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Abstract

Counting the number of independent sets is an important problem in
graph theory, combinatorics, optimization, and social sciences. However,
a polynomial-time exact calculation, or even a reasonably close approxi-
mation, is widely believed to be impossible, since their existence implies an
efficient solution to various problems in the non-deterministic polynomial-
time complexity class. To cope with the approximation challenge, we ex-
press the independent set counting problem as a rare-event estimation
problem. We develop a multilevel splitting algorithm which is generally
capable of delivering accurate results, while using a manageable computa-
tional effort, even when applied to large graphs. We apply the algorithm
to both counting and optimization (finding a maximum independent set)
problems, and show that it compares favourably with the existing state
of the art.

Keywords— Independent sets, Networks, Counting problem, Rare-event
simulation, Multilevel Splitting, Markov chain Monte Carlo, Sequential impor-
tance sampling

1 Introduction

Given a finite undirected graph G = (V,E) with vertex set V and edge set E, a
k-cardinality independent set (k-IS) is a vertex subset I ⊆ V such that |I| = k
and no two vertices from I are adjacent in G. A maximum independent set
(max–IS) is defined as the largest possible independent set for a given graph G.
The max-IS cardinality is called the graph’s independence number and denoted
by α(G) [24]. In this paper, we consider the independent set counting problem
(#IS). Namely, given G and a set K ⊆ {0, . . . , |V |}, we ask for the total number
of k-IS’s in G for all k ∈ K. In particular, we distinguish between three special
cases of the #IS problem. Namely, the #k-IS problem, which is defined for a
specific 0 ≤ k ≤ |V |; the #all-IS problem, for counting all independent sets of
G, note that in this case — K = {0, . . . , |V |}; and the max-IS problem defined
above. It is worth noting that the problem of finding a graph’s independence
number is a special case of the #IS counting problem, since one can ask if there
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exists an independent set of cardinality k for each 0 ≤ k ≤ |V |, and thus find
the corresponding α(G).

While #IS is a fundamental problem in graph theory and theoretical com-
puter science [32], it also has many real-life applications. In particular, finding
the distribution of different-cardinality independent sets in G is equivalent to
counting the number of cliques in G’s complement graph. These are of great
interest to the analysis of social networks [1, 21, 34]. Under this setting, a group
of individuals that share the same interests can be modelled by a correspond-
ing clique in a graph. If, for example, one would like to target such groups,
say via an advertisement or other social activity, a full-enumeration procedure
of corresponding cliques is of great importance. However, such a routine can
be extremely time consuming if the number of these cliques is large. Thus,
knowledge of the distribution of the number of different-sized cliques can be
very beneficial for determining the computational effort of a full-enumeration
procedure. A similar idea of using counting estimators to probe the efficacy of
backtracking algorithms is discussed in a seminal paper of [35].

In addition, the ubiquitous SAT (satisfiability) problem is a special case of
#IS [16, 37, 50]. In particular, SAT can be reduced to the problem of finding
the independence number α(G) of an induced graph G. The SAT problem is
extensively used for handling important search and optimization problems in
both computer science and operational research. In particular, some of the
common problem domains are automated planning and scheduling [42, Chapter
7], automatic test pattern generation [39], and pipelined microprocessors [10].
Thus, the problem of finding a graph’s independence number, can be of interest
to operational research and first-order logic communities.

The #IS counting problem belongs to the #P complexity class introduced in
[53], so an exact polynomial-time solution will imply P = NP [51]. Despite some
recent advances [55], the #IS problem remains hard for graphs with maximum
degree ∆ > 5. In fact, it was shown in [49] that there is no polynomial time
approximation scheme for approximately counting independent sets on graphs
of maximum degree ∆ = 6, improving the previous bound of ∆ = 24. Unfortu-
nately, even a restricted case — the max-IS, is NP-hard [40]. Today, the most
efficient exact algorithm for solving the max-IS problem runs in O

(
1.2127|V |

)

time [9]. Moreover, for a general graph G, α(G) cannot be approximated to a
constant factor in polynomial time, unless P = NP [5].

There exist two basic approaches for handling #P counting problems: (1)
Markov Chain Monte Carlo (MCMC) [8, 30, 44, 45] and (2) Sequential Impor-
tance Sampling (SIS) [33, 15, 6, 7, 14, 47]. While MCMC methods dominate the
field of counting approximations, the SIS-based approach can be a very powerful
alternative. For example, [52] introduced a probabilistic relaxation technique,
which is used to construct a set of good importance probabilities using Dynamic
programming (DP). For the problem of counting all independent sets (#all-IS)
in a graph, this specialized SIS algorithm was shown to outperform the existing
state of the art techniques of [25, 26, 48] for counting the number of solutions
in general conjunctive normal form (CNF) formulas.
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Here we develop a much more flexible approach for the solution of the #IS
problem, in the sense that it allows the handling of a variety of counting and
optimization tasks; namely, #k-IS, #all-IS, and max-IS. The technique is based
on Multilevel Splitting (MS) [31, 23, 8], and it is suitable for rare-event prob-
ability estimation. The latter is shown to be equivalent to the #IS counting
problem in Section 2.

The main splitting idea can be briefly summarized as follows. Given a state
space X and a subset of interest X ∗ ⊆ X (such that |X ∗| ≪ |X |), find a
performance function from X to R that partitions the space into decreasing
cardinality level-sets. Then, the problem of sampling a rare X ∈ X ∗, becomes
one of generating a succession of events that are not rare. Namely, we initiate
a random walk on these level-sets, which starts at X and ends at the smallest
one (X ∗), with high probability. This stochastic process is generated using an
MCMC sampler, which reproduces (splits) particles from each level set. While a
brief review of the MS algorithm is given in Section 3, it is worth noting that MS
was generalized in [8] to approximate a wide range of rare-event, optimization
and counting problems. For a comprehensive review, we refer the reader to
[38, 43] and [47, Chapter 4].

In this paper we develop an adaptation of the general MS algorithm for the
#IS problem. The proposed method is computationally efficient, enjoys a good
practical performance and, similar to [27], has a probabilistic lower bound on
its output. The latter allows us to reliably handle large graph instances.

The rest of the paper is organized as follows. In Section 2 we formulate
the #IS counting problem through a random sampling procedure and explain
the corresponding rare-event probability estimation. In Section 3 we give a
brief introduction to the MS algorithm, show that it can be applied to all types
of #IS counting problems (#all-IS, #k-IS, and max-IS), and describe a set
of probabilistic lower bounds. We report our numerical findings in a detailed
experimental analysis in Section 4. To do so, a freely available research soft-
ware package called IsSplit was developed. Our benchmark study indicates the
following.

1. For the problem of counting all independent sets, the proposed MS algo-
rithm outperforms the SIS procedure of [52] for non-random graphs.

2. Combining the MS method with a simple binary search can be used to
solve the max-IS problem and, consequently, to find a graph’s indepen-
dence number.

3. Probabilistic lower bounds (given in Section 3) allow a faster approxima-
tion of the distribution of k-IS’s, and thus save considerable computation
effort. The latter allows the analysis of non-trivial graph instances with
hundreds of vertices. To the best of our knowledge, there exists no method
today that is able to perform this task on large graphs.

Finally, in Section 5 we summarize our findings and discuss possible direc-
tions for future research.
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2 Problem formulation

To start with, we examine an important object which gives a full specification of
the number of independent sets in a graph — the Independence Polynomial (IP)
[29]. The IP is a useful indicator of how difficult it is to estimate the number of
independent sets. We also find it helpful for benchmarking the MS algorithm.

2.1 The independence polynomial

The IP takes the form

IP(G, x) =

α(G)
∑

k=0

sk x
k,

where sk is the number of independent sets of cardinality k in G, and α(G) is
the independence number.

Although the #IS problem is generally hard, we know the exact IP analyti-
cally for some specific graph topologies. One such graph is called the n-Andrásfai
graph (An) [2], which is a circulant graph on 3n − 1 nodes. The An’s edges
are defined through the vertex ordering (v1, . . . , v3n−1), such that for any two
vertices vi, vj with 1 ≤ i < j ≤ 3n−1, an edge between vi and vj exists if (j− i)
mod 3 = 1. An example A4 graph is shown in Figure 1.

Figure 1: The A4 graph.

While various attractive properties of the An graph are available in [24,
Chapter 6.10-6.12], our interest is focused on its IP, which is equal to [41]

IP(An, x) = 1 + (3n− 1)x(x+ 1)n−1. (1)

Next, we reduce the #IS counting problem to the problem of estimating the
probability of selecting an independent set uniformly at random.

2.2 The probabilistic set-up

Let V = {v1, . . . , vn} be a graph’s vertex set and let [V ]k := {A ⊆ V : |A| = k}
be the set of all vertex subsets having cardinality k. Consider the uniform
distribution on the [V ]k set, and let X = {X1, . . . , Xk} be a uniform random
assignment from [V ]k. Finally, let ℓ be the probability that X is an independent
set. Then, the number of k-IS’s, (sk), is equal to

(
n
k

)
ℓ. Thus, estimation of
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sk can be achieved through estimation of ℓ. The Crude Monte Carlo (CMC)
procedure for the estimation of ℓ is summarized in Algorithm 1.

Algorithm 1 CMC Algorithm for estimating ℓ

Input: A graph G = (V,E), 1 ≤ k ≤ |V |, and a sample size N ∈ N.
Output: Unbiased estimator of ℓ.
1: for t = 1 to N do

2: Choose Xt uniformly at random from [V ]k.
3: if Xt is an independent set in G then

4: Yt = 1,
5: else

6: Yt = 0.
7: end if

8: end for

9: return: ℓ̂CMC = N−1
∑N

t=1
Yt.

Unfortunately, when working with a general graph, ℓ can be very small (say
less than 10−10). In this case, this probability is so tiny that for a reasonable
sample size N (such as N ≈ 106), the random variables Y1, . . . , YN are all 0 with

high probability, and the resulting estimator in Algorithm 1 is thus ℓ̂CMC = 0.
This CMC issue is well known and is called the rare-event probability es-

timation problem [3, 46]. Under the rare-event setting, a main measure of

algorithmic efficiency for an unbiased estimator ℓ̂ is the Relative Error (RE),

which is defined [43] by RE =

√

Var(ℓ̂)
E[ℓ̂]

, also called the coefficient of variation

(CV).
Consider an A15 graph as an example of a graph that falls into the rare-

event trap when applying the CMC procedure in Algorithm 1. The graph’s IP
in (1) will reveal that there are 44 independent sets of cardinality 15. However,
since the A15 graph has 44 vertices, ℓ15 = 44/

(
44
15

)
≈ 1.91× 10−10. From this,

we can calculate the sample size (N) that is required to reach a modest 10%
RE. In particular, as RE ≈ 1/

√
Nℓ for small ℓ, the sample size should satisfy

N ≥ 5.23× 1011.
While such anN is clearly unmanageable from the perspective of the required

computation effort, we overcome this issue by adapting the MS algorithm of [8]
for the #IS counting problems. The general splitting framework is discussed
next.

3 Multilevel splitting

We consider the following setting. Let X and X ∗ ⊆ X be sets such that
|X ∗| ≪ |X |, and suppose that the probability ℓ = |X ∗|/|X | is to be estimated.
Recall that the main idea of MS is to design a sequential sampling plan that de-
composes the “difficult” problem of sampling from X ∗ into a number of “easy”
ones associated with a sequence of subsets in the X sampling space. A general
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MS framework is summarized below.

1. Level-sets. Find a sequence of sets X = X0 ⊇ · · · ⊇ XT = X ∗, and define a
performance function S : X → R such that the subsets Xt can be written
as level sets of S for levels

∞ = γ0 ≥ γ1 ≥ · · · ≥ · · · ≥ γT = γ, (2)

that is, Xt = {x ∈ X : S(x) ≤ γt} for t = 0, . . . , T . Then, ℓ is given by

ℓ =
|X ∗|
|X | =

T∏

t=1

|Xt|
|Xt−1|

=

T∏

t=1

P (S (X) ≤ γt | S (X) ≤ γt−1) = P (S(X) ≤ γT ) .

2. Conditional probability estimation. For each t = 1, . . . , T , develop an
efficient estimator ĉt for the conditional probabilities:

ct = P (S(X) ≤ γt | S(X) ≤ γt−1) . (3)

To avoid the rare-event problem at the intermediate levels t = 1, . . . , T ,
we assume that the sets {Xt} are specifically designed such that the {ct}
are not too small, that is, ct is not a rare-event probability.

To put the #IS problem into the MS framework, we must address the definition
of the level sets and the procedure of estimating the conditional probabilities
in (3).

1. The #IS level-sets. Given a graph G, let X be the set of all vertex subsets,
and let X ∗ be the set of all independent vertex subsets. In this paper
we define S(x) as the number of adjacent vertices in x ∈ X . For this
performance function, it holds (see the level-sets definition above) that
X0 = {x ∈ X : S(x) ≤ ∞}, and X ∗ = {x ∈ X : S(x) = 0}, respectively.

2. The #IS conditional probability estimation. For each t = 2, . . . , T , we esti-
mate the conditional probability ct in (3) via N uniform random samples
from Xt−1. In particular, the estimate ĉt is equal to the number of these
samples that fall into Xt divided by N . This uniform sampling on the
Xt−1 set is achieved in Algorithms 3 and 4 via the MCMC Gibbs sampler
[11, 8, 47].

The general MS procedure (which provides an unbiased estimator of ℓ [8]) is
given in Algorithm 2.

Remark 1 (Performance function selection). It is important to note that a
particular choice of performance function can have a crucial impact on the per-
formance of the MS algorithm (see Example 4.5 in Section 4). We refer to
[18, 19] for additional discussion.

Note that the cardinality parameter k in Algorithm 2 is marked as optional.
The latter is due to the fact that the MS algorithm is capable of operating in
two counting modes. Namely, it can perform a counting estimation of both #k-
IS and #all-IS. Naturally, when we solve the #all-IS problem, the parameter
k is irrelevant. The counting mode is controlled via the corresponding Markov
transition step of Algorithm 2 (line 8), and is discussed next in detail.
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Algorithm 2 MS Algorithm for estimating ℓ

Input: A graph G = (V,E), 1 ≤ k ≤ |V | (optional), a sequence of levels γ1, . . . , γT , a
performance function S : X → R, and a sample size N ∈ N .

Output: Unbiased estimator of ℓ.
1: Initialization: Generate N independent samples V0 = {X1, . . . , XN} uniformly

from X . Let W1 ⊆ V0 be the subset of elements X in V0 for which S (X) ≤ γ1
holds (that is, W1 is an elite population of particles), let N1 be the size of W1,
and set ĉ1 = N1/N .

2: for t = 1 to T − 1 do

3: Draw Ki ∼ Bernoulli(0.5), for i = 1, . . . , Nt, such that
∑Nt

i=1
Ki = N mod Nt.

4: for i = 1 to Nt do

5: Set a splitting factor Sti = ⌊N/Nt⌋ + Ki, where ⌊x⌋ is the floor function.
Note that Ki is just a random number (0 or 1) that ensures that the Vt set
contains exactly N samples, i.e., that

∑Nt

i=1
Sti = N holds.

6: Set Yi,0 = Xi.
7: for j = 1 to Sti do

8: Draw Yi,j ∼ κt (y | Yi,j−1), where κt is a Markov transition density
whose stationary distribution is the uniform distribution on Xt (we describe
this in Section 3.1).

9: end for

10: end for

11: Set the population

Vt = {Y1,1, . . . ,Y1,St1
, · · · ,YNt,1, . . . ,YNt,StNt

}.

Note that Vt contains N elements.
12: Let Wt+1 ⊆ Vt be the subset of elements of Vt for which S (Y) ≤ γt+1, and let

Nt+1 be the size of new population Wt+1.
13: Estimation: Set ĉt = Nt+1/N .
14: end for

15: return: ℓ̂ =
∏T

t=1
ĉt.

3.1 The Gibbs sampler

Algorithms 3 and 4 introduce the MCMC steps that are required for handling
the #k-IS and #all-IS problems, respectively.

Remark 2 (Sampling considerations). Ideally, at each step 1 ≤ t ≤ T , we
would like to sample from the uniform probability density function (pdf) pγt

(x)
defined on {x ∈ [V ]k : S(x) ≤ γt} and the uniform pdf gγt

(x) defined on
{x ⊆ V : S(x) ≤ γt}. Since such a direct generation is hard, we resolve this
by using the corresponding Gibbs samplers. In particular, Algorithm 3 samples
consecutively from the conditional pdfs pγt

(xi | x1, . . . , xi−1, xi+1, . . . , xk), 1 ≤
i ≤ k. The latter is not very difficult to sample from, since it only requires one
to generate Xi ∈ V \ {x1, . . . , xi−1, xi+1, . . . , xk} uniformly at random, subject
to the constraint that the resulting X = (x1, . . . , xi−1, Xi, xi+1, . . . , xk) lies in
{x ∈ [V ]k : S(x) ≤ γt}. In other words, we require that S(X) ≤ γt holds.
Moreover, in order to implement the Gibbs sampling in Algorithm 4, we generate
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from the conditional pdf gγt
(1{vi∈x} | x), 1 ≤ i ≤ |V |. Namely, given x, we

form two sets: X̃′ = x ∪ {vi}, and X̃′′ = x \ {vi}. If both X̃′ and X̃′′ belong
to {x ⊆ V : S(x) ≤ γt}, we accept each with probability 1/2. Otherwise, we
accept X̃′′, since it always holds that S(X̃′′) ≤ γt.

Algorithm 3 Gibbs sampler for sampling uniformly from the Xt set in the
#k-IS mode.

Input: A graph G = (V,E), a threshold value γt, and an element X ∈ [V ]k such that
S(X) ≤ γt.

Output: X̃ distributed approximately uniformly on Xt.
1: Set X̃ = X. (Optionally, set X̃ to be a random permutation of X.)
2: for i = 1 to k do

3: Set V ′ = V \ X̃, A = {Xi}, X̃ = X̃ \ {Xi}.
4: for all v ∈ V ′ do

5: if S
(

X̃ ∪ {v}
)

≤ γt then

6: A = A ∪ {v}.
7: end if

8: end for

9: Choose X̃i uniformly at random from A (with probability 1/|A|), and set X̃ ∪
{X̃i}.

10: end for

11: return X̃.

Algorithm 4 Gibbs sampler for sampling uniformly from the Xt set in the
#all-IS mode.

Input: A graph G = (V,E), a threshold value γt, and an element X ∈ X , such that
S(X) ≤ γt.

Output: X̃ distributed approximately uniformly on Xt.
1: Set X̃ = X.
2: for i = 1 to |V | do
3: Set X̃′ = X̃ ∪ {vi} and X̃′′ = X̃ \ {vi}.
4: if S(X̃′) > γt and S(X̃′′) ≤ γt then

5: Set X̃ = X̃′′.
6: end if

7: if S(X̃′) ≤ γt and S(X̃′′) ≤ γt then

8: Set X̃ = X̃′ or X̃ = X̃′′ with equal probability.
9: end if

10: end for

11: return X̃.

The computational complexities of Algorithms 3 and 4 are discussed in
Proposition 1.

Proposition 1 (Computational implementation). For a given graph G = (V,E),
Algorithm 3 and Algorithm 4 can be completed in O(k|V ||E|) and O(|E|) time,
respectively.

8



Proof. Given a graph G = (V,E) and a subset of vertices X ⊆ V , define
Ng(v,X) (for any v ∈ V ) to be the set of all vertices in X that are adjacent to
v; that is,

Ng(v,X) = {u : (v, u) ∈ E, u ∈ X}.
Then, S(X ∪ {v /∈ X}) and S(X \ {v ∈ X}) are equal to S(X) + 2 |Ng(v,X)|
and S(X) − 2 |Ng(v,X)|, respectively. The latter holds, since when we add
(remove) a vertex v to (from) X, the corresponding performance is increased
(decreased) by 2 multiplied by the number of v′s adjacent vertices that are in X.
Moreover, provided that S(X) is known and that G is given by an adjacency
matrix, the calculation of S(X ∪ {v}) and S(X \ {v}), can be performed in
O(deg(v)) time, where deg(v) stands for v′s degree. Combining this with the
fact that, for any G = (V,E),

∑

v∈V deg(v) = 2|E| holds, we complete the
proof by noting that the time complexities of Algorithms 3 and 4 are given by
kO

(∑

v∈V deg(v)
)
= O(k |E|) and ∑v∈V deg(v) = O(|E|), respectively.

Proposition 1 opens a way for the time complexity analysis of the MS Al-
gorithm 2. In particular, the initialization step can be performed in O(N |E|)
time and the MCMC step is performed for O(NT ) times during the algorithm
execution. Hence, the overall complexity is equal to O(kTN |E|) and O(TN |E|)
for #k-IS and #all-IS counting modes, respectively.

The above computational complexity consideration is of practical impor-
tance. The next section discusses the asymptotic efficiency of Algorithm 2.

3.2 The MS algorithm efficiency

There exists a well-known asymptotic result [20, 12, Proposition 3], stating that

for quite general splitting estimators ℓ̂

√
N

ℓ̂− ℓ

ℓ

D−−−−→
N→∞

N (0, σ2),

where σ2 depends on the complicated way on the dependence structure of
the particles in the {Vt}0≤t≤T−1 sets. Under an idealized setting of parti-
cle independence (also considered in Theorem 1 below), σ2 simplifies to σ2 =
∑T

t=1 (1 − ct)/ct [12].
In this paper, we consider the MS algorithm efficiency via the squared coeffi-

cient of variation of the output ℓ̂; that is CV2 = Var
(

ℓ̂
)

/
[

E ℓ̂
]2

. Following [33],

a randomized algorithm is considered efficient, if its output CV2 is bounded by
a polynomial in the algorithm input. Such an algorithm is called a fully poly-
nomial randomized approximation scheme and this result is basically the best
one can hope to achieve when dealing with #P problems such as #IS, for which
an efficient analytical solution is not known to exist.

Although one cannot expect to show such a result for a general #IS problem,
Algorithm 2 can be analyzed under some simplified independence assumptions.
In particular, we obtain an exact result about the MS’s estimator in the idealized
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situation of [12] where each step begins with independent particles. This would
typically correspond to the situation where at each step the Gibbs sampler is
applied an infinite number of times. The theoretical result below provides some
insight into the working of the MS algorithm.

Theorem 1 (Efficiency of MS Algorithm 2). Suppose that all particles in Vt,
0 ≤ t ≤ T − 1, are independent of each other and that ct = O(1/PT ), where PT

is a polynomial in T . Then, the MS algorithm is computationally efficient [33];
in particular, CV2 = e− 1.

Proof. The analysis is by obtaining the lower and the upper bounds for the first
and the second moments of ℓ̂, respectively.

1. First moment. From the unbiasedness of the MS algorithm,

E

[

ℓ̂
]

= ℓ =

T∏

t=1

ct,

and hence
(

E

[

ℓ̂
])2

=

(
T∏

t=1

ct

)2

=

T∏

t=1

c2t . (4)

2. Second moment. By the theorem assumption, the samples in Vt−1 are
independent for all t = 1, . . . , T , and hence the (random) cardinalities of
Wt sets are binomially distributed according to Nt ∼ Bin(N, ct). Also,
{ĉt} are independent. Thus, for all t = 1, . . . , T ,

E
[
ĉ2t
]
= E

[(
Nt

N

)2
]

=

(
ct(1− ct)

N
+ c2t

)

, (5)

and letting cmin = min1≤t≤T {ct}, we arrive at

E

[

ℓ̂2
]

= E





(
T∏

t=1

ĉt

)2


 =

T∏

t=1

E
[
ĉ2t
]

=
︸︷︷︸

(5)

T∏

t=1

(
ct(1− ct)

N
+ c2t

)

(6)

=

T∏

t=1

c2t

(

1 +
(1 − ct)

Nct

)

≤
T∏

t=1

c2t

T∏

t=1

(

1 +
1

Nct

)

≤
(

1 +
1

Ncmin

)T T∏

t=1

c2t ≤
︸︷︷︸

Ncmin≥T

e

T∏

t=1

c2t ,

where the last inequality follows from the well-known identity

(1 + 1/n)
n ≤ e, n > 0.
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Combining (4) and (6) yields

CV2 =
Var

(

ℓ̂
)

[

E ℓ̂
]2 =

E

[

ℓ̂2
]

[

E ℓ̂
]2 − 1 ≤ e

∏T
t=1 c

2
t

∏T
t=1 c

2
t

− 1 = e − 1, (7)

and we complete the proof by noting that the required sample size N is poly-
nomial in T , since (7) holds for N = ⌈T/cmin⌉ = O(PT ).

We proceed with a simple idea that allows Algorithm 2 to discover a graph’s
independence number. The proposed adaptation is a straightforward binary
search on the independent set cardinality 1 ≤ k ≤ |V |. The procedure is
summarized in Algorithm 5.

3.3 Finding a graph’s independence number

Algorithm 5 Binary search algorithm for estimating the graph’s independence
number

Input: A graph G = (V,E), and sample size N ∈ N.
Output: An estimation of α(G).
1: Set low = 1 and high = |V |.
2: while low < high do

3: Set mid = ⌈low + high⌉/2.
4: Let ℓ̂mid be the estimated number of independent sets of cardinality k in G

which is obtained using the MS Algorithm 2.
5: if ℓ̂mid > 0 then

6: high = mid.
7: else

8: low = mid.
9: end if

10: end while

11: Set α̂(G) = mid.
12: return α̂(G) as an approximation of α(G).

Noting that Algorithm 5 will execute the main MS method (Algorithm 2),
for O (log2 |V |) times, and combining this with the MS running time, yields the
overall time complexity of O (log2 (|V |)TN |V ||E|).
Remark 3 (The solution to the max-IS problem). It is worth noting that
Algorithm 5 provides a solution to the max-IS problem, too. All we need to do
is to record an α(G)-cardinality independent set from the last execution of the
MS Algorithm 2 in line 4 of the binary search procedure.

From a practical point of view, an interesting research question is to find
the distribution of k-cardinality independent sets in a graph G = (V,E) for
k = 1, . . . , |V |. Namely, to discover a good approximation to each coefficient
of G’s independence polynomial. Taking into consideration the computational
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complexity of such a procedure for large graphs, a reasonable approach is to use
a probabilistic lower bound, which was first introduced by [27], and is provided
next.

3.4 Probabilistic lower bounds

When running a Monte Carlo algorithm which provides an unbiased estimator,
one can obtain a probabilistic lower bound [27]. In particular, the following
holds.

Theorem 2 (Probabilistic lower bounds). Let Z1, . . . , ZR be independent re-
alizations of random variables Z such that E (Z) = µ. Then, for a constant
0 ≤ ω < 1, the following probabilistic lower bounds exist.

1. Minimum scheme bound (MSB):

P

(

min
1≤r≤R

[
Zr

η

]

≤ µ

)

≥ ω, where η =

(
1

1− ω

) 1

R

.

2. Average scheme bound (ASB):

P

([
1
R

∑R
r=1 Zr

η

]

≤ µ

)

≥ ω, where η =
1

1− ω
.

3. Maximum scheme bound (MASB):

P

(

max
1≤r≤R

[
Zr

η

]

≤ µ

)

≥ ω, where η =
1

1− ω
1

R

.

4. Permutation scheme bound (PSB):

P




 max

1≤r≤R









1

η

r∏

j=1

Zj





1/r



 ≤ µ




 ≥ ω, where η = 1/(1− ω).

5. Order Statistics bound (OSB):

P




 max

1≤r≤R









1

η

r∏

j=1

O(R−j+1)
(
R
r

)





1/r



 ≤ µ




 ≥ ω,

where η = 1/(1− ω), and
(
O(1), . . . , O(R)

)
is an order statistic over the

sample set (Z1, . . . , ZR), such that for 1 ≤ r1 < r2 ≤ R, it holds that
O(r1) ≤ O(r2).
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Proof. See [27].
While these bounds are available after the first few independent runs of

both Algorithm 2 and the SIS relaxation method of [52], one should consider
the following limitation.

Remark 4 (Probabilistic lower bounds limitation). The quality (tightness) of
these bounds depends on the variance of the MS algorithm’s output. As noted
in [27], the MSB bound tends to decrease (unless the variance is very small)
when the number of samples grows. The ASB and MASB schemes are based on
the assumption that the sample average and maximum are likely to get larger
as more samples are drawn. However, the problem with the MSB approach is
that when the number of samples R increases, the η parameter increases as well,
and thus the lower bound decreases. As an alternative to the MSB sceme, the
PSB and the OSB bounds were introduced in [27].

Despite the above limitation, these bounds still introduce a very handy addi-
tion as we show in the numerical section. For example, our study indicates that
for the MS algorithm these bounds are tight and are generally within an order
of magnitude of the true result (or better) after only a few runs. A practical
recipe for the usage of probabilistic lower bounds is summarized in Remark 5.

Remark 5 (Probabilistic lower bounds in practice). Since the effort to calculate
the bounds is relatively cheap compared to the overall central processing unit
(CPU) time, we propose computing all the bounds from Theorem 2 and choosing
the one that provides the best performance, namely, the one that introduces the
highest lower bound. Then, we run the MS algorithm again and use the chosen
(best-performing) bound. We call such a bound a Probabilistic Maximal Lower
Bound (PMLB).

We complete this section by addressing two technical issues.

3.5 Implementation details

The MS algorithm parameters. The algorithm requires the specification of the
sample size N and the intermediate performance function thresholds γ1, . . . , γT ,
which can be done as follows. The parameter N can be determined by trial
and error, subject to the requirement that ĉt 6= 0 with high probability, for
t = 1, . . . , T . Also, to ensure the MS estimator’s unbiasedness, it is crucial to
fix the {γt} levels in advance. To determine the levels, we perform a single
pilot run of a slightly modified version of Algorithm 2 using a so-called rarity
parameter ρ. The ρ parameter specifies the fraction of the number of elements
in Vt that will proceed to the next level. Then, we fix γt to be equal to the worst
performance value of these next-level samples. As a consequence, this pilot run
helps us to establish a set of threshold values adapted to the specific graph;
see [8] for further details. One should keep in mind that the success of the MS
algorithm is dependent on the values of the conditional probabilities {ct}1≤t≤T

(and thus the corresponding estimators {ĉt}1≤t≤T ). In particular, the values of
ct should not be very small (see Example 4.5 in Section 4). In such a scenario,
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the corresponding sample size N will be manageable (from a computational
point of view), and the MS algorithm will be efficient as illustrated in the proof
of Theorem 1. Finally, the MS algorithm success is not very sensitive to the
particular choice of ρ. Nevertheless, ρ will affect the number of levels and thus
the total execution time. In particular, the number of MS levels is equal to
O (⌊ln ℓ/ ln ρ⌋) [13].

Controlling the MS algorithm error. A common practice when working with
a Monte Carlo algorithm that outputs an unbiased estimator is to run it for R
independent replications and report the average ℓ̂ = R−1

∑R
r=1 ℓ̂r. In this paper,

the quality of ℓ̂ is measured as follows.

• If ℓ is available (that is, we perform a benchmarking of the MS algorithm
for an instance with a known IP) we use a Relative Experimental Error
(RER) [17], which is defined by

RER =
∣
∣
∣ℓ̂− ℓ

∣
∣
∣ · ℓ−1.

• If ℓ is not available (which is generally the case), the confidence interval
is measured via the RE.

4 Numerical study

We investigate the accuracy of the MS algorithm and the SIS graph relax-
ation method [52], when applied to several representative graph instances, both
random and non-random. The MS and the SIS algorithms were implemented
in C++ packages called IsSplit and IsSIS, respectively; these software kits are
freely available along with all examples from the author’s web-page at http:

//www.smp.uq.edu.au/people/RadislavVaisman/#software. Our tests were
executed on a Intel Core i7-3770 quad-core 3.4GHz processor with 8GB of RAM,
using Windows 7 (64 bit version) and a MSVC++ 11.0/1700 compiler version.
Our implementation of all software packages is in a single-thread, though par-
allelization would be not very hard to add. The rest of the section is structured
as follows.

1. The first graph under consideration is the Andrásfai A35 graph. Recall
that its IP is known, so this example enables the precise benchmarking of
the MS and the SIS algorithms accuracy.

2. To investigate the algorithms’ performance on both random and non-
random graphs, we consider Hypercube [28] and Waxman [54] graphs.
These graphs provide a more realistic challenge, since we examine a few
instances of different sizes, and thus the proposed methods’ speed and
accuracy can be judged.

3. Next, we consider four non-trivial benchmarks from https://turing.cs.

hbg.psu.edu/txn131/clique and show that MS identifies their indepen-
dence number correctly. One of these instances does not have an analytical
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solution, as only a lower bound is known. Using the MS method, we con-
jecture that the known lower bound is equal to the true independence
number.

4. We finish our numerical study with a cautionary example. In particular,
we consider a very simple book graph [22], for which the MS algorithm will
fail to solve the max-IS problem. While it is not very surprising that the
MS method can fail for certain graph instances [40], we discuss the reason
for this problem, and suggest a direction for a possible improvement.

MS parameters

We ran a number of preliminary benchmarks (not reported here) to determine
reasonably robust parameter settings for N and ρ. The following parameters
were used for all results described here.

• For the MS pilot run, we take ρ = 20%.

• We set the sample size to be N = 1000, unless stated otherwise.

• In all experiments, we run R independent replications of the MS and the
SIS methods, until the RE is smaller than or equal to a 3% threshold.

• In experiments where the lower bound is reported, we use the PMLB.

4.1 The 35-Andrásfai graph

In this example we are interested in an exact benchmarking of the proposed MS
Algorithm 2 in the sense of RER, which is available via the A35’s IP in (1).
Next, we apply the MS and the SIS algorithms for solving the #all-IS problem.
Note that the SIS method cannot be adapted to #k-IS and max-IS, thus these
problems are solved with the MS algorithm only.

Solving the #all-IS problem

Figure 2 summarizes the performance of MS and SIS for counting all indepen-
dent sets of the A35 graph.

The SIS algorithm is faster. In particular, to reach the predefined 3% RE
threshold we need 3.6 seconds for SIS and about 95 seconds for MS. However, the
obtained MS and SIS estimators were equal to 1.761× 1012 and 3.074× 1011,
respectively, while the exact total number of independent sets in A35 (1), is
equal to 1.787× 1012. That is, SIS is underestimating the true quantity due
to its larger variance. Consequentially, the PMLB bounds of MS are tighter as
compared to the ones provided by the SIS method. We also tried to run the SIS
algorithm for a comparable running time, and executed it with 95 seconds time-
out. In this case, the SIS estimator is equal to 6.271× 1011, which is closer to
the analytical value. The exact RER of MS and SIS when reaching the 3% RE,
is 1.46% and 82.8%, respectively. In contrast, the 95 seconds SIS run decreased
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(a) The MS algorithm.
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(b) The SIS algorithm.

Figure 2: The total number of independent sets, the PMLB which is equal to
MSB for this problem, and the RE, as a function of the independent iteration
number R, obtained for the A35 graph with the MS algorithm 2(a) using N =
1000 and ρ = 0.2, and the SIS algorithm 2(b), respectively. The dashed line
stands for the analytical counting value of 1.787× 1012. The RE threshold for
both algorithms is 3%.

the RER to 64.9%. We conjecture that the inferior performance of SIS is due
to a special structure of Andrásfai graph, which is hard to approximate by the
SIS relaxation, and thus the importance probabilities calculated by the SIS’s
DP are not close to the real ones.

4.2 Solving the #k-IS problem

Figure 3 summarizes the results for estimating #k-IS’ of the A35 graph using
the MS method. In particular, it shows the entire distribution of independent
sets for different cardinalities. For each k, we run the MS algorithm until the
predefined RE threshold of 3% is reached. The overall CPU time used by the
MS algorithm is 15676 seconds. We examined the RER of the estimators via
the comparison with the coefficients of the A35’s IP, and found that it did not
exceed 6% for any 1 ≤ k ≤ 35.

Solving the max-IS problem

From the IP in (1), we learn that α(A35) = 35. Even though we managed
to estimate the number of independent sets of cardinality 35 while calculating
the distribution in Figure 3, it is of interest from the computational point of
view to apply the binary search Algorithm 5 for estimating α̂(A35). Table 1
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ŝk

Figure 3: The analytical (sk) and the estimated (ŝk) values of the k-cardinality
independent sets in the A35 graph as a function of the set size k. The MS
algorithm parameters are N = 1000 and ρ = 0.2. The RE threshold is set
to 3%.

summarizes the performance of Algorithm 5 for the A35 graph. Note that
α̂(A35) = α(A35) = 35, and that it is much faster to find than the entire
distribution in Figure 3.

Table 1: Performance of the MS Algorithm 5 on the A35 graph using N = 1000
and ρ = 0.2. The “# bin.” stands for the number of binary search calls to the
MS algorithm.

G α(G) α̂(G) # bin. CPU (s)

A35 35 35 7 109.2

Note that, for the max-IS problem, we are not interested in an unbiased
estimator, and consequently there is no need to obtain the fixed γt levels for
t = 1, . . . , T . That is, we can save the computational effort by using a pilot run
of the MS algorithm 2 in line 4 of Algorithm 5.

While the A35 example is interesting from a benchmarking point of view,
we next proceed with less trivial and larger examples to further examine the
performance of the MS algorithm.

4.3 The Hypercube and the Waxman graphs

In this section we consider two families of graphs, the Hypercube [28] and the
Waxman [54] graph. This example demonstrates the ability of the MS Algo-
rithm 2 to handle networks with several hundreds of vertices. A brief description
of these graph families is given below.

The d-Hypercube graph (Hd) is a regular graph with 2d vertices and d 2d−1

edges. In order to construct the Hypercube graph, label the 2d vertices with
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(a) The H4 graph. (b) The W16 graph.

Figure 4: An example of the Hypercube (H4) and Waxman (W16(0.91, 0.25))
graphs.

d-bit binary numbers, and connect every two vertices whenever the Hamming
distance between their labels is 1. An example H4 graph is shown in Figure 4(a).

The Waxman graph (Wn(q, s)) is a spatially embedded random graph, which
is used for modelling of real-world graphs [4]. This graph is constructed as
follows. Place n vertices in Euclidean space and connect every two vertices,
u and v, with probability q exp{−s ‖u − v‖}, where ‖u − v‖ is the Euclidean
distance between u and v. An example W16 graph is shown in Figure 4(b).

Throughout this section we work with six different Hypercubes and Waxman
graphs. Table 2 summarizes the graphs with their parameters.

Table 2: Summary of the graphs that are examined in Section 4.3: the Hyper-
cubes and the corresponding Waxman graphs with the same number of vertices
and edges.

Hd Wn(q, s) |V | |E|

H4 W16(0.91, 0.25) 16 32
H5 W32(0.55, 0.25) 32 80
H6 W64(0.29, 0.25) 64 192
H7 W128(0.18, 0.25) 128 448
H8 W256(0.09, 0.25) 256 1024
H9 W512(0.05, 0.25) 512 2304

To ensure a fair comparison, the random Waxman graphs are generated
subject to the constraint that they have the same number of vertices and edges
as the corresponding Hypercube graphs.

Solving the #all-IS problem

We run both the MS and the SIS algorithms on all 12 graphs. Since we do not
have analytical values for the Hypercube and the Waxman models, the RER is
not available. However, for the #all-IS problem there exists an asymptotic result
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for the Hypercube graphs [36]. In particular, for a d-dimensional Hypercube Hd:

lim
d→∞

#all-IS

22d−1
= 2

√
e.

We use the above equation to report ∆, which stands for the relative distance
of the counting estimator to the asymptotic value. Namely,

∆ =

∣
∣
∣2
√
e 22

d−1 − counting estimator of MS/SIS
∣
∣
∣

2
√
e 22d−1

.

Table 3: The total number of independent sets for the Hypercubes and the
Waxman graphs with the MS algorithm using N = 1000 and ρ = 0.2, and the
SIS algorithm, respectively. The RE threshold for both algorithms is 3%.

MS SIS

G R counting estimator ∆ CPU (s) R counting estimator ∆ CPU (s)

H4 11 716 1.52 × 10−1 0.13 50 753 1.08 × 10−1 1.20 × 10−4

W16 11 863 - 0.15 10 847 - 1.00 × 10−4

H5 25 2.55 × 105 1.81 × 10−1 0.98 223 2.58 × 105 1.94 × 10−1 0.097
W32 20 3.07 × 105 - 0.76 42 2.91 × 105 - 0.02

H6 35 2.01 × 1010 4.16 × 10−1 4.89 1306 2.04 × 1010 4.39 × 10−1 2.77
W64 50 2.48 × 1010 - 6.84 51 2.55 × 1010 - 0.09

H7 143 7.90 × 1019 2.99 × 10−1 81.1 9744 7.73 × 1019 2.71 × 10−1 92.4
W128 117 5.43 × 1019 - 65.8 166 5.96 × 1019 - 1.65

H8 296 1.22 × 1039 9.11 × 10−2 652 1.19 × 105 1.26 × 1039 1.22 × 10−1 7081
W256 290 1.62 × 1038 - 655 435 1.65 × 1038 - 24.7
H9 638 4.21 × 1077 1.03 × 10−1 6109 8.05 × 105 4.65 × 1077 2.18 × 10−1 4.12 × 105

W512 687 1.21 × 1072 - 6195 1005 1.20 × 1072 - 542

Table 3 summarizes the performance of the MS and the SIS algorithms
for the #all-IS problem. The MS and SIS counting estimators are in close
proximity to one another for all instances, and to the asymptotic value for the
Hypercubes. We can clearly observe that for the random Waxman graphs the
SIS algorithm is much faster. However, the (structured) Hypercubes appear to
be more challenging for the SIS method.

We conjecture that, similar to the A35 graph problem, this is due to the fact
that the SIS relaxation is not adequate for such structured graphs. For example,
when considering the H9 model, the SIS algorithm did not converge to the
predefined 3% RE threshold in a reasonable time. In particular, while the MS
algorithm converged to 3% RE in less than 2 hours, we stopped the SIS algorithm
execution after 4 days, but its RE was still about 8%. The corresponding
behavior of MS and SIS for the H9 model is summarized in Figure 5.

Solving the #k-IS problem

While acquiring the 3% RE estimators for large graphs is unmanageable in
the sense of computation effort, we can still get fairly good bounds using the
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Figure 5: The RE as a function of the independent iteration number R of MS
and SIS for the H9 model. MS and SIS converge to 3% and 8% RE, respectively.

PMLB. Our experiments indicate that the PMLB bound is tight, and it is much
cheaper to obtain. The top and the bottom rows of Figure 6 summarize the 3%
RE threshold and the corresponding PMLB results for estimating k-cardinality
independent sets for the Hypercube and the Waxman graphs with 16, 32, 64 and
128 vertices.
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Figure 6: Distribution of the number of independent sets in Hypercubes and
Waxman graphs using the MS algorithm with N = 1000 and ρ = 0.2. The RE
threshold is set to 3%, and the PMLB=MASB (for ω = 0.95) was constructed
using ten independent runs of the MS algorithm.

Encouraged by the fact that the PMLB is very close to the 3% estimators in
Figure 6, and since it is expensive to obtain the 3% RE estimators for the graphs
with 256 and 512 vertices (the overall CPU times for full distribution calculation
are given in Figure 8), we do it using PMLB only. Figure 7 summarizes the
results for estimating k-cardinality independent sets for the Hypercube and the
Waxman graphs with 256 and 512 vertices.
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Figure 7: Distribution of the number of independent sets in Hypercubes and
Waxman graphs using the MS algorithm with N = 1000 and ρ = 0.2. The
PMLB=MASB (for ω = 0.95) was constructed using ten independent runs of
the MS algorithm.

Figures 6 and 7 indicate that the Hypercube graphs have a larger indepen-
dence number. The latter can be useful in social network research, since this
might give a helpful indication of the clique distribution in structured versus
non-structured graphs such as Hypercubes and Waxman graphs.

Solving the max-IS problem

We do not know the independence number of Waxman random graphs. How-
ever, for Hypercubes it is known [56] that α(Hd) = 2d−1. Table 4 summarizes
the performance of the binary search Algorithm 5 applied to the Hypercube and
the Waxman models. The results indicate that for these cases (H4, . . . ,H9) the
MS algorithm is always able to correctly identify the independence number of
the Hypercube graphs.

Table 4: Performance of Algorithm 5 on the Hypercube and Waxman graphs
using N = 1000 and ρ = 0.2.

G α(G) α̂(G) # bin. CPU (s)

H4 8 8 4 0.22
W16 – 7 4 0.26
H5 16 16 5 1.38
W32 – 13 5 1.61
H6 32 32 6 13.5
W64 – 25 6 11.5
H7 64 64 7 104
W128 – 47 7 79
H8 128 128 8 957
W256 – 92 8 753
H9 256 256 9 9199
W512 – 172 9 6998

Next, we investigate the performance of Algorithm 5 for several non-trivial
benchmarks.
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Figure 8: The summary of CPU times that are needed to acquire the full inde-
pendent set distribution via the MS algorithm using N = 1000 and ρ = 0.2 for
3% RE threshold and the PMLB estimator, which is based on ten independent
runs. For the H8,H9,W256 and W512 graphs, the calculation is performed with
PMLB bounds only.

4.4 Determining the independence number for non-trivial

graphs

In this section we explore four benchmarks from https://turing.cs.hbg.psu.

edu/txn131/clique.html. The corresponding number of vertices, edges, and
the performance of Algorithm 5 applied to these graphs are summarized in
Table 5. The results indicate that the MS algorithm manages to solve these
problems correctly in a reasonable time.

Table 5: Performance of Algorithm 5 on the benchmark problems using the MS
algorithm with N = 1000 and ρ = 0.2.

G |V | |E| α(G) α̂(G) # bin. CPU (s)

keller4 171 9435 11 11 7 327
gen200_p0.9_44 200 17910 44 44 7 396
gen200_p0.9_55 200 17910 55 55 8 822
C125.9 125 6363 ≥ 34 34 7 96.1

Next, we are interested in checking if the independence number of C125.9
is indeed 34. This is an unsolved problem. However, we can use the following
idea to investigate the conjecture that α(C125.9) = 34. While the proposed
procedure certainly does not provide a formal proof, it can give some confidence
that the independence number is equal to 34. We do the following.

• Run the MS algorithm to count independent sets of cardinality k = 34
and obtain a counting estimate within some small RE.
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• During the execution of MS, accumulate unique independent sets of size
34.

• Finally, try to extend these accumulated cardinality 34 independent sets
with an additional vertex to obtain a 35-IS.

Using N = 10000 and ρ = 0.2, we run the MS Algorithm 2, until reaching
RE = 0.5% threshold. The resulting CPU time is 248102 seconds, and the
number of independent splitting iterations is R = 2233. While running the
MS algorithm, we also maintained the number of unique independent sets of
cardinality 34.

We managed to obtain 924 unique independent sets of size 34, but none could
be extended with an additional vertex to form a 35-IS. The counting estimator
delivers a value of 914.4, and we conjecture that we found all independent sets
of size 34, that is, α(C125.9) = 34. Figure 9 summarizes the convergence of MS.
Out of 2.234× 107 generated independent sets, the distribution of unique sets
is almost uniform over the 924 solutions.
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Figure 9: The total number of independent sets of cardinality 34 and the cor-
responding RE, as a function of the independent iteration number R, obtained
for the C125.9 graph via the MS algorithm using N = 10000 and ρ = 0.2. The
RE threshold is 0.5%.

We finish our numerical study by examining a simple graph, that serves as
a warning to a MS algorithm user. In particular, we investigate a book graph
[22].

4.5 The book graph

We consider the n-book graph Bn. An example 6-book graph is given in Fig-
ure 10.

23



Figure 10: The 6-book graph, B6.

The Bn graph is defined as the Cartesian graph product S(n+1) ×P2, where
S(n+1) is a star graph and P2 is the path graph on two nodes [22]. The Bn IP
is given by 2x(1 + x)n + (1 + 2x)n [41].

Using our regular MS parameter set, N = 1000 and ρ = 0.2, we executed the
distribution estimation experiment for the target RE threshold of 3%. Figure 11
summarizes the results. The exact RER is always less than 6% and the total
CPU time for this experiment is 6910 seconds.
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Figure 11: Distribution of independent sets in B50 graph using the MS algorithm
with N = 1000 and ρ = 0.2. The RE threshold is 3%.

Our experiment managed to obtain an estimator for the number of all in-
dependent sets of cardinality k, for 1 ≤ k ≤ 50. However, from the B50’s IP
we learn that the independence number is equal to 51, that is, there exists at
least one 51-IS that was not found by MS! Moreover, we tried to run the binary
search Algorithm 5 using both N = 10000 and N = 100000 sample sizes, but
the MS algorithm always failed to reveal a 51-IS.

The reason for this failure is as follows. Using the IP of the book graph, we
calculated the exact number of 50-cardinality and 51-cardinality independent
sets and got 1.1259× 1015 and 2 independent sets of cardinalities 50 and 51,
respectively. Recall the definition of our performance function S, which deter-
mines the level-sets; S(x) is defined to be the number of adjacent vertices in x.
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Consequentially, the MS will reach the final level for which S(·) = 0 with very
small probability, which is equal to 2/1.1259× 1015. This is due to the fact that
only two out of 1.1259× 1015 50-cardinality independent sets can be extended
to 51-IS, since the XT−1 level set is much larger than the last one — XT . Indeed,
comparing Figure 11 with Figures 3, 6 and 7, we can observe the much smoother
behavior of the latter ones. That is, using the MS performance function defined
in this paper, one should be careful, since only relatively smooth instances can
be handled reliably.
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Figure 12: The total number of independent sets of cardinality 51 and the cor-
responding RE, as a function of the independent iteration number R, obtained
for the B50 graph via the MS algorithm using N = 1000 and ρ = 0.2. The RE
threshold is 3%.

In order to fix this problem, we need to resort to the Bn book graph topology.
Denote the book central vertices by c and c′, and let U = {u1,1, . . . , u1,n} and
U ′ = {u′

1,1, . . . , u
′
1,n} be the sets of adjacent vertices to c and c′, respectively.

Then, Bn has only two possible maximum independent sets, namely {c ∪ U ′}
and {c′∪U}. Recall that when using the standard performance function, which
counts the number of adjacent vertices in a set, the MS algorithm will generally
fail to reach these favorable configurations. This can be repaired by introducing
a bigger penalty for taking both ui and u′

i (for any i = 1, . . . , n), when they are
adjacent. In our experiment, this penalty is equal to the number of graph edges.
Such a performance function will cause MS to prefer taking a central vertex
instead of an (ui, u

′
i) pair, and the MS algorithm converges. For example, using

the new performance function the binary MS Algorithm 5 finds the max-IS in
B50 after seven iterations.

A typical convergence pattern of the MS algorithm for counting of indepen-
dent sets of cardinality 51 in the B50 graph is summarized in Figure 12. Note
that we obtain ŝ51 ≈ 2.03, as expected.
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5 Conclusion

In this paper we introduced the Multilevel Splitting method for estimating the
number of independent sets and the independence number in a graph. We con-
structed the corresponding Gibbs samplers, analyzed their performance in the
sense of computational effort, and developed freely available software packages.
The proposed algorithms are not very hard to implement, and our numerical
study indicates that the practical performance is comparable with and some-
times better than currently existing state-of-the-art algorithms. In addition,
applying the probabilistic lower bounds from Section 3.4 allows the study of the
distribution of independent sets in graphs with several hundreds of vertices.

As for future work, we propose the following directions.

1. Specify graph topologies for which rigorous performance guarantees can
be obtained.

2. Develop different performance functions that can be used for non-smooth
graph instances. While it is definitely a challenging problem, a possible
research direction is to use the smoothed splitting version of [13].

3. From a practical point of view, it will be of interest to develop a software
package that runs on multiple CPUs or a GPU. This will allow us to
handle larger graphs, and thus have significant impact on the field of
graph analysis under the big-data setting.
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