Algorithms and Applicatip®s Uryasev and

P. M. Pardalos, Eds., Kluwer, 2001, pp. 304-358.

[26] G. Alon, D. P. Kroese, T. Raviv, and R. Y. Rubinstein, ffication of

the buffer allocation problem in simulation-based envinemt,” Annals

of Operations Researglvol. 134, no. 1, pp. 137 — 151, 2005.

[27] K. Chepuri and T. Homem de Mello, “Solving the vehicleutiog

problem with stochastic demands using the cross-entropthadg

Annals of Operations Researctol. 134, no. 1, pp. 153 — 181, 2005.

[28] D. P. Bertsekas and J. N. Tsitsiklis, “An analysis ofcétastic shortest

path problems,Mathematics of Operations Reseaysfol. 16, pp. 580—

595, 1991.

[29] P.T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinst® tutorial

on the cross-entropy method¥hnals of Operations Researol. 134,

no. 1, pp. 19 — 67, 2005.

[30] M. Lomonosov, “On Monte Carlo estimates in network abllity,”

Probability in the Engineering and Informational Sciencesl. 8, pp.

245-264, 1994.

[31] B. Bollobas,Graph Theory: An Introductory Course Springer-Verlag,

1979.

[32] G. Chartrand and O. R. OellermanApplied and Algorithmic Graph

Theory McGraw-Hill, 1993.



[33] L. Margolin, “On the convergence of the cross-entropgtinod,” Annals
of Operations Researglvol. 134, no. 1, pp. 201 — 214, 2005.

[34] A. Costa, O. Jones, and D. P. Kroese, “Convergence piepeof the
cross-entropy method for discrete optimizatio@perations Research
Letters 2007, to appeatr.

[35] K.-P. Hui, “Monte Carlo network reliability ranking @mation,” IEEE
Transactions on ReliabilityApril 2007.

Dirk P. Kroese has a wide range of publications in applied probability and
simulation. He is a pioneer of the well-knov@ross-Entropymethod and co-
author (with R.Y. Rubinstein) of the first monograph on thisthod. He is
associate editor oMethodology and Computing in Applied Probabiliyd
guest editor ofAnnals of Operations Researchle has held research and
teaching positions at Princeton University and the Unitersf Melbourne,
and is currently working at the Department of Mathematicshef University

of Queensland.

Kin-Ping Hui is currently a research engineer at the Defence Science
and Technology Organization in Australia. His researclergsts include
network reliability estimation, network optimization, ta@rk survivability,

and network recovery.

Sho Nariai is a PhD student in the Department of Mathematics at the
University of Queensland. His research interests inclyglaieations of the
Cross-Entropy method to network design problems, contisumptimization,

and noisy optimization.

17



