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Abstract

We consider the following continuous polling system: Customers arrive according
to a homogeneous Poisson process (or a more general stationary point process) and
wait on a circle in order to be served by a single server. The server is “greedy”, in
the sense that he always moves (with constant speed) towards the nearest customer.
The customers are served according to an arbitrary service time distribution, in
the order in which they are encountered by the server. First-order and second-
order Taylor-expansions are found for the expected configuration of customers,
for the mean queue length, and for expectation and distribution function of the
workload. It is shown that under light traffic conditions the greedy server works
more efficient than the cyclically polling server.
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1 Introduction

Queueing systems in which customers arrive at a “continuum” of stations –
rather than at a finite number of stations – have been studied in recent years
as convenient descriptions of transportation systems, machine repair systems,
Local Area Networks, computer disk systems, etc., cf. [2], [4], [8], [9], [10],
[18], [22], [23], [24], [27]. Often, these continuous models are more transparent
and easier to analyze than their discrete analogs, where the customers are
assumed to arrive at a finite number of fixed service stations (see, e.g., [34]).

The best studied “continuum queueing model” is the scanning or (cyclically)
polling server model. Here customers arrive (usually according to a Poisson
process) on a closed curve (usually a circle) C in the plane. A single server
travels at constant speed on C , according to a fixed route which does not
depend on the actual configuration of customers on C (cf. [8], [10], [18],
[22]). Whenever the server encounters a customer he stops and serves this
customer according to a fixed service time distribution. This model is the
continuous counterpart of discrete polling systems where the server visits
consecutive stations according to a (deterministic) “polling table”. Recently,
random polling tables have been investigated as well; see [1], [19], [20], for
Bernoulli polling, and [6], [7], [31] for more general Markov polling. The
Brownian servermodel, considered in [24], where the server’s movement on C
is governed by a Brownian motion with drift, can be seen as an approximative
continuous model for a certain class of discrete Markov polling systems with
many stations. Alternatively, the Brownian server can be interpreted as a
cyclically polling server whose movement is disturbed from the outside. In
the rest of the paper we will refer to the cyclically polling server simply as
“the polling server”.

A common feature of the polling and Brownian server model is that the
movement of the server is not influenced by the actual “state” of the system,
i.e. the actual configuration of customers on C . This is not the case for the
so-called greedy server model. The greedy server always walks (at constant
speed) towards the nearest customer on C . A newly arriving customer can
thus change the direction of the server’s movement. This makes the per-
formance analysis of the greedy server much more difficult than that of the
polling and Brownian server. However for all these models an interesting
decomposition principle holds (under Poisson arrivals). It says that certain
performance characteristics (e.g. the stationary mean queue length and the
stationary mean workload) can be represented as the sum of two correspond-
ing conditional mean values given that the server is walking (i.e. not serving)
and given that all customers arrive at one and the same point (i.e. no walk-
ing times appear), respectively. This means in particular that the second
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summand of this sum is a performance characteristic of the “usual” M/G/1
queue and, consequently, well-known. Thus, in case when also the first sum-
mand can be determined, a performance analysis of the continuous polling
system as a whole is possible (see, e.g., [18], [24]). Note that analogous de-
composition results hold not only for mean values, but for the corresponding
distributions as well (see [7], [13], [14], [17], [26]).

For the greedy server it seems not possible to determine the first summand
of the stochastic decomposition result analytically. For this reason, the per-
formance analysis of the greedy server is very difficult. Moreover, even the
question seems to be open whether the usual condition “traffic intensity less
than one” is sufficient for stability of the greedy-server queue with spatially
distributed Poisson arrivals (cf. [24]).

A natural question to ask is whether the greedy server is always better than
the polling server. Intuitively this should be the case when dealing with
light-traffic conditions, i.e. for small enough arrival intensity. A compar-
ative (simulation) study of the greedy and polling server was discussed in
[9], for the case that C is a circle (or a line interval), the arrival epochs
form a homogeneous Poisson process with intensity a, the speed of a server
is α−1, and the service times are deterministic with duration e1 . Remark-
ably, the simulation study indicates that, for a wide range of parameter
vectors (α−1, e1, a), the polling and greedy servers are roughly equally effec-
tive. Indeed, the polling server is sometimes better. However, as expected,
the greedy server gives substantial improvements in case of light traffic (i.e.
small a ).

In the present paper we show that analytic techniques can be fruitfully used
to examine queues with spatially distributed arrivals. The greedy server, who
has proved to be notoriously elusive, can in fact be tackled via light-traffic
arguments. We show how first- (and second-) order Taylor-expansions (with
respect to a at a = 0 ) for several performance measures can be derived, in
particular for the greedy server and for the polling server with non-Poisson ar-
rivals. These expansions could be used (possibly in combination with heavy-
traffic results) to construct approximations for several performance measures
under “moderate” traffic conditions. A paradoxic result is found concern-
ing the configuration of waiting customers on C for the greedy server model.
Moreover, it is shown that under quite general assumptions the greedy server
is “better” than the polling server in light traffic. That is, we show that with
respect to queue length, waiting time and workload, the greedy server works
more efficient in light traffic than the polling server.
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2 The Polling and Greedy Server Models

2.1 Description of the Models

Consider a circle C with circumference 1. We assume, when not noted
otherwise, that customers arrive according to a Poisson process with intensity
a; 0 < a < ∞. In Section 4 we admit however that the arrival epochs
form a general stationary ergodic point process with finite intensity. Upon
arrival the customers choose their positions on C according to a uniform
distribution (independently of everything else), and wait there for service. A
single server travels on the circle until he meets a customer. He then stops
and serves this customer. We consider two different servers : (a) the polling
server who moves uni-directionally at constant speed α−1 (when not serving;
0 < α−1 < ∞) and (b) the greedy server who always walks (at constant
speed α−1) towards the nearest customer on C. Thus, any newly arriving
customer can change the direction of the greedy server’s movement, whereas
the movement of the (walking) polling server is not influenced by changes of
the actual configuration of customers on C. The customers are served in the
order in which they are encountered by the server. The consecutive service
times are independent of each other (and of everything else) and identically
distributed having an arbitrary distribution function F with finite first two
moments e1, e2. After service completion, the customer is removed from the
circle and the server resumes his walk. For both models we assume that there
is no customer on C at time t = 0.

2.2 Definition of Performance Characteristics

An important performance characteristic for both models is the stationary
mean number of customers on the circle. Another, more detailed performance
characteristic, unique to queueing systems with a spatially “continuous” wait-
ing room, is the stationary expected configuration of waiting customers given
that the server is walking (i.e. not serving). We will specify first in which
mathematical framework these quantities can be precisely defined.

Note that, in steady state, the actual position of the server is not very im-
portant to the analysis of the model. It is the configuration of customers
relative to the position of the server that counts. We therefore restate the
models as seen from the point of view of the server, in terms of the following
particle systems:

Particle System 1a. On the strip ID = IR+ × [0, 1] particles are born and
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die according to the following rules. Particles are born according to a (two-
dimensional) homogeneous Poisson point process on ID with mean measure
a ν, where ν denotes the Lebesgue measure in ID. All particles move at
constant speed α−1 towards level 0. When a particle hits 0 , all particles stop
moving during a random amount of time which is independent of everything
else, and which has distribution function F, after which the particle dies
that hit the zero level, and the movement of the particles is continued.

Particle System 1b. It is defined in the same way as particle system 1a
with the exception that particles move in a different way. Namely, when the
uppermost particle is further away from 1 than the lower-most one is from
0 , all particles move at speed α−1 towards 0. On the other hand, when
the uppermost particle is closer to level 1 than the lower-most is to level 0,
all points move at speed α−1 towards 1. Consequently, in the present case,
particles die after hitting one of the levels 0 or 1 and after spending there
a time with distribution function F.

For both particle systems 1a and 1b, let Wt denote the random counting
measure on the Borel σ -algebra B([0, 1]) whose atoms are the positions of
the particles that are “alive” at time t ≥ 0. Clearly, Wt corresponds to the
positions of waiting customers relative to the position of the server at time
t. As in [22] (see also [23], [24]) it will be convenient to introduce a further
kind of particle systems which is obtained from the particle systems 1a and
1b by “deleting” the times when the particles do not move.

Particle Systems 2a, 2b. There are two different kinds of particles, parents
and offspring. Parent particles are born according to a (two-dimensional)
homogeneous Poisson point process on ID with mean measure a ν. In the
systems 2a and 2b, particles move in the same way as in systems 1a and 1b,
respectively. When a particle hits 0 or 1 , it dies immediately, but, simulta-
neously, a random number of offspring is produced at that time, the position
of each individual child being uniformly distributed on [0, 1] , independently
of each other and of everything else. The number of offspring generated by
a single dying particle has the same distribution as the random variable J
with generating function

(2.1) E zJ =
∫ ∞

0
e−a(1−z)udF (u), 0 ≤ z ≤ 1.

Let Qt denote the random counting measure on B([0, 1]) corresponding to
the configuration of particles that are “alive” at time t ≥ 0 in the second kind
of particle systems. The measure-valued stochastic process (Qt) describes
the evolution of the configuration of waiting customers on C given that the
server is walking (i.e. not serving).
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Besides the two objects Qt and Wt that describe the configuration (and, in
particular, the number) of waiting customers at time t , another important
performance measure is the workload on the circle. We can define the work-
load in terms of particle systems 1a and 1b in the following way. Suppose
at time t , n particles are alive and are not at level 0 or 1. Each of these
particles will eventually hit 0 or 1 and will then die after a “service time”
y1, . . . , yn , respectively. The sum of these times is denoted by Zt . When
one of the n particles is at 0 or 1, Zt is defined as the sum of the residual
lifetime of that particle and the “service times” of the other n− 1 particles.
Notice that the random variable Zt can be interpreted as the workload on
the circle at time t.

Furthermore, we introduce the workload process (Rt) , by defining Rt to
be the sum of the “service times” of the particles that are alive at time t
in particle systems 2a or 2b. Notice that one never actually observes these
service times in these particle systems. A proper way to define (Rt) would
be via a random time change of (Zt). Note that Rt has the same distribution
as S1 + · · ·+ S|Qt| , where S1, S2, . . . is a sequence of i.i.d random variables
with distribution function F , which are independent of |Qt| , the number of
particles alive at time t in system 2a or 2b. By some authors, a different
notion of workload is considered for queues with vacations which is defined
by summing up service times and adding the residual vacation time provided
that the server is actually on vacation. It is called the virtual workload
(cf. [14], [25], [26]). For continuous polling systems, an analogous virtual

workload process can be defined in the following way. Let Ẑt denote the
amount of time that elapses beginning from time t until all particles die
being present at time t in the systems 1a and 1b, respectively, provided that
in the meantime no new customers arrive. Thus, Ẑt is obtained by summing
up service times and all walk times needed for “serving” the particles being
in the system at time t. By (R̂t) we denote the corresponding workload
process in the systems 2a and 2b.

It turns out (see next subsection) that the random measures Wt and Qt con-
verge in distribution to random measures W and Q , respectively. Moreover,
Zt and Rt ( or Ẑt and R̂t ) converge in distribution to random variables

Z and R (or Ẑ and R̂), respectively. Other random variables, notably
the sojourn time U and the waiting time V of a random customer will be
introduced later. These steady-state performance characteristics, in particu-
lar the light-traffic behavior of their expectations and distribution functions,
will be the subject of our studies in the present paper.
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2.3 Stability Conditions and Representation of Steady-State Per-

formance Characteristics

In the following we will, for a (random) measure M on B([0, 1]), abbreviate
M([0, 1]) to |M |, and, consequently, EM([0, 1]) to E |M |.

The quantity ρ = ae1 is usually called the traffic intensity of the considered
single-server system. Under the condition that

(2.2) ρ < 1,

it has been shown in [24] that, for the polling server, there exist time-
stationary regenerative processes (W̃t) and (Q̃t) such that the finite-dimen-
sional distributions of the processes (Wt+h; t ≥ 0) and (Qt+h; t ≥ 0) con-
verge in variation to the corresponding finite-dimensional distributions of
(W̃t) and (Q̃t), respectively, as h tends to infinity.

On the other hand, the question is still open whether, under (2.2), an analo-
gous stability theorem holds true also for the greedy server (see the remark
at the end of Section 3.2 in [24]). However, under light traffic, stability of
the greedy server follows from the following argument. Assume that

(2.3) a(e1 +
α

2
) < 1,

where α is the time which the server needs for walking once around the
whole circle (without stopping on the way). Then, using Loynes’ scheme
(see, e.g., Chapter 2 of [16]), one can show that for the greedy server the
same stability theorem holds as for the polling server. Namely, a stable aux-
iliary M/G/1 queue can be constructed (with mean service time equal to
e1+α/2), which works slower than the original greedy server and for which,
in particular, each empty point (i.e. an arrival epoch at which the system is
empty) is simultaneously an empty point of the greedy-server system. Be-
cause we are interested in the light-traffic behavior (i.e. a → 0) of queues
with spatially distributed arrivals, the strengthened stability condition (2.3)
is not restrictive for our purposes. Moreover, under (2.3), Loynes’ scheme
for constructing the stationary queueing process (W̃t) works also under the
assumption that the arrival epochs form a general stationary ergodic point
process, for both the polling and greedy servers.

For the rest of the paper we use the notation W = W̃0 and Q = Q̃0. From
the individual ergodic theorem (see, e.g., Theorem 1.3.12 of [16]) it follows
that

(2.4) lim
t→∞

1

t

∫ t

0
Ws(B) ds = EW (B) for B ∈ B([0, 1])
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and

(2.5) lim
t→∞

1

t

∫ t

0
Qs(B) ds = EQ(B) for B ∈ B([0, 1]),

with probability one. Thus, the stationary mean measures EW (·) and
EQ(·) are two important performance characteristics.

The random counting measure W can be interpreted as the stationary con-
figuration of customers on the circle relative to the position of the server, at
an arbitrary point in time (i.e. not specifying whether the server is actually
walking or serving). Similarly, Q can be interpreted as the stationary con-
figuration of waiting customers (relative to the server ) given that the server
is walking, i.e. “at a random travelling epoch”.

In the same way, using Loynes’ scheme, under (2.3) one can show for both the
polling and greedy servers that there exists a stationary regenerative process
(Z̃t) such that the finite-dimensional distributions of the workload processes
(Zt+h; t ≥ 0) converge in variation to the corresponding finite-dimensional
distributions of (Z̃t). Moreover, with the notation Z = Z̃0, we get from the
individual ergodic theorem that

(2.6) lim
t→∞

1

t

∫ t

0
Zs ds = E Z

with probability one. The random variable Z can be interpreted as the
stationary workload on C, at an arbitrary point in time. Similarly, Rt

converges in variation, to a random variable R, where R can be interpreted
as stationary workload on C, at a random travelling epoch. A completely
analogous argument can be used for proving the existence of random variables
Ẑ and R̂ , representing the virtual workload in the stationary situation at
an arbitrary point in time and at a random travelling epoch, respectively.
Finally, note that the distribution of R can be represented by

(2.7) R
d
=

|Q|
∑

k=1

Sk,

where S1, S2, . . . is a sequence of i.i.d. non-negative random variables with
distribution function F, which are independent of Q.

2.4 Stochastic Decomposition

Assume that the arrival process is Poisson and that (2.3) holds. The following
stochastic decomposition results show that the distributions of |W | and Z
are completely specified by the distributions of |Q| and R , and vice-versa.
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Proposition 1 For every p ≥ 0 we have

(2.8) E e−p|W | =
(1− ρ)(1− e−p)LF (β)

LF (β)− e−p
E e−p|Q|

and

(2.9) E e−pZ =
(1− ρ)p

p− a + aLF (p)
E e−pR,

where LF (s) =
∫∞
0 e−stdF (t) and β = a(1− e−p).

For a proof of (2.8) we refer to [17], for that of (2.9) to [7], see also [13], [26].

Note that the first factor at the right-hand side of (2.8) and (2.9) is equal to
the Laplace-Stieltjes transform of queue length and workload, respectively, in
the “usual” M/G/1 queue. Unfortunately it seems that, for the virtual work-

load Ẑ, an analogous decomposition formula does not hold. At first glance,
this might be surprising. Namely, for this kind of workload, a decomposition
result similar to (2.9) has been obtained in Theorem 3.3 of [26] for quite
general server vacations. Note however that, in continuous polling systems,
the increment of the virtual work load process (Ẑt) at an arrival epoch is

not independent of the value of (Ẑt) at this arrival epoch and, consequently,
the PASTA argument used in [26] does not work in our case.

Corollary 1 In particular, it holds that

(2.10) E |W | = ρ+
a2e2

2(1− ρ)
+ E |Q|

and

(2.11) E Z =
ae2

2(1− ρ)
+ ER =

ae2
2(1− ρ)

+ e1 E |Q|,

where we have used (2.7) and Wald’s lemma in the second equation of (2.11).

It turns out that, sometimes, the random variable |Q| (or the random mea-
sure Q ) is easier to analyze than |W | (or W ). In fact, for the polling
server, the exact form of the Laplace-Stieltjes transform of |Q| is known (cf.
Theorem 4.1 of [22]). Moreover, even when the distribution of |Q| is hard
to get – as is the case in the Brownian server model – closed formulas for
the mean measure EQ(·) are usually much easier to find. The performance
characteristics E |W | and E Z then follow from (2.10) and (2.11).
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Remark 1 For the polling server, the mean measure of Q is given by (see
[22] or [18]):

(2.12) EQ(dx) =
aα

(1− ρ)
(1− x) dx, x ∈ [0, 1].

and hence,

(2.13) E |W | = ρ+
a2e2 + aα

2(1− ρ)
.

and

(2.14) E Z =
ae2 + aαe1
2(1− ρ)

.

Another performance characteristic, the stationary mean sojourn time of a
“random customer” E 0S , follows from Little’s formula (see, e.g., Theorem
4.2.1 of [16]):

(2.15) E |W | = aE 0S.

Here the expectation E 0 is taken with respect to the Palm distribution
of arrival epochs. Notice that (2.14) also follows from (2.13), (2.15) and
Brumelle’s formula (see, e.g., Corollary 4.2.2 in [16]):

(2.16) E Z = ρ(E 0V +
e2
2e1

),

where E 0V = E 0S − e1 is the stationary mean waiting time of a random
customer.

Note that Little’s formula (2.15) and Brumelle’s formula (2.16) hold for both
the polling and the greedy server model. Moreover, for both models these
formulas remain true when the arrival epochs form an arbitrary stationary
ergodic point process with finite intensity such that (2.3) is fulfilled (see
Section 4.2 of [16]). This will be used in Section 4 for getting light-traffic

derivatives for E |W |, E Z and E Ẑ for the polling and the greedy server
systems with general input.

For the greedy server, no analytic formulas for probabilistic characteristics
of |Q| are known, not even for the expectation E |Q| in the Poisson arrival
case. This makes it impossible to give, in this case, closed formulas for the
performance characteristics E |W |, E 0V and E Z. However, it is possible
to derive asymptotic results for these performance characteristics and for the
mean measure of Q , for small a .
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3 Light-Traffic Results for the Greedy Server Model

In Section 2.4, several performance characteristics have been given for the
polling model, but no such results exist for the greedy server model. However,
by using light-traffic analysis we can derive second-order Taylor-expansions
for several performance characteristics, e.g. for E |W | and E Z. These
Taylor-expansions could be used to obtain approximations to the true per-
formance characteristics. They show that the greedy server is indeed consid-
erably better than the polling one, when dealing with light traffic.

Moreover, we obtain an expansion for the expected configuration of cus-
tomers, given that the server is traveling. For the polling server, the expected
density of waiting customers (given that the server is not busy) is given in
(2.12). This is a quite intuitive result: The density is highest in front of the
server, and decreases linearly with the distance in front of the server. For
the greedy server, one would (just as intuitively) expect that the density of
waiting customers (given that the server is not busy) would be maximal at
locations opposite to the server, as in the drunken server case (cf. [23]). But
this is not true, at least not in light traffic. On the contrary, the density is
minimal at a distance 1/2 of the server. We can see this in the following the-
orem, where a (second-order) Taylor-expansion (at a = 0 ) for EQ([0, x])
is given, for all x ∈ [0, 1] , viewing this quantity as a function of a .

Theorem 1 The following expansion holds for all x ∈ [0, 1] :

(3.1) EQ([0, x]) =
∫ x

0
mQ(u) du+O(a3)

as a→ 0 , where

(3.2) mQ(u) = aα(1 + ρ)
(

1

2
− u

)

+ a2α2

(

u2

2
−

2u3

3

)

for u ∈ [0, 1/2], and mQ(u) = mQ(1− u) for u ∈ [1
2
, 1].

The proof of the theorem is given at the end of this section.

Notice that Theorem 1 suggests that mQ , defined in (3.2), is the second-
order expansion of the density of EQ(·) in light traffic. But, formally, we
have not proved the existence of such a density. However, from a pragmatic
point we tacitly assume that such a density exists. Note that mQ is different
from what one would expect at first sight. Since the greedy server always
moves towards the nearest customer, one would expect that “opposite” to
the server (at the opposite side on the circle) would be the most customers
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waiting. However, (3.2) indicates that in light traffic the contrary is true: the
(first-order expansion for the expected) density of customers at u is least for
u = 1/2 . An explanation for this is that the density should be viewed as
a mixture of two densities, one given that the server moves in a clockwise
fashion, and the other given that the server moves in a counter-clockwise
fashion. Each such density resembles the density in the polling server model,
that is a (in first order linearly) decreasing density.

The following corollary follows immediately from Theorem 1, (2.10) and
(2.11).

Corollary 2 The second-order expansion for the mean number of customers
is:

(3.3) E |W | = a
(

e1 +
α

4

)

+ a2
(

e2
2
+
αe1
4

+
α2

48

)

+O(a3).

And the second-order expansion for the mean workload is given by:

(3.4) E Z = a
(

e2
2
+
e1α

4

)

+ a2
(

e1e2
2

+
αe21
4

+
α2e1
48

)

+O(a3).

Notice that (3.3) and (3.4), when compared to (2.13) and (2.14), show that
(in light traffic) the greedy server is considerably more effective than the
polling server.

Remark 2 From the (second-order) Taylor-expansions we can derive appro-
ximations of the performance characteristics by simply dropping the O(a3)
term. In order to see how good the approximations are, simulation studies
should be carried out. This will be done in a separate paper. If also heavy
traffic results would be available, these Taylor-expansions could be used to
get via an appropriate interpolation, approximation formulas for an arbitrary
positive arrival rate a, see [15], [28], [36]. The behavior of the greedy server
in heavy traffic is a very interesting (open) problem. All that is known
(through simulation studies) is that the greedy server behaves in heavy traffic
as a polling server, that is, during a busy period the greedy server will either
travel almost always in a positive direction (with probability 1/2) or almost
always in a negative direction.

In our search for light-traffic results, we are led by [3], [5] and [30] (see also
[29], [32], [33], [35], [36]). In particular, we will use an extension of Corollary
5.2 in [5] to the case of an independently marked Poisson process. Since
we are now concerned with stationary characteristics, we assume, in view of
Section 2, that the arrival times {Tn} form a Poisson process on the whole
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real line IR with intensity a, where we make the convention

. . . < T−1 < T0 < 0 ≤ T1 < T2 < . . .

Assume also that (2.3) holds, i.e.

(3.5) a(e1 +
α

2
) < 1.

Observe that we are in the same framework as [30], that is, we are deal-
ing with a marked Poisson process {(Tn, Zn)} on IR, with markings Zn =
(Xn, Sn) , where Xn denotes the position (relative to the position of the
server at time Tn ) and Sn the service time of the customer arriving at Tn.
These markings are are i.i.d. and independent of the Poisson process {Tn}.

Next, consider other marked point processes with the same i.i.d. markings
as {(Tn, Zn)} , independent of the (non-marked) point process. For such
processes, let Wt be the random measure of waiting customers at time t, t ∈
IR . And, for t ∈ IR , let

(3.6) Lt = Wt([z, z + dz])I{Wt({0,1})=0},

where z ∈ (0, 1), dz is some small strictly positive number, and IB denotes
the indicator of the set B. That is, Lt denotes the number of customers
at time t waiting in the interval [z, z + dz] , provided that the server is not
busy, or else Lt = 0 .

The idea behind the light-traffic analysis is to regard E L0 , for the marked
Poisson process {(Tn, Zn)}, as a function f of the arrival intensity a , and
to obtain a (Taylor-) expansion of f in a at 0 . This is accomplished by
considering the behaviour of Lt for input processes that consist of only a few
arrivals. For example, suppose that there is only one arrival on IR, at time s .
Define G(s, x) = Lx and let g(s, x) = EG(s, x) . Analogously, for the case
that the arrival process consists only of two arrivals, at s and t , we define
H(s, t, x) = Lx and h(s, t, x) = EH(s, t, x) . We will show in Theorem
2 (which is an extension of Corollary 5.2 in [5] ) that the first and second
(right-hand) derivatives f (1)(0) and f (2)(0) of f at a = 0 exist, under the
condition that (3.5) holds and that the second moment e2 of service times
is finite. Moreover, Corollary 5.2 in [5] provides a way to calculate these
derivatives via the functions h and g , defined above (see also Theorem 2 of
[30], where an additional ”admissibility” condition is assumed). Before we
state Theorem 2 we give some preliminaries:

Let {(Tn, Zn)} be an independently marked stationary Poisson process with
the mark space K = [0, 1]× IR+. By ΩK we denote the set of realizations

12



of {(Tn, Zn)}, i.e. ΩK is the set of (locally finite) counting measures ω on
IR×K with

ω([a, b]×K) <∞,

for every bounded interval [a, b]. Let ψ be a real-valued (measurable) func-
tional defined on ΩK . For every t ∈ IR, let the restriction ω|t of ω ∈ ΩK

be defined by
ω|t(B × C) = ω(B ∩ (−∞, t)× C).

Furthermore, for any t ∈ IR and z ∈ K, let

ψ(t,z)(ω) = ψ(ω|t + δ(t,z))− ψ(ω|t)

and, for any t1, . . . , tn ∈ IR and z1, . . . , zn ∈ K, let

ψ(t1,z1),...,(tn,zn)(ω) = (. . . (ψ(t1,z1))(t2,z2) . . .)(tn,zn)(ω).

Note that the functional ψ(t1,z1),...,(tn,zn) can be written in the form

(3.7)

ψ(t1,z1),...,(tn,zn)

=















n
∑

j=0

(−1)n−j
∑

π∈{(nj)}
ψ(ω|tn +

∑

i∈π

δ(ti,zi)) for tn < . . . < t1

0 otherwise,

where {
(

n
j

)

} denotes the collection of all those subsets of {1, . . . , n} con-

taining j elements.

Following [5], we call the functional ψ continuous at infinities if

lim
t→−∞

ψ(ω|t) = ψ(0)

and
lim
t→∞

ψ(ω|t) = ψ(ω),

for every ω ∈ ΩK , where 0 denotes the zero measure with 0(IR×K) = 0.

The following result is a straightforward extension of Corollary 5.2 in [5],
where the non-marked case has been considered.

Theorem 2 Let Pa denote the distribution of the independently marked
Poisson process {(Tn, Zn)} with intensity a, and let F̃ denote the distri-
bution of the random variables Zn. If the functional ψ is continuous at
infinities, if

(3.8)
∫

(IR×K)i

∫

ΩK

|ψ(t1,z1),...,(ti,zi)(ω)|Pa(dω)dt1F̃ (dz1) . . . dtiF̃ (dzi) <∞

13



for all i = 1, . . . , n+ 1, and if

(3.9)
lim sup

a→0

∫

(IR×K)n+1

∫

ΩK

ψ(t1,z1),...,(tn+1,zn+1)(ω)Pa(dω)

dt1F̃ (dz1) . . . dtn+1F̃ (dzn+1) = 0,

then

(3.10)
Eψ({(Tn, Zn)}) = ψ(0) +

n
∑

i=1

ai
∫

(IR×K)i
ψ(t1,z1),...,(ti,zi)(0)

dt1F̃ (dz1) . . . dtiF̃ (dzi) +O(an+1).

Proof of Theorem 1. We apply Theorem 2 to the functional ψ = L0 defined
in (3.6). It is easy to see that this functional is continuous at infinities. Fur-
thermore, from (3.7) it follows that condition (3.8) is fulfilled if E L0 <∞.
However, E L0 ≤ E |W |. Because we assumed that e2 < ∞, the expec-
tation E |W | is finite for all a satisfying (3.5). By similar arguments we
get that also (3.9) is fulfilled. Thus, the Taylor expansion (3.10) holds for
ψ = L0. Specifically:

(3.11) f (1)(0) =
∫ ∞

−∞
g(s, 0) ds

and

(3.12) f (2)(0) = 2
∫ ∞

−∞

∫ s

−∞
(h(s, t, 0)− g(s, 0)− g(t, 0)) dt ds.

Trivially, f(0) = 0 . Moreover, it is easy to see that

(3.13) EQ([z, z + dz]) = f(a)/(1− ρ),

for z ∈ (0, 1) . In order to prove (3.1), it remains therefore to show that for
all z ∈ (0, 1/2]

(3.14) f (1)(0) = α
(

1

2
− z

)

dz + o(dz)

and

(3.15) f (2)(0) = α2

(

z2 −
4z3

3

)

dz + o(dz),

as dz → 0 . The result for z ∈ [1/2, 1) follows then by symmetry.
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Instead of evaluating the integrals (3.11) and (3.12) we will use a conve-
nient transformation which reduces the calculations to “integration over
paths”. Notice that h(s, t, 0) = h(0, t − s,−s) , g(s, 0) = g(0,−s) and
g(t, 0) = g(0,−t) . Substitute this into (3.11) and (3.12). Now perform
the transformation (s, t) → (u(s, t), v(s, t)) , where u(s, t) = t − s and
v(s, t) = −s. Finally use the fact that for u ≥ 0, h(0, u, v) = g(0, v) = 0, for
all v < 0. This leads to the following results

(3.16) f (1)(0) =
∫ ∞

0
g(0, v) dv

and

(3.17) f (2)(0) = 2
∫ ∞

0

∫ ∞

0
(h(0, u, v)− 2g(0, v)) dv du.

From (3.16) it is easy to see that (3.14) holds. Next, we determine, for fixed
u , the integral

∫∞
0 h(0, u, v) dv . Consider thus the situation that there are

only two arrivals, one customer arriving at time 0 , at a distance X (say)
from the server and another arriving at time u , at a distance Y (say) from
the server. We may assume that X and Y are i.i.d. r.v.’s, uniformly dis-
tributed on [0, 1] . If u ≥ α/2 , we are certain that the second customer does
not arrive before the server has reached the first customer. Consequently,

(3.18)
∫ ∞

0
h(0, u, v) dv = 2

∫ ∞

0
g(0, v) dv, for u ≥ α/2.

Let E
x denote the conditional expectation given “X = x ”, and define

(3.19) k(x, u, z, dz) := E
x
∫ ∞

0
H(0, u, v) dv,

for (x, u) ∈ [0, 1] × [0, α/2] . Below, this quantity will be calculated (up to
o(dz) ). Notice, that by the symmetry of the model,

(3.20) k(x, u, z, dz) = k(1− x, u, 1− z, dz) + o(dz).

Hence combination of (3.14)–(3.20) shows that (3.15) is proved if we can
show that

2
∫ α/2

0

∫ 1/2

0
[ k(x, u, z, dz) + k(x, u, 1− z, dz) ] dx du

(3.21) = α2

(

1− 2z + z2 −
4z3

3

)

dz + o(dz),
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for all z ∈ (0, 1) , as dz → 0 .

For u > αx and x < 1/2 the server reaches the first customer (who arrived
at 0 ) before the arrival of the second customer. It is easy to see that for this
case, for z ∈ [0, 1] and dz → 0 ,

(3.22) k(x, u, z, dz) = α dz
(

I[z,1/2](x) I[0,1/2](z) + |1/2− z|
)

+ o(dz).

The more difficult case arises when the second customer arrives before the
first customer has been reached, that is when u ≤ αx (again, we only con-
sider the case x < 1/2 ). It is now possible that the server reverses his
direction. Before time u there is only one customer in the system travelling
with constant speed α−1 towards 0 (from the perspective of the server), so

(3.23) E
x
∫ u

0
H(0, u, v) dv = α dz I[x−α−1u,x](z) + o(dz).

At time u there are two particles in the system. In connection with this,
consider the following deterministic particle system:

Particle System 3. Suppose at time 0 two particles are born, at positions
x ∈ [0, 1/2] and y ∈ [0, 1] . These particle moves towards 0 or 1 in the
“greedy server way” (as in the particle systems 1 and 2). They die instanta-
neously when they hit 0 or 1 without producing offspring. All possible parti-
cle movements are depicted in Figure 1. For (x, y, z) ∈ [0, 1/2]×[0, 1]×[0, 1] ,
let λ(x, y, z) be the number of times that a particle trajectory crosses level
z (see figure 1). And let

(3.24) r(x, z) =
∫ 1

0
λ(x, y, z) dy.

Notice that the value of r(x, z) does not depend on α . A moment of reflexion
will show that

(3.25) E
x
∫ ∞

u
H(0, u, v) dv = α dz r(x− α−1u, z) + o(dz).

x

y
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1

2
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@
@@ 1

2
0
1

(e)

Figure 1. Possible movements of two particles starting at x ∈ [0, 1/2] and
y . λ(x, y, z) is given at the end of the horizontal line-segment at hight z .

16



It remains therefore to calculate r(x, z) for (x, z) ∈ [0, 1/2]× [0, 1] . These
calculations form the most involved part of the proof, but they are straight-
forward. In Figure 2 a complete specification of r is given.
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A
A
A
A
A
A
AA

F

A

G

B

H

C

J

D

I

E

A : −1/2 + z + x

B : 3/2− z − 3x

C : −1/2 + z − x

D : −3/2 + z + 3x

E : 1/2− z + x

F : 1/2− z + x

G : 1/2− 3z + 5x

H : 3/2− z + x

I : 3/2− 3z + x

J : 5/2− z − 3x

0

1/4

1/2

1/2

1

x →

z ↑

Figure 2. The values for r(x, z) .

The reader may check that from (3.23), (3.25) and Figure 2 it follows that

∫ 1/2

0

∫ αx

0
k(x, u, z, dz) du dx =

(3.26)
α2dz (19− 12z − 24z2 − 40z3) /96 + o(dz) if z ∈ [0, 1/2]

α2dz (−7 + 36z − 48z2 + 24z3) /96 + o(dz) if z ∈ [1/2, 1]

On the other hand, from (3.22) it follows that for all z ∈ [0, 1]

∫ 1/2

0

∫ α/2

αx
k(x, u, z, dz) du dx =

(3.27) α2 dz

(

(1/2− z)2

4
+

|1/2− z|

8

)

+ o(dz).

The combination of (3.20), (3.26) and (3.27) now yields the desired result
(3.21), which completes the proof of Theorem 1. 2

Remark 3 Note that, using the same approach, it should (in principle) be
possible to derive higher-order expansions for EQ(·) . It is also possible to
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derive the expansions for E |W | and E Z directly, indeed the analysis is
somewhat simpler. The Taylor-expansion for EW (·) can also be computed
via the same method.

Remark 4 The non-marked version of Theorem 2 has been obtained in
[5] as a corollary of a much more general expansion for functionals of arbi-
trary stationary (non-marked) point processes, where the notions of higher-
order Campbell measures and Palm distributions of such processes have been
used. This approach seems to be very promissing for deriving (higher-order)
light-traffic approximations for queues with a (non-Poissonian) arrival pro-
cess possessing some special dependence structure which still allows to calcu-
late limits of higher-order Palm distributions and factorial moment measures
when the arrival intensity a tends to zero. In [3], conditions different from
those in [5] and [30] have been given for the validity of analogous formulas
for light-traffic derivatives, where in [3] mostly the case has been considered
that the input is a general stationary marked point process. The crucial step
of the approach given in [3] is to show that a certain functional g is non-
negative almost surely (see condition (i) of Theorem 1′ in [3]) and, then,
to use Campbell’s formula for stationary marked point processes. Unfortu-
nately, for the work loads Z and Ẑ in the greedy-server model (and, even
more, for the queue length |W | ) it is difficult to check the conditions given
in [3] because their non-negativity condition (with respect to the function-
als g corresponding to these queueing characteristics) seems not to hold for
the greedy-server model. However, we show in Section 4 that (first-order)
light-traffic results for the greedy server can indeed be derived under mild
conditions on the input process.

4 Light-Traffic Derivatives for General Stationary Er-

godic Arrival Processes

In this section we show how standard formulas of queueing and point pro-
cess theories can be used in order to get, in an elementary way, light-traffic
derivatives for stationary characteristics of (total) queue length and work-
load of the polling server (PS) and of the greedy server (GS) with general
input considering these characteristics as functions of the arrival intensity
a. For getting first-order light-traffic derivatives in the greedy-server model
(with not necessarily Poisson arrival process), no additional condition on the
service time distribution is needed, where we do not use Campbell’s formula
in its general form. It turns out that two well-known specifications of the
general Campbell formula, i.e. Little’s and Brumelle’s formulas, are more
appropriate tools for the purpose of Section 4.1.
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The arrival epochs are assumed to form a quite general stationary ergodic
(neither necessarily Poisson nor recurrent) point process satisfying, however,
the following conditions. For each a ∈ (0, (e1 +

α
2
)−1), consider a station-

ary ergodic point process of arrival epochs (T (a)
n ) with intensity a. Let Ax

denote the event that the customer arriving at zero, under the Palm distri-
bution P 0 of arrival epochs, finds no further customers in the system and
that the next inter-arrival time is greater than x.

Assumption We assume that

(4.1) lim
a→0

P 0(Aα) = 1

and that there is a random variable Ṽ such that

(4.2) E 0Ṽ <∞ and V ≤ Ṽ for all sufficiently small a.

Note that the conditions (4.1) and (4.2) are fulfilled, e.g., in the case when
(i) the arrival processes (T (a)

n ) are obtained by dilation of a fixed point
process (Tn), i.e. T (a)

n = a−1Tn, and (ii) the point process (Tn) satisfies
some mixing condition which, for example, is fulfilled for Markov modulated
Poisson processes and for recurrent point processes (cf. [11], [12]).

Throughout this section we use the variable γ in the following sense:

γ =
α

2
for PS and γ =

α

4
for GS.

4.1 Light-Traffic Derivatives via Little’s and Brumelle’s Formulas

Because Little’s and Brumelle’s formulas can be seen as special cases of
Campbell’s formula for stationary point processes (cf. [16]), the present
section is closely related to the light-traffic approaches considered in [3] and
[5]. First we investigate the limit behavior of the stationary mean waiting
time E 0V of a random customer when the arrival intensity a tends to zero.

Theorem 3 We have

(4.3) lim
a→0

E 0V = γ.

Proof Clearly,

(4.4) E 0V = P 0(Aα)E 0(V |Aα) + E 0(V IAc
α
),

where

(4.5) E 0(V |Aα) = γ,
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for all a satisfying (2.3). Furthermore, from (4.1) and (4.2) we get that

(4.6) lim
a→0

E 0(V IAc
α
) = 0,

so that (4.3) follows from (4.4)–(4.6). 2

The following result is an immediate consequence of Theorem 3 and of Little’s
and Brumelle’s formulas (2.15) and (2.16).

Corollary 3 We have the light-traffic derivatives

(4.7) lim
a→0

E |W |

a
= e1 + γ

and

(4.8) lim
a→0

E Z

a
= γe1 +

e2
2
.

Thus, comparing the formulas in (4.7) and (4.8) with (2.13) and (2.14),
we see that for the greedy server the considered light-traffic derivatives are
significantly smaller than those for the polling server, in particular when
service times are not too large.

Furthermore, we conjecture that, for a large class of arrival processes, the
performance characteristics E |W | and E Z seen as functions of the ar-
rival intensity a are continuously differentiable in the interval (0, (e1+

α
2
)−1).

Note that, for the polling server with Poisson arrival process, this smoothness
property of E |W | and E Z follows directly from (2.13) and (2.14). Then,
with respect to E |W | and E Z, the greedy server would be better than
the polling server in a certain interval (0, δ) of positive length δ > 0. How-
ever, it seems to be difficult to determine δ analytically although, clearly, it
would be extremely interesting to clarify how δ depends on the form of the
distributions of the sequences of arrival epochs and service times. A further
open problem seems to be how (say, in case of Poisson arrivals) higher-order
moments of the distribution of service times affect the performance charac-
teristics E |W | and E Z of the greedy server. Perhaps, a simulation study
could help to solve this question.

Finally, let us discuss the light-traffic behavior of the mean work load E Ẑ
defined in Section 2.2. For investigating E Ẑ, we introduce the following
auxiliary “usual” single-server queue by considering “ficticious” service times
(and omitting, in this way, vacations of the server). Namely, we add to the
usual service time of an arriving customer the amount of walk time which
additionally arises in the serving the actual configuration of customers on
the circle (now including the newly arriving one). Of course, these ficticious
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service times are not independent of the arrival process. But Brumelle’s
formula can still be applied. Namely, assume that the auxiliary queue is
in steady state. By J, let us denote the additional walk time caused by a
random arriving customer. Its service time we denote by S. Then, Brumelle’s
formula gives (see, e.g., Theorem 4.2.1 in [16])

(4.9) E Ẑ = aE 0

[

V (S + J) +
1

2
(S + J)2

]

.

Because lima→0 E 0[V (S + J)] = 0 and

lim
a→0

E (S + J)2 =











e2 + 2e1
α
2
+ α

3
for PS

e2 + 2e1
α
4
+ α

12
for GS.

we get from (4.9) that

(4.10) lim
a→0

E Ẑ

a
=











e2
2
+ α

12
(6e1 + 2) for PS

e2
2
+ α

12
(3e1 +

1
2
) for GS.

Thus, for the greedy server, the light-traffic derivative of E Ẑ can also be
significantly smaller than that for the polling server.

4.2 Light-Traffic Derivatives for Distribution of Work Load

In addition to the light-traffic derivatives (4.8) and (4.10) for the station-

ary mean workloads E Z and E Ẑ now we give corresponding light-traffic
derivatives for the distributions of Z and Ẑ, respectively. For queueing
systems without server vacations, a similar result has been obtained in [32].

First we consider the conditional distribution of the work load Z under
the condition that the server is busy with serving a customer, i.e. that
W ({0, 1}) > 0. From the rate conservation law for stationary processes with
stationary embedded point process, it follows that (see, e.g., formula (2.1) in
[26])

(4.11) P (Z > x|W ({0, 1}) > 0) = 1−
∫ x

0
P0(Z ≤ x− u) dFe(u),

for every x ≤ 0, where P0 denotes the Palm probability measure taken
with respect to the stationary point process of arrival epochs, and Fe is the
distribution function of stationary residual service time given by

(4.12) Fe(x) = e−1
1

∫ x

0
(1− F (u)) du.
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From (4.1) we get

(4.13) lim
a→0

P0(Z ≤ x) = 1,

for every x ≥ 0. Thus,

(4.14) lim
a→0

P (Z > x|W ({0, 1}) > 0) = 1− Fe(x).

Furthermore, from (4.11) and (4.12) we get

E (Z| server is busy) = E 0Z +
e2
2e1

.

Assume now, additionally to (4.2), that

(4.2′) Z ≤ Ṽ and Ẑ ≤ Ṽ for all sufficiently small a

which is fulfilled for the same class of arrival processes that satisfy (4.2).
Then lima→0 E 0Z = 0 and, consequently,

(4.15) lim
a→0

E (Z| server is busy) =
e2
2e1

.

which is in accordance with the intuition. Moreover, because

P ( server is busy ) = ρ

for all sufficiently small a, from (4.8) and (4.15) we get that

(4.16) lim
a→0

E (Z| server is idle )

(aγ)e1
= 1.

Now, let us discuss the work load Ẑ. For this purpose, we again consider the
auxiliary single-server queue with “fictive” service time J + S of a random
customer introduced in Section 4.1. Then, Takacs’ formula on the relation-
ship between virtual and actual workload in stationary single-server queues
(see e.g. Theorem 4.5.1 of [16]) gives

(4.17)

P (Ẑ > x)

= aE0(J + S)

(

1−
1

E0(J + S)
E0min

(

J + S, (x− Ẑ)+
)

)

for every x ≥ 0, where y+ = max(0, y). From (4.1) and (4.2’) it follows that

lim
a→0

E0min
(

J + S, (x− Ẑ)+
)

= lim
a→0

E0min(J + S, x)

= lim
a→0

∫ x

0
P0(J + S > u) du =

∫ x

0
P0(J0 + S > u) du,
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where the random variable J0 is independent of S, and uniformly distributed
on [0, α] for the polling-server model, and on [0, α

2
] for the greedy-server

model, respectively. Moreover, lima→0 E 0(J + S) = E 0(J0 + S) = E 0J0 +
e1. Thus, we get the light-traffic derivative

(4.18)
lim
a→0

P (Ẑ > x)

a

= (E0J0 + e1)
(

1−
1

E0J0 + e1

∫ x

0
P0(J0 + S > u) du

)

,

where E 0J0 = γ . This is in accordance with the light-traffic derivative
(4.10) for the expectation E Ẑ.
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