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Network Reliability Optimization via the

Cross-Entropy Method
Dirk P. Kroese, Kin-Ping Hui, and Sho Nariai

Abstract—Consider a network of unreliable links, each of

which comes with a certain price and reliability. Given a fixed

budget, which links should be purchased in order to maximize

the system’s reliability? We introduce a new approach, based on

the Cross-Entropy method, which can deal effectively with the

constraints and noise (introduced when estimating the reliabil-

ities via simulation) in this difficult combinatorial optim ization

problem. Numerical results demonstrate the effectivenessof the

proposed technique.

Index Terms—Network Reliability, Cross-Entropy Method,

Monte Carlo Simulation, Noisy Optimization, Merge Process.

NOTATION

ai purchase probability of linki

ci cost of link i

Cmax total budget

m, n number of [links, nodes]

N sample size for CE

pi reliability of link i

r network reliability (r∗ optimal)

x network topology (x∗ optimal,X random)

y system state (Y random)

α smoothing parameter for CE

ϕx structure function of topologyx
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I. I NTRODUCTION

RAPID developments and improvements in information

and communication technologies in recent years have

resulted in increased capacities and higher concentrationof

traffic in telecommunication networks. Operating failuresin

such high-capacity networks can affect the quality of service

of a large number of consumers. Consequently, the careful

planning of a network’s infrastructure and the detailed analysis

of its reliability become more and more important, in order to

ensure that consumers obtain the best service possible.

One of the most basic and useful approaches to network

reliability analysis is to represent the network as an undirected

graph with unreliable links. The reliability of the networkis

usually defined as the probability that certain nodes in the

graph are connected by functioning links.

This paper is concerned with networkplanning, where the

objective is to maximize the network’s reliability, subject to a

fixed budget. More precisely: given a fixed amount of money,

and starting with a non-existent network, the question is which

network links should be purchased in order to maximize the

reliability of the finished network. Each link carries a pre-

specified price and reliability.

There are two reasons why thisNetwork Planning Problem

(NPP) is difficult to solve. First, the NPP is a constrained

integer programming problem known as the Minimum Steiner

Problem, which is a 0-1 knapsack problem with non-linear
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objective. It is well known that such a problem is NP hard

[1], and it is also APX-Complete [2]. For small networks exact

methods, such as branch-and-bound, dynamic programming or

convexification, may be successful (see for example [3]); but,

since the complexity of the problem increases exponentially

with the number of links, such methods quickly become

infeasible for moderate and large-scale problems.

Second, for large networks the value of the objective func-

tion — that is, the network reliability — becomes difficult or

impractical to evaluate [4], [5]. A viable option then is to use

simulation to estimate the network reliability, for example via

the Crude Monte Carlo (CMC) technique. This noisy version

of the problem is not even in NP, because the value of a given

solution is hard to compute. Moreover, for highly reliable

networks — which typically occur in communication networks

— CMC requires a very large simulation effort in order to

estimate the reliability accurately.

A number of simulation techniques have been developed

to address the network reliability estimation problem. For

example, Kumamotoet al. [6] proposed a simple technique

called Dagger Samplingto improve the efficiency of CMC

simulation. Fishman [7] introducedProcedure Q, which can

provide reliability estimates as well as bounds. Colbourn and

Harms [8] proposed a technique that provides progressive

bounds that eventually converge to an exact reliability value.

Elperin et al. [9], [10] developedEvolution Modelsfor esti-

mating the reliability of highly reliable networks. Huiet al.

[11], [12] proposed a hybrid scheme that provides bounds

and can provide a speed-up by several orders of magnitude

in certain classes of networks. They also proposed another

scheme [13] which employs the Cross-Entropy technique to

speed-up the estimation in general classes of networks. Other

relevant references on network reliability include [14], [15],

[16].

The literature on network planning — rather than reliability

estimation — is not extensive, and virtually all studies pertain

to networks for which the system reliability can either be eval-

uated exactly, or sharp reliability bounds can be established.

Cancela and Urquhart [17] employed a Simulated Annealing

scheme to obtain a more reliable alternative network, givena

user-defined network topology. Dengizet al. used a Genetic

Algorithm to optimize the design of communication network

topologies subject to the minimum reliability requirement

[18]. Yeh et al. [19] proposed a method based on a Genetic

Algorithm to optimize thek−node set reliability subject to

a specified capacity constraint. Reicheltet al. [20] used a

Genetic Algorithm in combination with a repair heuristic to

minimize the network cost subject to a specified network

reliability constraint. Other heuristics can be found in [21].

To our knowledge, no simple algorithm is known that can

tackle at the same timethe combinatorial, constraint and

noisy aspects of the NPP, and the purpose of this paper is

to introduce such a method, and provide a new and effective

approach to network planning. Our approach is based on

the Cross-Entropy(CE) method [22], which was introduced

in [23] as an adaptive technique for estimating probabilities

of rare events in complex stochastic networks. It was soon

realized [24], [25] that it could be used not only for rare event

simulation but for solving difficult combinatorial optimization

problems as well. Moreover, (and this is especially relevant

for the NPP) the CE method is well-suited to solvingnoisy

optimization problems; examples are the Buffer Allocation

Problem [26], the Vehicle Routing Problem [27], and the

Stochastic Shortest Path Problem [28]. For the NPP we will

consider both the deterministic case, where the network reli-

ability can be computed exactly, and the noisy case where it

is estimated via simulation. A tutorial on the CE method can

be found in [29], which is also available on-line from the CE

homepage:http://www.cemethod.org.

The rest of the paper is organized as follows: In Section II

we formulate the NPP in mathematical terms. In Section III

we present the CE approach to the problem. This is further
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developed in Section IV for the noisy case, in particular with

respect to variance reduction techniques such as Permutation

Monte Carlo and the Merge Process. Section V focuses on

implementation issues with regard to speeding up the algo-

rithm. We illustrate the effectiveness of the CE approach via

a number of numerical experiments in Section VI. Finally,

in Section VII we present our conclusion and directions for

future work.

II. PROBLEM DESCRIPTION

Consider an undirected graphG(V , E), with setV of nodes

(vertices), and setE of links (edges). Suppose the number of

links is |E| = m. Without loss of generality we may label

the links 1, . . . , m. Let K ⊆ V be a set ofterminal nodes.

With each of the links is associated acost ce and reliability

pe. The objective is to purchase those links that optimize the

reliability of the network — defined as the probability that

all the terminal nodes are connected by functioning links —

subject to a total budgetCmax. Let c = (c1, . . . , cm) denote

vector of link costs, andp = (p1, . . . , pm) the vector of link

reliabilities.

We introduce the following notation. For each linke let xe

be such that

xe =






1 if link e is purchased,

0 otherwise.

We call the vectorx = (x1, . . . , xm) thepurchase vector. The

set of all possible purchase vectors is denoted byX .

To identify the operational links, we define for each linke

the link stateby

ye =






1 if link e is functioning,

0 otherwise.

Note that for each linke that is not purchased, the stateye

is per definition equal to 0. The vectory = (y1, . . . , ym) is

called thestate vector. For each purchase vectorx let ϕx be

the structure functionof the purchased system. This function

assigns to each state vectory the state of the system (working

= 1 or failed = 0). That is,

ϕx(y) =





1 if all the terminal nodes are connected,

0 otherwise.
(1)

Now, consider the situation withrandomstates, where each

purchased linke works with probabilitype. Let Ye be random

state of linke, and letY be the corresponding random state

vector. The reliability of the network defined by purchase

vectorx is given by

r(x) = E[ ϕx(Y )] =
∑

y

ϕx(y) Pr{Y = y} . (2)

We assume from now on that the links fails-independently,

that is, Y is a vector of s-independent Bernoulli random

variables, with success probabilitype for each purchased link

e and 0 otherwise. Definingpx = (x1p1, . . . , xmpm) as the

vector of probabilities of the components ofY , for a given

purchase vectorx, we writeY ∼ Ber(px). It follows that for

eachx, the reliability is computed as

r(x) =
∑

y

ϕx(y)

m∏

j=1

(xjpj)
yj (1 − xjpj)

1−yj , (3)

where00 := 1. Our main purpose is to determine

max
x∈X

r(x) , (4)

subject to the constraint on the total budget

∑

e∈E

xece ≤ Cmax . (5)

Let r∗ := r(x∗) denote the optimal reliability of the network,

wherex∗ is the optimal purchase vector.

III. C ROSS-ENTROPY APPROACH

In this section we show how the CE method can be used to

solve the constrained combinatorial optimization problem(4),

(5). The CE method consists of two steps which are iterated:

1) generate random purchase vectorsX1, . . . , XN accord-

ing to some specified random mechanism, and

2) update the parameters of this mechanism in order to

obtain better system reliabilities in the next iteration.
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An efficient method to generate random purchase vectors

that satisfy (5) is as follows: First, generate a “uniform”

permutation(e1, . . . , em) of (1, . . . , m), by s-independently

drawing m numbers from the uniform distribution on[0, 1]

and lettinge1, . . . , em correspond to the indices of the ordered

observations. Second, given such a permutation, flip a coin

with success probabilityae1
to decide whether to purchase

link e1 or not. If successful and if there is enough money

available to purchase linke1, set Xe1
= 1, that is, link e1

is purchased; otherwise setXe1
= 0. We repeat the above

procedure for linkse2, e3, etc. For each linkei we check

whether the remaining budget allows us to purchase the link,

and if so, we purchase the link with probabilityaei
. The

main algorithm for generating a random purchase vector using

uniform permutation is thus summarized as follows:

Algorithm 1 [Generation Algorithm].

1) Generate a uniform random permutation(e1, . . . , em).

Setk = 1.

2) CalculateC = cek
+

∑k−1
i=1 Xei

cei
.

3) If C ≤ Cmax, draw Xek
∼ Ber(aek

). Otherwise set

Xek
= 0.

4) If k = m, then stop; otherwise setk = k + 1 and

reiterate from step 2.

The usual CE procedure [22] is to construct a sequence

of reference vectors{at, t ≥ 0} (i.e., purchase probability

vectors), such that{at, t ≥ 0} converges to the degenerate

(i.e., binary) probability vectora∗ that corresponds to the

optimal purchase vectorx∗ = a∗. The sequence of reference

vectors is obtained via a two-step procedure, involving an

auxiliary sequence of reliability levels{γt, t ≥ 0} that tends

to the optimal reliabilityγ∗ = r∗ at the same time as the

{at} tend toa∗. At each iterationt, for a givenat−1, γt is

the (1 − ρ)-quantile of performances (reliabilities). Typically

ρ is chosen between 0.01 and 0.1. An estimatorγ̂t of γt is

the corresponding sample(1−ρ)-quantile. That is, generate a

random sampleX1, . . . , XN using the generation algorithm

above; compute the performancesr(X i), i = 1, . . . , N and

let

γ̂t = r(⌈(1−ρ)N⌉), (6)

wherer(1) ≤ . . . ≤ r(N) are the order statistics of the perfor-

mances. The reference vector is updated via CE minimization,

which (see [22]) reduces to the following: For a given fixed

at−1 andγt, let

at,j = Eat−1
[Xj | r(X) ≥ γt] .

An estimatorât of at is computed via

ât,j =

∑N

i=1 I
{r(Xi)≥γ̂t}

Xij

∑N
i=1 I

{r(Xi)≥γ̂t}

, j = 1, . . . , m, (7)

where we use thesamerandom sample as in (6), and where

Xij is thej-th coordinate ofXi. The main CE algorithm for

optimizing (4) using the above generation algorithm is thus

summarized as follows:

Algorithm 2 [Main CE Algorithm].

1) Initialize â0. Set t=1 (iteration counter).

2) Generate a random sampleX1, . . . , XN using Algo-

rithm 1, with a = ât−1. Compute the sample(1 − ρ)-

quantile of performanceŝγt using (6).

3) Use thesame sample to updatêat, using (7).

4) If

max(min(ât, 1 − ât)) ≤ β (8)

for some small fixedβ, then stop (letT be the final

iteration); otherwise sett = t + 1 and reiterate from

step 2.

Note that the cost vectorc, reliability of links p, the initial

reference vector̂a0, the sample sizeN , total budgetCmax,

the rarity parameterρ, and the stopping parameterβ need to

be specified in advance.

Remark 1 [Smoothed Updating]. Instead of updating directly

using (7), one may choose to use asmoothed updating

procedure

ât = α ãt + (1 − α) ât−1 (9)
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Fig. 1. 6-node complete graph.

where ãt is the parameter vector obtained via (7) andα is

called thesmoothing parameter. It is easily seen that forα = 1

the original updating procedure is obtained. By setting the

smoothing parameter between0 < α < 1 we take the past

into account when updating the parameter vector.

Remark 2 [Unreliability]. In many applications the link and

network reliabilities are close to 1. The appropriate quantity to

consider is then the networkunreliability r̄ = 1 − r. In such

case Algorithm 2 can be readily modified to minimize the

unreliability, rather than to maximize the reliability. The only

differences are that̂γt now represents the sampleρ-quantile

of the unreliabilities, and thatr(X i) ≥ γ̂t in (7) is replaced

with r̄(X i) ≤ γ̂t.

Example 1. On offer is a 6-node fully connected graph

given in Figure 1. The two black nodes in the graph rep-

resent the terminal nodes. The network is functioning if

the two terminal nodes are connected by operational links.

The link costs and reliabilities are given in Table I. The

total budgetCmax is equal to1500. The optimal purchase

vector can be calculated (by total enumeration) to bex∗ =

(1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0), which gives a network

unreliability of r̄∗ = 1 − r∗ = 7.1967e-05. The four black

links form the optimal network.

Table II displays the evolution of the purchase probability

vector for this problem. We used the following CE parameters:

N = 750, ρ = 0.1, α = 0.7, β = 0.05 and we tookâ0 =

(0.5, . . . , 0.5). We see that ast → ∞, γ̂t and ât quickly

approachesr∗ andx∗ respectively.

TABLE I

L INK COSTS AND RELIABILITIES

i ci pi i ci pi i ci pi

1 331 0.9951 6 335 0.9958 11 330 0.9947

2 347 0.9968 7 332 0.9952 12 325 0.9937

3 327 0.9942 8 302 0.9902 13 324 0.9935

4 340 0.9959 9 344 0.9964 14 350 0.9973

5 2000 0.9908 10 315 0.9917 15 312 0.9912

IV. N OISY OPTIMIZATION

As mentioned in the introduction, for networks involving

a large number of links the exact evaluation of the network

reliability is in general not feasible, and simulation becomes a

viable option. In the corresponding simulation-based optimiza-

tion problem the objective function (the network reliability) is

thus corrupted by noise. In this section we show how the CE

method can be easily modified to tackle suchnoisyNPPs.

In order to adapt Algorithm 2 we again, at iteration

t, generate a random sampleX1, . . . , XN according the

Ber(ât−1)-distribution. However, the corresponding perfor-

mances (network reliabilities) are now not computed exactly,

but estimated. For example, estimation via CMC involves, for

each vectorXi, drawing a random sample of state vectors

Y 1, . . . , Y K , each according to aBer(pXi
)-distribution, and

estimating the performance as

r̂(X i) =
1

K

K∑

j=1

ϕXi
(Y j), i = 1, . . . , N. (10)

The updating formula is similar to (7). The only difference

is thatr(X i) is replaced witĥr(Xi). Therefore the updating

formula att-th iteration is given by

ât,j =

∑N

i=1 I
{r̂(Xi)≥γ̂t}

Xij

∑N
i=1 I

{r̂(Xi)≥γ̂t}

, j = 1, . . . , m. (11)

The main CE algorithm for estimating the reliability of a

network is summarized as follows:

Algorithm 3 [Noisy Version of the CE Algorithm].

1) Initialize â0. Sett = 1 (iteration counter).

2) Generate a random sampleX1, . . . , XN using Algo-

rithm 1. Let r̂(1), . . . , r̂(N) be the order statistics of
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TABLE II

THE EVOLUTION OF THECE ALGORITHM WITH Cmax = 1500, N = 750, ρ = 0.1, α = 0.7, AND β = 0.05

t γ̂t ât

0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

1 8.484e-03 0.60 0.29 0.48 0.28 0.15 0.24 0.22 0.27 0.59 0.24 0.31 0.30 0.24 0.49 0.36

2 8.482e-03 0.80 0.18 0.34 0.18 0.05 0.18 0.17 0.18 0.80 0.19 0.18 0.19 0.13 0.36 0.33

3 8.482e-03 0.92 0.14 0.34 0.14 0.01 0.18 0.24 0.11 0.92 0.07 0.07 0.10 0.04 0.35 0.33

4 4.927e-03 0.98 0.07 0.53 0.13 0.00 0.07 0.41 0.05 0.95 0.02 0.02 0.04 0.01 0.53 0.17

5 7.197e-05 0.99 0.02 0.86 0.04 0.00 0.02 0.12 0.02 0.98 0.01 0.01 0.01 0.00 0.86 0.05

6 7.197e-05 1.00 0.01 0.96 0.01 0.00 0.01 0.04 0.00 1.00 0.00 0.00 0.00 0.00 0.96 0.02

r̂(X1), . . . , r̂(XN ). Let γ̂t = r̂(⌈(1−ρ)N⌉).

3) Use thesame sample to updatêat using (11).

4) Stop if (8) holds for some small fixedβ (let T be the

final iteration); otherwise sett = t + 1 and reiterate

from step 2.

We could takêaT as our final purchase vector, if the latter

were binary. SincêaT is close to, but not exactly binary, we

roundâT to the nearest binary vector, denote the solution by

â
∗, and take this rounded vector as our solution for the NPP.

If, in addition, we wish to obtain an estimate of the optimal

reliability r∗, we generate a (larger) sampleY 1, . . . , Y N1

from Ber(â∗), and estimater∗ via

r̂∗ =
1

N1

N1∑

i=1

ϕ
â

∗(Y i). (12)

Remark 3 [Choice of K]. Note that the simulation time

can be reduced by choosing a relatively smallK in (10),

say K = 100 in Example 1. However, this corresponds to a

relatively large variance of the reliability estimator, which in

turn could lead to a suboptimal convergence of the algorithm.

On the other hand, choosing a largerK, sayK = 20000 in

Example 1, can increase the accuracy and chance of locating

an optimal solution but at a cost of increased simulation time.

To overcome this, one may chooseK adaptively by setting

K = min{⌈Kmin × N/Nunique⌉, Kmax} , (13)

whereNunique is the number of unique networks generated

with no repetitions andKmin andKmax are the minimum and

maximum values ofK allowed in the simulation. The idea of

using (13) is simple: In the early stages of the simulation, when

Nunique ≈ N , we takeK ≈ Kmin to quickly narrow the

search space. During the course of the simulation the search

space becomes smaller and the algorithm starts to generate

networks with similar topologies and performances, so that

Nunique decreases. When this starts to happen,K is increased

automatically to accurately distinguish between networkswith

similar reliabilities.

It is important to realize that CMC only works satisfactory

when the network reliability is neither too small nor too large.

For example, consider a highly reliable network. For any given

purchase vectorx the CMC estimator of the (very small)

unreliabilityr(x) = 1−r(x), which is the appropriate quantity

to consider here, is given by

r̂(x) :=
1

N1

N1∑

i=1

(1 − ϕx(Y i)),

and the correspondings-relative error is

ǫ =

√
Var(r̂(x))

E[r̂(x)]
=

√
1 − r(x)

r(x)N1
≈

√
1

r(x)N1
, (14)

which shows that forǫ = 0.01, say, we need a sample size of

at leastN1 ≈ 104/r(x), which can be prohibitively large.

Permutation Monte Carlo

A more efficient way of estimating the network unreliability

in highly reliable networks isPermutation Monte Carlo(PMC)

[9]. The idea is as follows. Consider a network with structure

function as in (1), and reliabilityr = r(x) as in (2). Letl

be the number of purchased links and letEx be the set of
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purchased links. We assume here thatϕx(x) = 1, so that the

purchased network functions if all its links work. Now, observe

adynamicnetworkG(V , E) in which each purchased linke has

an exponential repair time with repair rateλ(e) = − log(1 −

pe). The repair rate for each linke that is not purchased is set

to λ(e) = ∞, so that the link does not become operational in

finite time. At timet = 0 all links are failed. Assume that all

repair times ares-independent of each other. The state ofe at

time t is denoted byYe(t) and the state of the link setE at

time t is given by the vectorY (t), defined in a similar way

as before. Then,(Y (t)) is a Markov process with state space

{0, 1}m. This process is called theConstruction Process(CP)

of the network.

Let Π denote theorder in which the links are con-

structed (become operational) in finite time, and letA0, A0 +

A1, . . . , A0 + · · · + Al−1 be the times at which those links

are constructed. Hence the{Ai} aresojourn timesof (Y (t)).

Π is a random variable which takes values in the space

{(e1, . . . , el) ∈ {1, . . . , m}l : ei 6= ej, j 6= i}.

For any suchπ = (e1, . . . , el) define

E0 = Ex,

Ei = Ei−1 \ {ei}, 1 ≤ i ≤ l − 1,

λ(Ei) =
∑

e∈Ei

λ(e).

Let

b(π) = min
i
{ϕ(Ex \ Ei) = 1}

be thecritical number of π, that is, the number of repairs

required to bring the system up in the order specified byπ.

From the general theory of Markov processes it is not difficult

to see that

Pr{Π = π} =
l∏

j=1

λ(ej)

λ(Ej−1)
. (15)

Moreover, conditional on{Π = π}, the sojourn times

A0, . . . , Al−1 ares-independent and eachAi is exponentially

distributed with parameterλ(Ei), i = 0, . . . , l − 1.

Recall that each linke has an exponential repair rateλ(e) =

− log(1 − pe). Let Te be the corresponding repair time. It

follows that Pr{Te > 1} = exp{log(1 − pe)} = 1 − pe.

Therefore, the probability of linke being operational at time

t = 1 is pe, and hence the probability that the network is

functioning at timet = 1 is precisely thenetwork reliability.

By conditioning onΠ we have

r = E[ϕ(Y (1))]

=
∑

π

Pr{Π = π}Pr{ϕ(Y (1)) = 1 |Π = π},
(16)

and

r = 1 − r

=
∑

π

Pr{Π = π}Pr{ϕ(Y (1)) = 0 |Π = π}.
(17)

Using the definitions ofAi and b(π), we can write the last

probability in terms of convolutions of exponential distribution

functions. Namely, for anyt ≥ 0 we have

Pr{ϕ(Y (t)) = 0 |Π = π}

= Pr{A0 + · · · + Ab(π)−1 > t |Π = π}

= 1 − Conv
0≤i≤b(π)−1

{1 − exp[−λ(Ei) t]}.
(18)

Let

G(π) = Pr{ϕ(Y (1)) = 0 |Π = π}, (19)

as given in (18). Equation (17) can then be rewritten as

r = E[G(Π)], (20)

and this shows how the CP simulation scheme works. Namely,

let Π(1), . . . , Π(K) be s-independent identically distributed

random vectors, each distributed according toΠ. Then

r̂ =
1

K

K∑

i=1

G(Π(i)) (21)

is an unbiased estimator forr, where eachG(Π(i)) can be

calculated as the convolution of exponential functions.

Merge Process

A careful study of the evolution of the CP shows that many

of the results remain valid when we combine various states

to form “super-states” at various stages of the process. The

mathematical formulation is as follows (see [9], [30] for more
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Fig. 2. A bridge network, the proper partitionσ = {{a}, {b, c, d}}, and its

corresponding closureFσ = {3, 4, 5}.

details): Given the graphG(V , E) and a subsetF ⊆ E of

edges, a partitionσ = {V1, . . . ,Vk} of V is said to beproper

(with respect toF ) if each induced subgraphG(Vi) of the

subgraphG(V ,F) is connected. LetFi be the edge-set of the

induced subgraphG(Vi). The setFσ =
⋃k

i=1 Fi of edges is the

closureof F . The easiest way to visualize the “super-state”

σ is to identify it with the graphG(V ,Fσ), as in Figure 2.

Here F = {3, 5}, which induces the proper partitionσ =

{{a}, {b, c, d}}, so thatF1 = ∅ andF2 = {3, 4, 5} andFσ =

{3, 4, 5}.

Let L(G) be the collection of all proper partitions ofV ,

ordered by the relationσ ≺ τ ⇔ Fσ ⊂ Fτ , where τ is

obtained by merging components ofσ.

Recall the CP(Y (t)) of the network defined byx. The CP

induces a Markov process(Y(t)) on L(G), called theMerge

Process(MP). Initially, this process starts in the super-stateσ0

in which all nodes are isolated from each other, and it ends

in the super-stateσω corresponding to the original network

with all edges functioning. Furthermore, at any timet ≥ 0,

ϕ (Y (t)) = ϕ (Y(t)).

For eachσ ∈ L(G), the sojourn time inσ has an expo-

nential distribution with parameterλ(σ) :=
∑

e∈Eσ
λ(e), s-

independent of other partitions, whereEσ = E − Fσ and the

transition from a current partitionσ to one of its successorsτ

occurs with probability

λ(σ) − λ(τ)

λ(σ)
.

We define a trajectory of (Y(t)) as a sequenceθ =

(σ0, . . . , σb(θ)), whereb(θ) is equal to the number of transi-

tions required in order for the network to become operational.

a

b

c

d

(a) σ0 =

{{a},{b},{c},{d}}.

a

b

c

d

1

(b) σ1 =

{{a,b}, {c},{d}}.

a

b

c

d

1

5

(c) σ2 =

{{a,b}, {c,d}}.

a

b

c

d

1

2

3

4

5

(d) σ3 = {{a,b,c,d}}.

Fig. 3. A possible transition sequence of the MP(Y(t)).

For example, consider the bridge network given in Figure 2.

The network is operational when the two black nodes are

connected by operational links. A possible transition sequence

from the initial state is shown in Figure 3.

The network becomes operational upon the transition from

σ2 to σ3. Thereforeb(θ) = 3.

Sinceϕ(Y (t)) = ϕ(Y(t)), the probability that the network

is not functioning at timet = 1 is equal to the network

unreliability. Thus the network unreliability can be written as

r =
∑

θ

Pr{Θ = θ}Pr{ϕ(Y(1)) = 0 |Θ = θ}. (22)

For anyt ≥ 0, we can write the last probability as

Pr{ϕ(Y(t)) = 0 |Θ = θ}

= 1 − Conv
0≤j≤b(θ)−1

{1 − exp[−λ(σj) t]}. (23)

Let

GMP(θ) = Pr{ϕY(1) = 0 |Θ = θ}. (24)

as given in (23). Equation (22) can be rewritten as

r = E[GMP(Θ)] (25)

whereΘ is the random trajectory in(Y(t)). Let Θ1, . . . , ΘK

be thes-independent and identically distributed random tra-
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jectories, each distributed according toΘ. Then

r̂ =
1

K

K∑

i=1

GMP(Θi) (26)

is an unbiased estimator forr. A simple way of generating

such trajectories is by first generating a random vectorΠ

exactly as in the CP. The sequence of distinct partitions

obtained from the order in which the links come up (given

by Π) determines a unique trajectoryΘ.

V. I MPLEMENTATION ISSUES

Algorithm 3 is designed to find a single optimal solution.

However, there are situations where the purchase probability

of a certain linki, ât,i, i ∈ {1, . . . , m}, could oscillate for

a very long time before converging to either 0 or 1, namely

when

1) many of the candidate networks have reliabilities that

are very close to the optimal network reliability;

2) there are superfluous links in the network, that is, links

that do not affect the overall network reliability.

The result of such oscillatory behavior is that the simulation

time increases significantly. In this section, we introducetwo

algorithms, the hybrid CE algorithm and the superfluous link

removal algorithm, which can reduce the computational effort.

A. Hybrid CE Method

In the situation where only one optimal network exists

but where many networks can be purchased whose network

(un)reliabilities are very close to the optimal one, the elements

of the purchase probability vector could oscillate, and this

would increase the computational effort. In such cases, one

may terminate the algorithm once the number of purchase

probabilities that lie between[β, 1 − β] falls below a certain

threshold, sayδ, and then generateall candidate networks

according to the purchase probability vector. We evaluate the

performances of these networks and take the network with the

best performance as our final solution to the problem.

a
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d

e

f
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Fig. 4. Example network.
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(a) Network A.
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(b) Network B.
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(c) Network C.
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(d) Network D.

Fig. 5. Candidate networks.

As an example, consider the 6-node fully connected graph

given in Figure 4.

The black and gray solid lines indicate that the purchase

probabilities of these links lie in the ranges[1 − β, 1] and

[0, β] respectively. The two dashed links indicate that the cor-

responding purchase probabilities lie in the interval[β, 1−β].

In such case, we terminate the main CE loop (steps 2 and 3

of the algorithm) and generate all candidate networks, namely

the four networks shown in Figure 5.

We then evaluate the network unreliabilities to determine

which network topology is optimal.

The main hybrid CE algorithm for estimating the reliability

of a network is thus summarized as follows:

Algorithm 4 [Hybrid CE Method].

1) Initialize â0. Sett = 1.

2) Generate a random sampleX1, . . . , XN using Algo-

rithm 1, with a = ât−1. Compute the sample(1 − ρ)-

quantile of performanceŝγt using (6).
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Fig. 6. System with three terminal nodes denoted by black nodes.

3) Use thesame sample to updatêat, using (7).

4) If the number of purchase probabilities in the range

[β, 1 − β] is less than or equal to a certain threshold,

proceed to the next step (letT be the final iteration);

otherwise sett = t + 1 and reiterate from step 2.

5) Generate all candidate networks according to the pur-

chase probability vector̂at and evaluate the network

unreliabilities. Output the network with the smallest

unreliability as a solution to the problem.

B. Superfluous Links

We next discuss the role ofsuperfluouslinks in a purchased

network. These are links that do not affect the overall network

reliability, whether they are functioning or not. As an example,

consider the 8-node network with 3 terminal nodes in Figure 6.

In this network, there are five superfluous links in total,

namely links 1, 4, 5, 8, and 9. Since these links do not

affect the reliability of the network, the CE algorithm could,

unnecessarily, have difficulty deciding whether or not to pur-

chase them. In particular, the purchase probabilities of these

links, ât,i with i ∈ {1, 4, 5, 8, 9}, could oscillate for a long

time before they converge to either 0 or 1. This increases the

computational effort significantly. Note that we only need to

consider removing superfluous links whenϕx(x) = 1; that is,

if all terminal nodes are connected given that all purchased

links are indeed functioning.

Fortunately, the identification of superfluous links can be

B3

B1

B2

Fig. 7. A graphG with 8 blocks.

B3

B2

B1

Fig. 8. The block-cutvertex tree ofG.

related to a well-understood problem in graph theory, namely

that of identifying theblocksin a graph [31]. To illustrate the

concepts, consider Figure 7. The open circles in the graph are

the so-calledcutvertices. When any of these is removed, the

graph separates into disjoint components. A similar concept is

that of abridge: an edge whose deletion separates the graph.

A subgraph is called ablock if it is (a) a bridge including

its endvertices, (b) a complete graph with 3 vertices, or (c)

a graph with 4 or more vertices such that no single vertex

separates it. Examples of each of the cases (a), (b) and (c) are

given in the figure asB1, B2 andB3, respectively.

The next step in the analysis is to form ablock-cutvertex tree

whose vertices are identified with the blocks and cutvertices of

the graph, and whose edges join cutvertices to blocks. Figure 8

gives the block-cutvertex of the graphG of Figure 7. The large

black and grey vertices correspond to blocks; the small white

vertices correspond to the cutvertices. The three black vertices

are theterminal blocks which need to be connected in order

for the system to function.

The procedure for removing superfluous links now becomes

clear: If a block is either (a) an isolated block (a block of
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degree 0), (b) an end block which contains no terminal node,

or (c) an end node which contains exactly one terminal node

and its adjacent block contains the same terminal node, a block

can be removed. We repeat this procedure until all superfluous

blocks are removed from the block-cutvertex tree. There exist

efficient algorithms for finding all the blocks in a graph, e.g.,

Algorithm 3.2 of [32].

The following algorithm can be applied to remove super-

fluous links from the graph.

Algorithm 5 [Superfluous Link Removal].

1) Find all isolated blocks and remove from the block-

cutvertex tree.

2) Find all single degree blocks that do not contain any

terminal node and remove from the block-cutvertex tree.

3) Let G1 be an unmarked single degree block in the block-

cutvertex tree that contains exactly one terminal node

and proceed to step 4. Terminate if no such block exists.

4) Let G2 be the block to which G1 is connected. If G2

contains the same terminal node as G1, prune G1;

otherwise mark G1 to keep in the block-cutvertex tree.

Return to step 2.

Note that a superfluous link in a network defined byx does

not mean that the link is also superfluous inx′. By removing

a superfluous link with probability 1, the computational effort

decreases, because the corresponding purchase probability no

longer oscillates. However, like in the hybrid CE method,

the accuracy could be negatively affected if the purchase

probability converges too quickly to 0, which might lead to

a suboptimal solution. To overcome this difficulty, one could

choose to remove the link with probability delP,0 ≤ delP≤ 1.

In Section VI, we investigate at what probability superfluous

link should be removed in order to obtain the maximum

performance of the algorithms with minimum computational

effort.

VI. N UMERICAL EXPERIMENTS

In this section, we present three test cases. For all test cases

we compare the performance of the deterministic CE algorithm

(CE-DET) and the hybrid CE algorithm (CE-HYBRID) with

those of the noisy versions using CMC simulation (CE-CMC)

and MP simulation (CE-MP). Thus, in the former case the

system reliabilities for each purchase vector are estimated via

Crude Monte Carlo simulation, and in the latter case via the

Merge Process. In step 5 of the hybrid CE algorithm, we rank

the candidate networks using either a deterministic approach

(CE-HYBRID-DET) or MP simulation (CE-HYBRID-MP).

All experiments were repeated 15 times in order to assess

the variability and accuracy of the statistics.

Test Case 1:For the first experiment we return to Exam-

ple 1, where the optimal purchase vector is given byx∗ =

(1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0), which gives a minimum

network unreliability ofr̄∗ = 7.1967e-05. The corresponding

optimal network is depicted in Figure 1.

We take the same CE parameters as in Example 1 and

set Kmin = 1000, Kmax = 2000, and δ = 4. In CE-

HYBRID-MP, 20000 samples were used to rank candidate

solutions. Tables III and IV show typical evolutions of CE-

CMC and CE-MP respectively. As was the case with the

deterministic version (see Table II), both methods found the

optimal purchase vector very quickly. The entry “0.000” in

Table III means that the corresponding network unreliability

was estimated (via CMC) as 0. Note that this can occur when

the sample sizeK is relatively small.

Table V summarizes the statistics over 15 independent

replications. Here “Method” represents the method used in

simulation; “worst” is the worst network unreliability obtained

over the 15 replications; “best” is the best unreliability ob-

tained in simulation; “mean(T )” is the average number of

iterations; and “how often” is the number of times the method

obtained the optimal solution.

Each method performed exceptionally well, obtaining the
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TABLE III

A TYPICAL EVOLUTION OF CE-CMCFOR TEST PROBLEM1

t γ̂t ât

0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

1 7.386e-03 0.44 0.47 0.45 0.31 0.15 0.36 0.22 0.21 0.50 0.22 0.22 0.43 0.26 0.50 0.32

2 7.062e-03 0.50 0.47 0.50 0.21 0.05 0.23 0.17 0.11 0.49 0.13 0.08 0.36 0.17 0.59 0.18

3 5.236e-03 0.62 0.46 0.54 0.20 0.01 0.13 0.18 0.06 0.60 0.08 0.02 0.35 0.08 0.61 0.08

4 4.000e-03 0.72 0.43 0.69 0.15 0.00 0.08 0.12 0.02 0.72 0.04 0.01 0.30 0.02 0.65 0.02

5 0.000 0.90 0.25 0.80 0.04 0.00 0.02 0.04 0.01 0.90 0.01 0.00 0.21 0.01 0.79 0.01

6 1.000e-03 0.96 0.14 0.88 0.01 0.00 0.01 0.01 0.00 0.96 0.00 0.00 0.13 0.00 0.88 0.00

7 0.000 0.99 0.04 0.97 0.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.04 0.00 0.96 0.00

8 0.000 1.00 0.01 0.99 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.01 0.00 0.99 0.00

TABLE IV

A TYPICAL EVOLUTION OF CE-MPFOR TEST PROBLEM1

t γ̂t ât

0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

1 8.593e-03 0.36 0.28 0.64 0.37 0.15 0.28 0.28 0.25 0.36 0.30 0.23 0.36 0.24 0.63 0.32

2 8.415e-03 0.39 0.28 0.69 0.22 0.05 0.09 0.21 0.11 0.40 0.19 0.14 0.25 0.13 0.70 0.25

3 8.330e-03 0.42 0.15 0.89 0.09 0.01 0.04 0.16 0.03 0.42 0.17 0.05 0.31 0.15 0.88 0.10

4 5.747e-03 0.61 0.12 0.92 0.06 0.00 0.01 0.28 0.01 0.60 0.08 0.02 0.14 0.10 0.94 0.07

5 6.968e-05 0.88 0.04 0.98 0.02 0.00 0.00 0.08 0.00 0.88 0.02 0.00 0.04 0.03 0.98 0.02

6 7.285e-05 0.97 0.01 0.99 0.01 0.00 0.00 0.03 0.00 0.96 0.01 0.00 0.01 0.01 0.99 0.01

TABLE V

NUMERICAL RESULTS FOR TEST CASE1

Method worst best mean(T ) how often

CE-DET 7.1967e-05 7.1967e-05 6.93 15

CE-CMC 8.0411e-01 7.1967e-05 6.87 14

CE-MP 7.1967e-05 7.1967e-05 5.80 15

CE-HYBRID-DET 8.0430e-05 7.1967e-05 7.40 13

CE-HYBRID-MP 8.0430e-05 7.1967e-05 6.93 14

optimal purchase vector in most of replications. This sug-

gests that the proposed noisy CE algorithms using the CMC

simulation and MP simulation and the hybrid CE algorithm

can perform as effectively and reliably as the deterministic

version. Thes-relative error in the reliability estimation (for

K = 1500) was around 30 to 70% for CMC and2% for CE-

MP. Thus even with this amount of uncertainty all algorithms

can effectively locate the optimal network topology for this

problem.
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Fig. 9. Network topology for test case 2.

Test Case 2:Test case 2 is concerned with the 10-node fully

connected network with 4 terminal nodes depicted in Figure 9.

This test case is a lot harder than the previous one, not only

because there are245 candidate networks, but also because

many of these candidate networks have unreliabilities thatare

very close to the best found solution (less than10−10 away).
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TABLE VI

THE PSEUDO CODE FOR GENERATING THE COST AND PROBABILITY

VECTORS FOR TEST CASE2

i← 0, j ← 1

while j ≤ m

do





i← i + 1

b← 1− 7654321 (mod 987 + i)/105

if b > 0.99 and b 6= pk, for all k = 1, . . . , j − 1

then






pj ← b

cj ← 20/ exp(8
√

1− b)

j ← j + 1
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Fig. 10. The best found network for test case 2.

The total budget isCmax = 250, and we take the following

CE parameters:N = 2250, Kmin = 3000, Kmax =

10000, ρ = 0.05, α = 0.7, β = 0.05, and δ = 4. In CE-

HYBRID-MP, 50000 samples were used to rank candidate

solutions. Table VI gives the pseudo code for generating the

link costs and reliabilities.

Based on 15 independent trials, the best found solution for

test case 2 is given in Figure 10, with a network unreliability

of 8.7396e-13.

The results of 15 replications for each method are summa-

rized in Table VII, with the exception of CE-CMC, which

failed to produce a solution — the reason is that CMC

simulation required too large a computational effort (thatis,

a large sample size) to accurately estimate the very small

network unreliability; cf. (14).

It is encouraging that CE-HYBRID-DET obtained the best

found network in all trials. CE-MP and CE-HYBRID-MP
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Fig. 11. Network with 24 nodes and 51 links.

TABLE VIII

PSEUDO CODE FOR GENERATING THE LINK COST AND RELIABILITIES FOR

CASE 3

i← 0, j ← 1

while j ≤ m

do






i← i + 1

b← 1− 765432 (mod 9876 + i)/105

if b > 0.99 and b 6= pk, for all k = 1, . . . , j − 1

then






pj ← b

cj ← 20/ exp(8
√

1− b)

j ← j + 1

performed reliably, obtaining 12 and 11 times respectively. We

found that CE-DET did not perform as well as other methods.

One reason is that the speed of convergence was too fast.

Experiments showed that by choosing smallerα, sayα = 0.5,

CE-DET performed as well as its noisy counterpart.

Test Case 3:The network topology for test case 3, taken

from the survivable fixed telecommunication network design

library websitehttp://sndlib.zib.de/, comprises 24

nodes, 51 links and 5 terminal nodes, see Figure 11.

In this problem, we investigate how superfluous link re-

moval (Algorithm 5) affects the overall performance of the

methods, using different values for delP. For this test case,

we use the following CE parameters:N = 3000, Kmin =

1000, Kmax = 10000, ρ = 0.05, α = 0.7, β = 0.05, and

δ = 4. The total budgetCmax = 5000. In CE-HYBRID-MP,

105 samples were used to rank candidate solutions. The pseudo

code for generatingc andp is given below.

The best found solution for test case 3 is given in Figure 12,
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TABLE VII

NUMERICAL RESULTS FOR TEST CASE2

Method worst best mean(T ) how often

CE-DET 1.31706557e-12 8.73960309e-13 16.14 7

CE-MP 1.18106167e-12 8.73960309e-13 18.33 12

CE-HYBRID-DET 8.73960310e-13 8.73960310e-13 14.93 15

CE-HYBRID-MP 1.16903365e-12 8.73960309e-13 14.36 11

a

g

m
s

x

b

c

d

e

fh

i

j

k

l

n o

p

q

r

t

u

v

w

1

2

3

4

5
6

7

8

9

10 11
12

14

15

17
18

19

21

22

26

27
28

29

30

31

32

33

34

35

37

38

39

40

41

42

43

44

45

46

47

4850

51

Fig. 12. The best found network for test case 3.

with a network unreliability of 1.58635e-05.

Table IX shows the numerical results for test case 3,

averaged over 15 independent replications for different values

of delP. Here “how often” is the number of times the method

obtained the best found solution or near-best solutions, that

is, solutions whose network unreliabilities are less than1%

away from the best found solution. “CPU” denotes the average

simulation time in seconds.

We see that applying Algorithm 5 achieves significant

reduction in computational time. However for values of delP

≥ 0.8, all four methods failed to obtain the best found or

near-best solutions. The reason is that some of the links in

the network may have been considered as superfluous links

in early iterations. This caused the purchase probabilities to

converge to 0 very quickly. This can be avoided by taking

smaller delP. It is interesting to note that CE-MP performed

worse with superfluous link removal than without. A likely

reason is that thes-relative error in the network reliability

estimator was quite large, so that the networks could not be

accurately ranked. However, to decrease the relative errorto

about 0.01 a sample size of at leastK = 50000 would be

required, which would significantly increase the computational

effort.

In contrast to CE-MP, the other three methods performed

as well with 0.2 ≤ delP ≤ 0.5 as with delP = 0, obtaining

the best found or near-best solutions around the same number

of times. This shows that by removing superfluous links with

probability 0.2 ≤ delP ≤ 0.5, we were able to reduce the

computational time up to75% without affecting the accuracy

of the methods.

Moreover, both hybrid CE algorithms, with or without su-

perfluous link removal, significantly reduced the computation

time, without affecting significantly the accuracy.

VII. C ONCLUSIONS ANDFUTURE RESEARCH

In this paper, we proposed a CE approach for solving the

Network Planning Problem, which is a difficult constrained

combinatorial optimization problem with a noisy objective

function. This noise is introduced when the objective function

(the system reliability) is estimated rather than evaluated

exactly. We reviewed several techniques for reducing this

noise. We explained how the deterministic version of the CE

algorithm (when the objective function is known) could be

readily modified to handle the noisy situation. The numerical

results showed that the noisy CE algorithm can perform as

effectively and reliably as its deterministic counterpart. We

proposed two techniques to speed up the convergence of the

algorithm: probabilistic superfluous links removal and hybrid

CE. Experiments showed that with an appropriate choice of

parameters these techniques can speed up the optimization
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TABLE IX

NUMERICAL RESULTS FOR TEST CASE3 WITH DIFFERENT VALUES FOR DELP

delP Method worst best mean(T ) how often CPU

CE-DET 1.58635e-05 1.58635e-05 14.87 15 21680

0.00 CE-MP 1.61361e-05 1.58644e-05 165.33 11 13086

CE-HYBRID-DET 1.61025e-05 1.58635e-05 31.13 13 3062

CE-HYBRID-MP 1.61023e-05 1.58635e-05 28.47 8 2829

CE-DET 1.58635e-05 1.58635e-05 15.93 15 14254

0.20 CE-MP 1.61337e-05 1.58664e-05 159.27 2 9579

CE-HYBRID-DET 1.61021e-05 1.58635e-05 21.80 14 4113

CE-HYBRID-MP 1.61024e-05 1.58635e-05 29.33 9 2868

CE-DET 1.58635e-05 1.58635e-05 16.27 15 8206

0.40 CE-MP 1.61327e-05 1.58669e-05 123.47 1 6602

CE-HYBRID-DET 1.61021e-05 1.58635e-05 21.00 12 1976

CE-HYBRID-MP 1.61025e-05 1.58635e-05 20.07 11 1886

CE-DET 1.58635e-05 1.58635e-05 17.47 15 5176

0.50 CE-MP 1.61335e-05 1.61278e-05 103.33 0 5505

CE-HYBRID-DET 1.61021e-05 1.58635e-05 19.47 10 1730

CE-HYBRID-MP 1.61025e-05 1.58635e-05 17.33 8 1527

CE-DET 1.61024e-05 1.58635e-05 16.40 12 1817

0.60 CE-MP 1.61371e-05 1.61272e-05 111.93 0 4759

CE-HYBRID-DET 1.61025e-05 1.58635e-05 16.60 9 1236

CE-HYBRID-MP 1.61272e-05 1.58635e-05 14.60 7 1106

CE-DET 1.61272e-05 1.61024e-05 10.27 0 360

0.80 CE-MP 1.61385e-05 1.61272e-05 87.07 0 3006

CE-HYBRID-DET 1.61272e-05 1.61021e-05 9.53 0 430

CE-HYBRID-MP 1.61291e-05 1.61023e-05 9.80 0 515

CE-DET 1.61272e-05 1.61272e-05 9.00 0 299

1.00 CE-MP 1.61330e-05 1.61272e-05 73.87 0 2418

CE-HYBRID-DET 1.61272e-05 1.61272e-05 8.00 0 349

CE-HYBRID-MP 1.61280e-05 1.61272e-05 7.87 0 360

process by over 300% with very little impact on the accuracy

of the algorithm.

We have taken a pragmatic approach regarding convergence,

observing that numerically the CE algorithms tends to con-

verge in a global rather than a local sense. Although several

CE convergence results are discussed in [33], [34], this topic

remains an interesting challenge for future research. Another

possible direction is to investigate whetherreliability ranking

[35] can further improve the performance of the algorithms.

Here only the relative rankings of the networks are important,

rather than the exact values of their reliabilities. In somecases

the former are easier to estimate than the latter. This couldlead

to an improvement of the performance of the CE algorithm.

A further improvement could be achieved by examining at

what stage in the simulation one should start using superfluous

link removal, and what value of delP should be taken. Finally,

developing an efficient rare event paradigm that can reduce

the noise in the network reliability estimation with relatively

low computational effort is another important area for future

research.
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