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Abstract

Solving decision problems in complex, stochastic environments is often
achieved by estimating the expected outcome of decisions via Monte
Carlo sampling. However, sampling may overlook rare, but impor-
tant events, which can severely impact the decision making process.
We present a method in which a Normalizing Flow generative model
is trained to simulate samples directly from a conditional distribu-
tion given that a rare event occurs. By utilizing Coupling Flows,
our model can, in principle, approximate any sampling distribu-
tion arbitrarily well. By combining the approximation method with
Importance Sampling, highly accurate estimates of complicated inte-
grals and expectations can be obtained. We include several examples
to demonstrate how the method can be used for efficient sampling
and estimation, even in high-dimensional and rare-event settings. We
illustrate that by simulating directly from a rare-event distribution
significant insight can be gained into the way rare events happen.

Keywords: normalizing flows, neural networks, rare events, simulation

1 Introduction

Many decision problems in complex, stochastic environments (Kochenderfer,
2015) are nowadays solved by estimating the expected outcome of decisions via
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Monte Carlo simulations (Kroese, Botev, Taimre, & Vaisman, 2019; Kroese,
Taimre, & Botev, 2011; Liu, 2004). The success of Monte Carlo methods is
due to their simplicity, flexibility, and scalability. However, in many problem
domains, the occurrence of rare but important events — events that happen
with a very small probability, say less than 10−4 — severely impairs their
efficiency, for the reason that such events do not show up often in a typical
simulation run (Arief et al., 2021). On the other hand, failing to consider such
rare events can lead to decisions with potentially catastrophic outcomes, e.g.,
hazardous behaviour of autonomous cars. By using well-known variance reduc-
tion techniques such as Importance Sampling (Bucklew, 2004; Kroese et al.,
2011) it is possible to sometimes dramatically increase the efficiency of the
standard Monte Carlo method. Nevertheless, there are few efficient methods
available that give insights into how a system behaves under a rare event. An
important research goal is thus to find methods that simulate a random pro-
cess conditionally on the occurrence of a rare event. In this case, the target
sampling distribution is the distribution of the original process conditioned on
the rare event occurring. More broadly, for both estimation and sampling prob-
lems, the challenge is to identify a “good” sampling distribution that closely
approximates a target distribution. Certain approximation methods, such as
the Cross-Entropy method (de Boer, Kroese, Mannor, & Rubinstein, 2005;
Rubinstein & Kroese, 2017), train a parametric model by minimizing the cross-
entropy between a distribution family and the target distribution. However,
typical parametric models are often not flexible enough to efficiently capture
all the complexity of many interesting systems. Botev, Kroese, and Taimre
(2007) introduced a Generalized Cross-entropy method, which approximates
the target distribution in a non-parametric way. However, the quality of the
results is determined by various hyper-parameters, which require expertise to
tune.

While many standard methods can identify sampling distributions of suf-
ficient quality to estimate rare-event probabilities and related quantities of
interest, extremely good approximations to the target conditional distribu-
tion are required to be able to explore the behaviour of the simulated system
under rare-event conditions. This can occasionally be achieved by strategically
selecting very specific distribution families using problem-specific information,
but this has been difficult to achieve with conventional simulation methods.
Therefore, it is desirable to have a more general approach that can closely
approximate any target distribution without relying on problem-specific knowl-
edge. Gibson and Kroese (2022) recently introduced a framework for rare-event
simulation using neural networks that aimed to achieve this. In that frame-
work two Multilayer Perceptrons are trained simultaneously: the first being
a generative model to represent the sampling distribution, and the second
to approximate the probability distribution of the first. While the framework
had some success in one-dimensional problems, the reliance on a second net-
work and probability density estimation convoluted the training process and
made scaling to higher-dimensional problems difficult. Ardizzone, Lüth, Kruse,
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Rother, and Köthe (2019) and Falkner, Coretti, Romano, Geissler, and Del-
lago (2022) explore the use of normalizing flows for rare event sampling in
the context of image generation and Boltzmann generators. The approach in
Ardizzone et al. (2019) requires a conditioning network to be pre-trained and
embedded into the normalizing flows architecture. Falkner et al. (2022) embeds
a bias variable into the flow to learn distributions that are biased towards the
region of interest. However, such bias variables can be difficult to construct
for more complex problems. In contrast, our model is trained end-to-end and
without having to introduce a conditioning variable.

We present a new framework, inspired by Gibson and Kroese (2022), in
which a Normalizing Flows generative model is trained to learn the optimal
sampling distribution and used to estimate quantities such as the rare-event
probability. The highly expressive nature of some Normalizing Flows archi-
tectures, trained using standard deep learning training algorithms, massively
expands the range of learnable distributions, while the invertibility of Normal-
izing Flows allows the exact generative probability density to be computed
without the need of a second network. In Section 2 we present the back-
ground theory and a description of the training algorithm, and in Section 3
we present several examples of rare-event simulation using this method. The
source-code of our method is available at https://github.com/hoergems/rare
-event-simulation-normalizing-flows.

2 Theory

The theory of rare-event simulation (Bucklew, 2004; Juneja & Shahabuddin,
2006; Rubino & Tuffin, 2009), Importance Sampling (Glynn & Iglehart, 1989;
Neal, 2001; Tokdar & Kass, 2010) and Normalizing Flows (Kobyzev, Prince,
& Brubaker, 2021; Papamakarios, Nalisnick, Rezende, Mohamed, & Laksh-
minarayanan, 2021; Rezende & Mohamed, 2015) is well established. In this
section we review the relevant background, formulate the foundation of our
method, and present the training procedure.

2.1 Rare-Event Simulation and Importance Sampling

First let us introduce a mathematical basis for rare-event simulation and
Importance Sampling. Consider a random object (e.g., random variable, ran-
dom vector, or stochastic process), 𝑿, taking values in some space, X, with
probability density function, 𝑝(𝒙), that represents the result of a simulation
experiment. Running simulations corresponds to sampling 𝑿. We consider rare
events of the form {𝑿 ∈ A}, where A ⊂ X is the set of simulation outcomes
𝒙 that satisfy a predicate 𝑆(𝒙) ≥ 𝛾 for some performance function 𝑆 : X → R
and level parameter 𝛾 ∈ R. The probability 𝑐 of the rare event {𝑿 ∈ A} can
thus be written as

𝑐 := P(𝑿 ∈ A) = P(𝑆(𝑿) ≥ 𝛾) = E[1A (𝑿)],

https://github.com/hoergems/rare-event-simulation-normalizing-flows
https://github.com/hoergems/rare-event-simulation-normalizing-flows
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where 𝑐 is very small, but not 0. Here, 1A (𝒙) is an indicator function that
is 1 when 𝒙 ∈ A and 0 otherwise, and E represents the expected value. The
expected number of simulations to sample a single rare event is 1/𝑐, so
simulating rare events by sampling 𝑿 directly quickly becomes computation-
ally infeasible the rarer the event is. Therefore, other techniques, such as
Importance Sampling become necessary to simulate and analyse rare events.

In particular, suppose that 𝑿 is sampled from a probability density function
𝑝(𝒙) and that we wish to estimate the quantity

ℓ := E[𝐻 (𝑿)] =
∫

𝐻 (𝒙)𝑝(𝒙) d𝒙

via “crude” Monte Carlo: Simulate 𝑿1, . . . , 𝑿𝑛 independently from 𝑝, and esti-
mate ℓ via the sample average

∑𝑛
𝑖=1 𝐻 (𝑿𝑖)/𝑛. The idea of Importance Sampling

is to change the probability distribution under which the simulation takes
place. However, computing the expected value of a function of 𝑿 while using a
different sampling density 𝑞, requires a correction factor of the likelihood ratio
𝑝(𝒙)/𝑞(𝒙),

ℓ := E𝑝 [𝐻 (𝑿)] = E𝑞
[
𝐻 (𝑿) 𝑝(𝑿)

𝑞(𝑿)

]
, (1)

where E𝑝 = E and E𝑞 represent the expected values under the two probability
models. This relationship allows an unbiased estimate of ℓ to be computed by
sampling 𝑿 from 𝑞 instead of 𝑝, via

ℓ̂ :=
1

𝑛

𝑛∑︁
𝑘=1

𝐻 (𝑿𝑘 )
𝑝(𝑿𝑘 )
𝑞(𝑿𝑘 )

,

where 𝑿1, . . . , 𝑿𝑛 is an independent and identically distributed (iid) sample
from 𝑞. Note that any choice for 𝑞 is allowed, as long as 𝑞(𝒙) ≠ 0 when
𝑝(𝒙) ≠ 0. The optimal sampling distribution for estimating ℓ in this way is
thus the distribution that minimizes the variance of the estimator ℓ̂. When 𝐻
is strictly positive (or strictly negative), choosing the probability density

𝑞∗(𝒙) := 𝑝(𝒙)𝐻 (𝒙)
ℓ

, (2)

yields in fact a zero-variance estimator, because then ℓ̂ = ℓ. As a special case,
an unbiased estimator of the rare-event probability 𝑐 = P(𝑿 ∈ 𝐴) can be
computed as

�̂� :=
1

𝑛

𝑛∑︁
𝑘=1

1A (𝑿𝑘 )
𝑝(𝑿𝑘 )
𝑞(𝑿𝑘 )

, (3)

and the optimal sampling density 𝑞∗ is just the original density 𝑝 truncated to
the rare-event region A:

𝑞∗(𝒙) = 𝑝A (𝒙) := 𝑝(𝒙)1A (𝒙)
𝑐

. (4)
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More generally, if we want to estimate the expectation of 𝐻 (𝑿) conditional on
𝑿 ∈ A, that is,

ℓA := E𝑝A [𝐻 (𝑿)] = 1

𝑐
E𝑞

[
𝐻 (𝑿) 𝑝(𝑿)

𝑞(𝑿) 1A (𝑿)
]
, (5)

then ℓA can be estimated via

ℓ̂A :=
1

𝑛 �̂�

𝑛∑︁
𝑘=1

𝐻 (𝑿𝑘 )
𝑝(𝑿𝑘 )
𝑞(𝑿𝑘 )

1A (𝑿𝑘 ). (6)

In this case, the optimal Importance Sampling density is

𝑞∗(𝒙) := 𝑝(𝒙)𝐻 (𝒙)1A (𝒙)
ℓ 𝑐

, (7)

2.2 Normalizing Flows

If it is possible to approximate the target density (e.g., the optimal Importance
Sampling density) closely, then we are able to compute certain quantities of
interest (e.g., 𝑐 = P(𝑿 ∈ A) or ℓ = E𝐻 (𝑿)) with low variance. Normalizing
Flows is a generative model that can closely approximate a wide variety of
probability densities. Suppose the random object, 𝑿, can be mapped to another
random object, 𝒁, taking values in some space Z of the same dimensionality,
and vice versa, via invertible differentiable functions 𝝍 and 𝝓 = 𝝍−1, so that

𝑿 = 𝝍(𝒁; 𝒖) and 𝒁 = 𝝓(𝑿; 𝒖),

where 𝒖 is a vector representing all, if any, parameters. If, under the target
density, 𝝓 maps 𝑿 to a random object 𝒁 that has a simple base distribution,
such as a (multivariate) normal or uniform distribution, then the target distri-
bution can be sampled indirectly by sampling from the base distribution and
mapping the result using 𝝍. The name of such a generative model is derived
from the idea that a sequence of invertible differentiable transformations can
map even a very complex probability distribution to a simple base distribu-
tion, thereby forming a ‘normalizing flow’. The construction of the ‘flow’ relies
on the principle that any composition of invertible differentiable functions will
also be invertible and differentiable.

In what follows, we assume that X is a subset of R𝑛 and that 𝑿 and 𝒁
are “continuous” random variables; more precisely, that they have probability
densities 𝑝𝑿 and 𝑝𝒀 with respect to the Lebesgue measure on X. Since 𝝍 is
differentiable, the probability density function 𝑿 can be expressed in terms of
the probability density function 𝒁 via the relation

𝑝𝑿 (𝒙) = 𝑝𝒁 (𝝓(𝒙; 𝒖)) |detD𝝓(𝒙; 𝒖) | , (8)
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or, in terms of 𝒛:

𝑝𝑿 (𝝍(𝒛; 𝒖)) = 𝑝𝒁 (𝒛) |detD𝝍(𝒛; 𝒖) |−1 . (9)

Here, D𝝓(𝒙; 𝒖) is Jacobian matrix of 𝝓 and the absolute value of its deter-
minant is the Jacobian of 𝝓, and similar for 𝝍. If 𝝍 is a composition of other
invertible differentiable functions,

𝝍( · ; 𝒖) = ◦
𝑖
𝝍𝑖 ( · ; 𝒖𝑖),

then we can use the chain rule to combine the Jacobians as a product,

|detD𝝍( · ; 𝒖) | =
∏
𝑖

��detD𝝍𝑖 ( · ; 𝒖𝑖)
�� .

Therefore, analogous to a feed-forward neural network, the full Jacobian can
be computed during a single pass as 𝝍(𝒛; 𝒖) is computed. A similar result
holds for the inverse: 𝝓. Functional composition increases the complexity of
the model while maintaining the accessibility of the Jacobian. In this way,
Normalizing Flows provides the opportunity for highly expressible generative
models, with computationally tractable density functions. As will be discussed
in Section 2.4, training the model to learn a target density from a given func-
tion, rather than via training data, requires the ability to compute 𝑝𝑿 as a
differentiable function. Therefore, using a Normalizing Flows model improves
and simplifies the framework introduced by Gibson and Kroese (2022) by elim-
inating the need to train a second neural network to approximate the density
function via kernel density estimation.

2.3 Coupling Flows

Coupling Flows, first introduced by Dinh, Krueger, and Bengio (2015), is a fam-
ily of Normalizing Flows which have been shown to be universal approximators
of arbitrary invertible differentiable functions when composed appropriately
(Teshima et al., 2020). A single Coupling Flows unit splits 𝒛 into two vectors,
𝒛𝐴 and 𝒛𝐵, as well as 𝒙 into 𝒙𝐴 and 𝒙𝐵. It then transforms one part via an
invertible differentiable function, 𝒘, called the coupling function, which con-
tains parameters determined by the other partition. The relationship between
the second part and the coupling function parameters, called the conditioner,
Θ, does not need to be invertible, since this part is not transformed and is
accessible when computing the inverse. This means functions with many learn-
able parameters, like neural networks, can be used to capture interesting and
complex dependencies between variables. Figure 1 illustrates the structure of
a Coupling Flow models and its inverse.
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Fig. 1 Flow charts showing the structure of a Coupling Flow (left) and its inverse (right).

The Coupling Flow can be expressed mathematically as:

𝒙 = (𝒙𝐴, 𝒙𝐵) = 𝝍(𝒛𝐴, 𝒛𝐵; 𝒖) = (𝒘(𝒛𝐴; Θ(𝒛𝐵; 𝒖)), 𝒛𝐵),
𝒛 = (𝒛𝐴, 𝒛𝐵) = 𝝓(𝒙𝐴, 𝒙𝐵; 𝒖) = (𝒘−1(𝒛𝐴; Θ(𝒙𝐵; 𝒖)), 𝒙𝐵).

Note that the parameters 𝒖 of the flow are contained in the conditioner, Θ.
Since the 𝐵-partition does not transform, the Jacobian of the full transforma-
tion is just the Jacobian of the coupling function; that is,

|detD𝝍(𝒛, 𝒖) | =
��detD𝒘(𝒛𝐴; Θ(𝒛𝐵; 𝒖))

�� .
The coupling function is often chosen to be a simple affine transformation
(Dinh et al., 2015; Dinh, Sohl-Dickstein, & Bengio, 2016; Kingma & Dhariwal,
2018). Instead, we base our coupling function on the rational function proposed
by Ziegler and Rush (2019):

𝑟 (𝑧; \1, \2, \3, \4, \5) = \1𝑧 + \2 +
\3

1 + (\4𝑧 + \5)2
. (10)

This function has five parameters when applied elementwise. However, separate
parameters can be used for each dimension in the 𝒛𝐴 partition. For additional
complexity, the coupling function can also be a composition of these rational
functions, 𝑤(·; Θ) = ◦𝑖 𝑟𝑖 (·; \𝑖1, \𝑖2, \𝑖3, \𝑖4, \𝑖5). In this case the total number of
parameters in the coupling function is five multiplied by the number of compo-
sitions multiplied by the number of dimension in 𝒛𝐴. We choose the conditioner
function to be a Multilayer Perceptron, with an input dimensionality to match
𝒛𝐵 and an output dimensionality to match the number of parameters in the
coupling function.

In order for eq. (10) to define an invertible function, some restrictions have
to be placed on the parameters. Choosing

\1 > 0, \4 > 0, and |\3 | <
8
√
3\1

9\4
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ensures that the function 𝑟 in eq. (10) is a strictly increasing invertible function.
We enforce these constraints, following Ziegler and Rush, by processing the
output of the conditioner Multilayer Perceptron,

\1 = e\
′
1 , \2 = \ ′2, \4 = e\

′
4 , \5 = \ ′5, \3 = 0.95

8
√
3\2

9\4
tanh \ ′3,

where primed letters denote unconstrained outputs of the conditioner function.
The factor of 0.95 in the expression for \3 helps improve stability by precluding
barely invertible functions that can exist near the bound |\3 | = 8

√
3\1/(9\4).

While we do not need to compute the inverse in our method, it can be
calculated as the real solution to a cubic equation.

A single coupling flow unit does not transform the 𝐵-partition. So, func-
tional composition is necessary to obtain a general approximation. To achieve
this, the dimensions of each coupling flow unit are split differently to ensure
that all dimensions have to opportunity to ‘influence’ all other dimensions,
thereby capturing any dependencies between all dimensions. In practice, we
permute the dimensions between Coupling Flow units, while fixing the parti-
tioned dimensions. The permutation of dimensions can be viewed as special
case of a linear transformation, where the transformation matrix is a permu-
tation of the rows of the identity matrix. The Jacobian matrix of a linear
transformation is equal to the transformation matrix. So, the Jacobian is just
1 and is trivial to include in the probability density calculations of eq. (8) and
eq. (9).

2.4 Objective and Training

Choosing an appropriate Normalizing Flows model architecture allows any
density to be approximated arbitrarily well if the correct parameters can be
identified. We use a form of stochastic gradient descent to iteratively tune the
parameters of the model to minimize the Kullback–Leibler (KL) divergence
between the model density, 𝑞 say, and a known target function, ℎ : X → R,
that is proportional to the target probability density function. That is, we
minimize

D(𝑞, ℎ) := E𝑞 ln
𝑞(𝑿)
ℎ(𝑿) . (11)

Note that a model density 𝑞 that minimizes eq. (11) also minimizes the
KL divergence between 𝑞 and the actual (normalized) target density. The
advantage of using eq. (11) is that the normalization constant of the target
density does not need to be known. This motivates the following minimization
program:1

min
𝒖
𝐿 (𝒖) := min

𝒖
E [ln 𝑝𝒁 (𝒁) − ln |detD𝝍(𝒁; 𝒖) | − ln ℎ(𝝍(𝒁; 𝒖))] , (12)

1Actually, the first term in this objective corresponds to the negative differential entropy of the
base density and does not depend on any parameters, so could be omitted. However, we keep it
to make interpreting the loss a little simpler.
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which corresponds to choosing parameters to minimize the KL divergence
between the Normalizing Flows generative density and a target density whose
probability density function is proportional to ℎ. The expression can be derived
by substituting 𝑞 from eq. (9) into eq. (11) and taking the expectation with
respect to the base density. The minimum KL divergence is zero, when the
two densities are identical, so the minimum value of this objective is the neg-
ative natural logarithm of the normalization constant of ℎ. For example, if
ℎ(𝒙) = 𝑝(𝒙)𝐻 (𝒙), then the minimum value of the objective function 𝐿 is − ln ℓ.
The objective function values can be estimated via

�̂� (𝒖) := 1

𝑛

𝑛∑︁
𝑘=1

[ln 𝑝𝒁 (𝒁𝑘 ) − ln |detD𝝍(𝒁𝑘 ; 𝒖) | − ln ℎ(𝝍(𝒁𝑘 ; 𝒖))] , (13)

where 𝒁1, . . . , 𝒁𝑛 is an iid sample of the base density.
The objective function 𝐿 marks a clear distinction between how we train

a Normalizing Flows generative model using a target function, and how they
are typically trained using a data set. In other works, such as by Dinh et al.
(2015), Normalizing Flows are trained to learn the density of a data set by
maximizing the log-likelihood of the sampled data. While this can be consid-
ered equivalent to minimizing the KL divergence, the training process involves
sampling the data set, which corresponds to sampling 𝑿, and then moving in
the ‘normalizing’ direction with 𝝓 to solve the maximization program:

max
𝒖
E𝑞 ln 𝑞(𝑿) = max

𝒖
E𝑞 [ln 𝑝𝒁 (𝝓(𝑿; 𝒖)) + ln |detD𝝓(𝑿; 𝒖) |] .

After the model is trained, new data can be generated by sampling 𝒁 and
moving in the ‘generating’ direction using 𝑿 = 𝝍(𝒁; 𝒖). Therefore, in the
data-focused case, it is essential to be able to compute both transformations, 𝝍
and 𝝓. However, in the context of rare-event simulation, we do not have access
to training data, but a target function that is proportional to a target proba-
bility density, and all training occurs in the ‘generating’ direction. Therefore,
computing 𝝓 is not required (although 𝝍 must still be invertible in principle).
Algorithm 1 outlines our training procedure.

Algorithm 1 Training a flow-based generative model using a target function.

1: Randomly initialize parameters, 𝒖.
2: for many iterations do
3: Independently sample 𝒁1, . . . , 𝒁𝑛 from the base distribution.
4: Compute ln |detD𝝍(𝒁𝑘 ; 𝒖) | and 𝑿𝑘 = 𝝍(𝒁𝑘 ; 𝒖) during a single pass.
5: Compute the target function values ℎ(𝑿𝑘 ).
6: Estimate the objective function via eq. (13).
7: Adjust parameters 𝒖 via standard gradient descent methods.
8: end for
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2.5 Conditional Target Densities

As previously shown in eq. (4) and eq. (7), when estimating rare-event prob-
abilities and other quantity conditioned on a rare event, the target density
includes an indicator function, 1A (𝒙). However, the term, − ln ℎ(𝝍(𝒁; 𝒖)) in
the objective function 𝐿 in eq. (12) requires each value ℎ(𝒙) of the target func-
tion value to be strictly positive. To circumvent this problem, we reuse the
solution presented by Gibson and Kroese (2022), to approximate 1A (𝒙) by
defining a strictly positive penalty factor,

𝜌(𝒙) := exp [−𝛼 (𝛾 − 𝑆(𝒙)) 1𝐴𝑐 (𝒙)] , (14)

which is a positive approximation of 1A (𝒙) when 𝛼 > 0 and A𝑐 = {𝒙 ∈
X | 𝑆(𝒙) < 𝛾} is the complement set of A. The approximation is more accurate
the larger the value of 𝛼 and is exact in the limit 𝛼 → ∞. Figure 2 illustrates
the convergence of the approximation.

4 2 0 2 4
S(x)

0.0

0.2

0.4

0.6

0.8

1.0

(x
)

= 1
= 2
= 5
= 10

Fig. 2 A comparison between the penalty factor 𝜌(𝒙) (colored lines) and the step function
1A (𝒙) (black dashed line). As 𝛼 grows the approximation becomes more accurate.

Therefore, if the target density includes the indicator function as a factor,
we replace it with the penalty factor with appropriate performance function,
𝑆. For example, if the aim is to estimate ℓA from eq. (5), then the target
function would be of the form

ℎ(𝒙) = 𝑝(𝒙)𝐻 (𝒙)𝜌(𝒙).

Note that in this case

E [− ln ℎ(𝑿)] = E [− ln 𝑝(𝑿)𝐻 (𝑿)] − 𝛼E [(𝛾 − 𝑆(𝑿)) 1𝐴𝑐 (𝑿)] ,

so learning a conditional density by including the penalty factor in the tar-
get function is equivalent to learning the unconditional target 𝑝(𝒙)𝐻 (𝒙) and
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including an additional penalty term in the objective that penalizes samples
outside the rare-event region. In this way, 𝛼 can be interpreted as the weight
of the penalty. For our experiments we choose 𝛼 = 100.

3 Results

In this section we look at how well Normalizing Flows models can learn various
target functions using several practical examples.

3.1 Truncated Normal Density

Firstly we consider a very simple one-dimensional example of a truncated nor-
mal density. Let 𝑋 have a standard normal distribution: 𝑋 ∼ N(0, 1) and
consider the rare-event region A = [𝛾,∞). An obvious choice for the per-
formance function is 𝑆(𝑥) = 𝑥, so if the goal is to estimate the rare-event
probability 𝑐 = P(𝑋 ≥ 𝛾), then the target function is

ℎ(𝑥) := 𝑝𝑋 (𝑥) exp
[
−𝛼 (𝛾 − 𝑥) 1(−∞,𝛾) (𝑥)

]
.

A Coupling Flow is unsuitable for a one-dimensional problem, so we use a
composition of three rational functions from eq. (10), containing a total of
15 parameters. Choosing a batch size of 𝑛 = 1, 000, a learning rate of 0.001,
a weight decay parameter of 0.0001 and 𝛼 = 100, the model was trained via
Algorithm 1 and the Adam gradient descent optimizer (Kingma & Ba, 2017)
for 30,000 iterations. Figure 3 illustrates how the model converges towards the
truncated normal target density, with threshold parameter 𝛾 = 3.
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Fig. 3 The normalizing flow probability density function at different stages of training.
The black density is the target probability density of a normal density truncated to the
interval [3,∞). The blue density is the probability density of 𝑋 at the corresponding training
iteration.

Using a sample of 1,000 points, eq. (3) gives us an estimate 0.00134576
of the rare-event probability P(𝑋 ≥ 3) , which is about 0.3% error from the
true value of about 0.0013499. From the same sample, the sample standard
deviation is about 0.000261. We can estimate the minimum sample size needed
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for a 1% standard error by

𝑛 =

(
𝜎

�̂�

1

0.01

)2
≈ 376,

where 𝜎 is the sample standard deviation of the summand in eq. (3). Using a

crude Monte Carlo estimator, the relative standard error should be
√︁
𝑐(1 − 𝑐) ≈

0.0367, requiring a much larger sample size of about 𝑛 = 7.4 × 106 for a 1%
standard error.

The learned density is not exactly identical to the target conditional den-
sity, but is very close. To quantify how good the approximation is, we can
estimate the KL divergence between the target density 𝑞∗ and the learned
density using

D(𝑞∗, 𝑞) = E𝑞∗

[
ln
𝑞∗(𝑿)
𝑞(𝑿)

]
= E𝑞

[
𝑞∗(𝑿)
𝑞(𝑿) ln

𝑞∗(𝑿)
𝑞(𝑿)

]
.

In this example the KL divergence is estimated to be 0.03465 with a standard
error of 0.56% using sample size 10,000.

3.2 Two-Dimensional Exponential Density

Secondly, we try another example from Gibson and Kroese (2022) of a two-
dimensional exponential density. In particular, in this example the probability
density function of 𝑿 = (𝑋1, 𝑋2) is:

𝑝(𝑥1, 𝑥2) = e−(𝑥1+𝑥2) ,

and the rare-event region isA = {(𝑥1, 𝑥2) ∈ R2+ : 𝑥1+𝑥2 ≥ 𝛾}, with performance
function, 𝑆(𝑥1, 𝑥2) = 𝑥1+𝑥2. To estimate 𝑐 = P(𝑋1+𝑋2 ≥ 𝛾), the target function
is

ℎ(𝑥1, 𝑥2) = exp
[
−(𝑥1 + 𝑥2) − 𝛼 (𝛾 − 𝑥1 − 𝑥2) 1{𝑥1+𝑥2<𝛾 }

]
.

This time we choose a flow model composed of six Coupling Flows, interlaced
with dimension permutations, followed by an elementwise exponential func-
tion. The exponentiation ensures that the generated points are positive. The
coupling function in each Coupling Flow is a composition of two rational func-
tions of the form in eq. (10). The conditioner in each Coupling Flow is a linear
transformation plus a constant vector. Therefore, the total number of learnable
parameters is 60. Figure 4 shows the structure of this model via a flow chart.

The model was trained for 100,000 iterations with a learning rate of 0.0001,
a weight decay of constant of 0.0001, and a batch size of 10,000. When 𝛾 = 10,
𝑐 = (1 + 𝛾)e−𝛾 ≈ 0.000499399. After training, with a sample size of 1,000 the
estimated constant is 0.00049920, with standard deviation of about 6.34×10−5
giving a relative standard error of 0.40%. Achieving a comparable standard
error using a crude Mote Carlo estimator would require a sample size of more
than 108. Figure 5 shows how well the model learned the target density by
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including a scatter plot of a sample of points as well as comparing the learned
probability density with the target probability density. The KL-divergence is
estimated to be about 0.011 with 9.7% standard error using sample size of
10,000.

Fig. 4 Flow chart showing the normalizing flow structure used in the exponential density
example. The base density is a 2D multivariate normal density which forms the input to a
sequence of six consecutive Coupling Flow and dimension permutation pairs, followed by an
exponential function applied to both dimensions. The learnable parameters are found in the
conditioner functions of all six Coupling Flows.
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Fig. 5 1,000 points sampled from the trained normalizing flow. The left scatter plot shows
the how the sampled two-dimensional points almost exclusively satisfy the rare-event con-
dition, 𝑥1 + 𝑥2 ≥ 10. The right plot compares the learned log-density with the renormalized
exponential log-density. The dashed black line shows the target density, which is equal to
the renormalized log density, until about −2.398, which is the maximum log-density when
𝑥1 + 𝑥2 = 10.

3.3 Bridge Network

This third example comes from Chapter 9 of Kroese et al. (2011). In this
example, we increase the number of dimensions to five, each corresponding
to a random edge length in a bridge network, shown in Figure 6. The graph
contains five edges and four nodes, where the length of each edge is uniformly
distributed and the goal is to identify the expected shortest path from node 𝐴
to node 𝐷. Specifically, we wish to estimate the expected length of the shortest
path from 𝐴 to 𝐷; that is, the expectation ℓ in eq. (1), with 𝑋𝑖 ∼ U(0, 1) and

𝐻 (𝑿) = min{𝑋1 + 𝑋4, 𝑋1 + 3𝑋3 + 2𝑋5, 2𝑋2 + 3𝑋3 + 𝑋4, 2𝑋2 + 2𝑋5}.



Springer Nature 2021 LATEX template

14 A Flow-Based Generative Model for Rare-Event Simulation

In this case 𝑝(𝒙) = 1, so the optimal Importance Sampling density that min-
imizes the variance in estimating ℓ is 𝑞∗(𝒙) = 𝐻 (𝒙)/ℓ. Therefore, the target
function is ℎ(𝒙) = 𝐻 (𝒙).

Fig. 6 A bridge network containing four nodes and five edges, where the edge lengths
𝑋1, . . . , 𝑋5 are random variables. So the minimum path length from node 𝐴 to node 𝐷 is
also a random variable.

The space of allowed values in this example is X = [0, 1]5, so it is reason-
able to choose a model architecture in which the domains and co-domains of
each composed flow unit is [0, 1]5. To achieve this we choose a uniform base
distribution, 𝑍𝑖 ∼ U(0, 1). Additionally, the model is composed of five Coupling
Flows and dimension permutation pairs. In each permutation the dimensions
are cycled via [3, 4, 5, 1, 2]. The dimensions are partitioned so the coupling
function transforms the first three dimensions. The coupling function of each
Coupling Flow is a rational function based on eq. (10) with separate parame-
ters for each dimension. The conditioner, like the previous example, is a linear
transformation. Figure 7 uses a flow chart to illustrate the structure of this
model. The parameters in the coupling functions of each Coupling Flow unit
contain additional constraints to ensure that 𝑟 (0) = 0 and 𝑟 (1) = 1, thereby
preserving the domain of [0, 1]5 at each flow component.

Fig. 7 Flow chart showing the normalizing flow structure used in the bridge network exam-
ple. The base distribution is a 5D uniform distribution which forms the input to a sequence
of five consecutive Coupling Flows and dimension permutation pairs.

The model was trained with a learning rate of 0.0001, weight decay param-
eter of 0.0001, batch size 10,000 for 300,000 iterations. The scatter plot in
Figure 8 compares the learned probability density of 𝝍(𝒁; 𝒖) with the opti-
mal sampling density given by eq. (2). The learned density forms a fairly good
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approximation of the optimal sampling density with a KL divergence of about
0.0017 with 29% standard error (using sample of 10,000). The histograms in
Figure 8 compare the densities of the summands of the Importance Sampling
estimator from eq. (1) and the crude Monte Carlo estimator, being the sample
mean of 𝐻 (𝑿). In this example both methods provide accurate estimates of the
expected minimum path length. Typical values of the crude Monte Carlo and
IS estimators are 0.9272 with a standard relative error of 0.43% and 0.9301
with a standard relative error of 0.053%. While both values agree with the
theoretical value of 𝑙 = 1339

1440 = 0.92986¤1, the IS estimator reduces the variance
by a factor of about 65.
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Fig. 8 A scatter plot (left) comparing the learned probability density and the target den-
sity, and a histogram (right) comparing the summand densities of the crude Monte Carlo
estimator (blue) and the Importance Sampling estimator (orange). Clearly the model has
learned to approximate the target density and can estimate the expected minimum path
length with a much lower variance using Importance Sampling than the crude Monte Carlo
estimator.

3.4 Conditional Bridge Network

In this example we continue with the bridge network, but now consider the
rare event that the shortest path includes three edges, passing through the
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middle, rather than just two. That is, the shortest path is either 𝐴𝐵𝐶𝐷 or
𝐴𝐶𝐵𝐷. The rare-event region can be defined by choosing

𝑆(𝑿) = min (𝑋1 + 3𝑋3 + 2𝑋5, 2𝑋2 + 3𝑋3 + 𝑋4) −min (𝑋1 + 𝑋4, 2𝑋2 + 2𝑋5) ,

and 𝛾 = 0. That is, the penalty depends on the difference between the shortest
‘inner’ path (𝐴𝐵𝐶𝐷 or 𝐴𝐶𝐵𝐷) and the shortest ‘outer’ path (𝐴𝐵𝐷 or 𝐴𝐶𝐷).

The exact same model was reused, but trained across 500,000 iterations
with the penalty factor included in the target function. In this way, the goal is
to estimate the expected shortest path length of the distribution conditioned
on the shortest path being 𝐴𝐵𝐶𝐷 or 𝐴𝐶𝐵𝐷. The rare event probability can be
estimated using eq. (3) with a sample size of 10,000 to be about 0.0346 with
a standard relative error of 1.3%. This corresponds to a variance reduction
in a factor of about 17 compared to the crude Monte Carlo estimate. The
conditional expected shortest path length can now be estimated via eq. (6) as
0.913 with a standard relative error of 1.7%.

By learning an approximation of the conditional distribution, we can
explore the likely conditions required to generate the rare event. Figure 9
compares scatter plots between the learned unconditional and the conditional
distributions. The unconditional distribution is not too different from the orig-
inal uniform distribution, with the exception of 𝑋1 and 𝑋4. This is the expected
result since the path, 𝐴𝐵𝐷, with path length 𝑋1 + 𝑋4, is the most likely to
be the shortest. However, the learned conditional distribution is significantly
different to the original uniform distribution. From the scatter plots it is clear
that 𝑋3 is almost always short, and 𝑋2 and 𝑋5 have a strong negative cor-
relation. Therefore, we can conclude that the most likely conditions for the
shortest path to be one that passes through the middle edge, is that the mid-
dle edge is short, and that exactly one of bottom two edges is short. This is
congruent with expectations since a long middle edge would likely make the
total path length longer than both of the outer paths, if both bottom edges
were short then the middle edge would be bypassed, and if both bottom edges
were long, then the shortest path would likely be across the top.
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Fig. 9 Scatter plots comparing the each of the five dimensions against each other, as well as
histograms showing the distribution of each dimension. The darker purple colour corresponds
to a higher probability density. The left figure shows the learned unconditional distribution
while the right shows the learned conditional distribution.

3.5 Asian Call Option

In this section we look at stock price models and expected pricing of call
options. This example, from Chapter 15 of Kroese et al. (2011), specifically
looks at estimating the expected Asian call option of a stock whose undis-
counted price, 𝑆𝑡 , at time 𝑡 can be modelled by the Stochastic Differential
Equation (SDE)

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡𝑑𝑋𝑡 ,
where the drift, 𝑟, is the risk-free rate of return, {𝑋𝑡 } is a Wiener process and
𝜎 is the volatility. This SDE is solved by

𝑆𝑡 = 𝑆0e
(𝑟−𝜎2/2)/𝑡+𝜎𝑋𝑡 .

The average stock price across the interval 𝑡 ∈ [0, 𝑇] can be approximated by

𝑆𝑇 =
1

𝑛 + 1

𝑛∑︁
𝑖=0

𝑆𝑡𝑖 , 𝑡𝑖 =
𝑖𝑇

𝑛
, 𝑖 = 0, . . . , 𝑛,

where the time has been discretized into 𝑛 equal intervals of Δ𝑡 = 𝑇/𝑛,

𝑆𝑡𝑖 = 𝑆0 exp
(
(𝑟 − 𝜎2/2)𝑡𝑖 + 𝜎𝑋𝑡𝑖

)
,

and 𝑋𝑡𝑖 ∼ N(0,Δ𝑡). The discounted payoff at time 𝑡 = 0 of the Asian option is

𝐻 (𝑿) = e−𝑟𝑇 (𝑆𝑇 − 𝐾)+,
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where 𝑿 =
(
𝑋𝑡1 , . . . , 𝑋𝑡𝑛

)
and the + superscript denotes the ramp function.

Since {𝑋𝑡 } is a Wiener process, 𝑿 ∼ N(0,Δ𝑡 𝐼), where 𝐼 is the identity matrix of
appropriate dimensionality. If the goal is to estimate the expected discounted
payoff then, according to eq. (2), the optimal sampling distribution should
include a factor of 𝐻 (𝒙). However, the objective eq. (12) requires the target
function to be non-zero at all sampled values. Therefore, we introduce the
following approximation

𝑥+ ≈ 𝑣(𝑥) :=
{
𝑥, if 𝑥 > 𝛿

𝛿e
𝑥
𝛿
−1, if 𝑥 < 𝛿

which is a strictly positive continuously differentiable function that is exact in
the limit 𝛿 → 0. In our experiments we choose 𝛿 = 0.5. Therefore, the target
function is

ℎ(𝒙) = 𝑣
(
e−𝑟𝑇 (𝑆𝑇 − 𝐾)

) 1

(2𝜋Δ𝑡)𝑛/2
e−

1
2Δ𝑡 |𝒙 |

2
.

We chose the base distribution to be 𝒁 ∼ N(0,Δ𝑡 𝐼) and the normalizing flow
to be comprised of six coupling flow units with equal partition sizes. The
dimensions were permuted after each coupling flow unit. Figure 10 illustrates
the normalizing flows structure.

Fig. 10 Flow chart showing the normalizing flow structure used in the Asian call option
example. The base density is a 88D multivariate normal density which forms the input to a
sequence of six consecutive Coupling Flow and dimension permutation pairs.

The parameters used in this example were 𝑟 = 0.07, 𝜎 = 0.2, 𝐾 = 35,
𝑆0 = 40, 𝑇 = 4/12 and 𝑛 = 88. The model was trained for 30000 steps with a
batch size of 1000, learning rate of 0.0001 and weight decay of 0.0001. Figure
11 compares the histograms of the crude Monte Carlo and importance sam-
pling estimator summands. Using a sample of 10000, the crude estimator is
about 5.3432 with a standard relative error of 0.49%, and the importance sam-
pling estimator is about 5.3580 with a standard relative error of 0.23%. This
corresponds to a variance reduction of about a factor of 4.4.
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Fig. 11 Histograms of the crude Monte Carlo and Importance Sampling estimator sum-
mands. Importance Sampling using the learned distribution allows the expected discounted
payoff of the Asian option to be estimated with less variance than the crude Monte Carlo
estimate.

Let us explore the rare event in which the discounted payoff exceeds
14, A = {𝒙 ∈ R𝑛 : e−𝑟𝑇 (𝑆𝑇 − 𝐾)+ ≥ 𝛾} with performance function 𝑆(𝒙) =

e−𝑟𝑇 (𝑆𝑇 − 𝐾) > 𝛾 and 𝛾 = 14. In this case the goal is to explore how this rare
event occurs and to estimate the probability of the rare event. Therefore, the
target function is just the probability density function of the Wiener process
multiplied by the penalty factor,

ℎ(𝒙) = 1

(2𝜋Δ𝑡)𝑛/2
e−

1
2Δ𝑡 |𝒙 |

2
𝜌(𝒙).

This time the model was trained for 100000 iterations. With a sample of
10000 the crude and IS estimators are about 0.0022 with 21% relative error,
and 0.0015797 with 0.46% relative error respectively. This corresponds to a
variance reduction of a factor of about 2100. Using the estimated normaliza-
tion constant of 0.0015797 the KL divergence between the learnt density and
the target density is about 0.15157 with a standard relative error of 0.40%
indicating that the learnt distribution is very close to the target conditional
distribution. Figure 12 illustrates the strong linear relationship between the
learnt log density and the target unconditional density, and compares the
distributions of the simulated discounted Asian options.

Since the learnt distribution is a decent approximation of the conditional
distribution, we can use the simulated trajectories to gain insights into how
high performing options can occur. Figure 13 shows typical stock prices across
time when simulating using the original probability measure and the learnt
probability measure. In the first instance the average value is largely static,
increasing very slowly, while the variance grows across time. However, condi-
tioning the simulation on achieving a discounted payoff of at least 14 changes
the trend unexpectedly. Rather than a steady growth in stock price across
the whole time interval, most of the stock price growth occurs by 𝑡 = 0.25.
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Fig. 12 A scatter plot comparing the learnt log probability density and the unconditional
log probability density (left) and Histograms (right) of simulated discounted payoffs using
crude Monte Carlo (blue) and the learned conditional distribution (orange).

Additionally, the variance is fairly constant over time during this growth time,
mostly growing near the end. This result is also visible in the covariance matrix
of the stock price, illustrated in figure 14. Under the original probability dis-
tribution the stock price near maturity depends little on the early prices, and
the variance grows roughly linearly with time. However, under the learnt prob-
ability distribution, the variance in stock price is largely constant until a short
time before maturity. Additionally, there is a small correlation between early
stock prices and late stock prices. This could indicate that
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Fig. 13 Undiscounted stock prices generated by crude Monte Carlo (left) and the model
conditioned on discounted payoffs of at least 14 (right). Coloured lines represent 10 trajec-
tories, dashed black lines represent the mean and the shaded grey region is a single standard
deviation from the mean.
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Fig. 14 Covariance matrix of undiscounted stock prices simulated using crude Monte Carlo
(left) and generated by the model conditioned on discounted payoffs of at least 14 (right).
In the crude simulation the variance grows with with time. There is a small amount of
covariance between early stock prices and later stock prices in the conditionally generated
prices. It appears that while most stock prices achieve the discounted payoff of at least 14
through consistent steady increases, there are a few trajectories which perform well near the
beginning or near the end, but not both.

3.6 Double Slit Experiment

In this example we test our method on a high-dimensional problem. A
dimensionless particle traverses an unbounded 2-dimensional environment for
a maximum duration of 𝑇 , which is discretized into Δ𝑡 = 𝑑

2 time steps,
where 𝑑 ≥ 2. The environment consists of a barrier with two slits, located at
(𝑥slit, 𝑦slit) and (𝑥slit,−𝑦slit). The width of both slits is 𝑤slit. Additionally, the
environment contains a vertical screen located at 𝑥screen. The aim of the parti-
cle is to reach the screen while simultaneously passing through one of the two
slits. At time step 0, the particle starts at the 2𝐷-position 𝑽0 = (0, 0). Given a
random vector 𝑸 ∼ N(0, 2𝑇

𝑑
𝐼𝑑), where 𝐼𝑑 is the 𝑑-dimensional identity matrix,

the position of the particle at time step 1 ≤ 𝑘 ≤ 𝑑/2 evolves according to

𝑽𝑘 = 𝑽𝑘−1 + 𝑸𝑘 , (15)

where 𝑸𝑘 = (𝑄2𝑘−1, 𝑄2𝑘 )> is the 𝑘-th component vector of 𝑸. The path 𝑽 of

the particle induced by 𝑸 is then the sequence of points 𝑽 = (𝑽𝑘 )𝑑/2𝑘=1
, with 𝑽𝑘

defined according to eq. (15).
Let 𝑔𝑑 be the density of N(0, 2𝑇

𝑑
𝐼𝑑). Our goal is to learn a sampling

density that is proportional to 𝑔𝑑 truncated to the rare-event region A ={
𝒒 ∈ R𝑑 : 𝑆(𝒒) ≥ 0

}
, where 𝒒 is an outcome of 𝑸. The performance function

𝑆(𝒒) is defined as follows. Suppose is 𝑀 is the time step where 𝑿 is closest to
the screen; that is,

𝑀 := argmin
1≤𝑘≤𝑑/2

(𝑥screen − 𝑋𝑘 ) ,
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where 𝑋𝑘 is the 𝑥-coordinate of the particle at time step 𝑘. Additionally, let
𝑁 be the first step where 𝑋𝑁−1 ≤ 𝑥slit ≤ 𝑋𝑁 , i.e., where the particle crosses
𝑥slit. The performance function of an outcome 𝒒 of 𝑸, with path 𝒗 = 𝑃(𝒒), and
outcomes 𝑛 and 𝑚 of 𝑁 and 𝑀 is then defined as

𝑆(𝒒) = −
(
min{ 𝑓1(𝑦𝑛), 𝑓2(𝑦𝑛)} + 𝑓3(𝑥𝑚)

)
, (16)

where

𝑓1(𝑦𝑛) =
(
|𝑦𝑛 − 𝑦slit | −

𝑤slit

2

)
1{

|𝑦𝑛−𝑦slit |>
𝑤slit
2

} ,
𝑓2(𝑦𝑛) =

(
|𝑦𝑛 + 𝑦slit | −

𝑤slit

2

)
1{

|𝑦𝑛+𝑦slit |>
𝑤slit
2

} ,
𝑓3(𝑥𝑚) = (𝑥screen − 𝑥𝑚) 1{𝑥screen−𝑥𝑚>0} . (17)

The functions 𝑓1 and 𝑓2 in eq. (17) measure the distances of the 𝑦-coordinate
(i.e., 𝑦𝑛) of point 𝒗𝑛 to the slits and the min operator in eq. (16) ensures
that only the minimum distance to the slits contributes to the performance
function. Note that the definitions of 𝑓1 and 𝑓2 imply that a path successfully
crosses a slit if 𝑦slit − 𝑤slit

2 ≤ |𝑦𝑛 | ≤ 𝑦slit + 𝑤slit
2 , even if the path touches the

barrier from 𝒗𝑛−1 to 𝒗𝑛. In case the particle does not cross 𝑥slit, we set both 𝑓1
and 𝑓2 to 0. The function 𝑓3 is an additional penalty term which penalizes the
𝑥-coordinate of the point 𝒗𝑚 (i.e., 𝑥𝑚) to be on the left-hand side of the screen.

With the performance function in eq. (16), the target function is defined as

ℎ(𝒒) = 𝑔𝑑 (𝒒) exp
[
−𝛼(𝛾 − 𝑆(𝒒))1{𝑆 (𝒒)<0}

]
, (18)

with 𝛾 = 0. For the base distribution, we chose a Gaussian Mixture Model
(GMM) consisting of two 𝑑-dimensional component distributions N(𝝁1,

2𝑇
𝑑
𝐼𝑑)

and N(𝝁2,
2𝑇
𝑑
𝐼𝑑) with equal weights, where 𝝁1 = (1,−1, . . . , 1,−1)> and 𝝁2 =

(1, . . . , 1)>. This bimodal mixture model helps in learning the correct bimodal
target density. The normalizing flow is composed of twenty coupling flow units
with equal partition sizes. The dimensions are permuted after each coupling
flow unit. Figure 15 illustrates the normalizing flow.

In our experiments we set 𝑇 = 1, 𝑥slit = 5, 𝑦slit = 1.5, 𝑤slit = 1 and 𝑥screen =

10. We then trained three normalizing flows using 𝑑 = 100, 𝑑 = 500 and
𝑑 = 1, 000, where each flow was trained for 100, 000 iterations with a batch
size of 200, learning rate of 10−6 and weight decay of 10−8.
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Fig. 15 Flow chart showing the normalizing flow structure used in the Double Slit example.
The base density is a Gaussian Mixture Model (GMM) consisting of two component dis-
tributions N(𝝁1,

2𝑇
𝑑

𝐼𝑑) and N(𝝁2,
2𝑇
𝑑

𝐼𝑑) with equal weights, where 𝝁1 = (1, −1, . . . , 1, −1)>
and 𝝁2 = (1, . . . , 1)>. This forms the input to a sequence of twenty consecutive Coupling
Flow and dimension permutation pairs.

Fig. 16 The double slit environment (left figure) with 100 paths simulated with the learned
normalizing flows for 𝑑 = 100 (red), 𝑑 = 500 (green) and 𝑑 = 1, 000 (blue). The black regions
represent the barrier, while the dark green region represents the screen. The right figure
shows the histograms of 100, 000 simulated paths at the screen for 𝑑 = 100 (red), 𝑑 = 500
(green) and 𝑑 = 1, 000 (blue).

Figure 16 (left) shows the double slit environment with paths simulated
using the learned normalizing flows for 𝑑 = 100 (red paths), 𝑑 = 500 (green
paths) and 𝑑 = 1, 000 (blue paths). We additionally used 100, 000 samples for
each 𝑑 to test the capability of the models in generating paths that successfully
pass through one of the slits and hit the screen at 𝑥screen. In our tests, the
success rate was 91.6%, 91.2% and 90.3% for 𝑑 = 100, 𝑑 = 500 and 𝑑 =

1, 000 respectively, which shows that the learnt distributions are close to the
conditional target distribution, even when the base and target distributions are
1, 000-dimensional. We additionally investigate how the marginal distributions
of the paths at 𝑥screen look like. Figure 16 (right) shows the histogram of the
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𝑦-positions of 100, 000 paths at 𝑥screen for 𝑑 = 100 (red), 𝑑 = 500 (green)
and 𝑑 = 1, 000 (blue) respectively. We can see that for all values of 𝑑, the
distributions at the screen closely match each other. This is both desired and
expected, due to the scaling factor 2𝑇

𝑑
for the variance of the conditional target

densities.

4 Conclusion

Monte Carlo methods are important tools for decision making under uncer-
tainty. However, rare events pose significant challenges for standard Monte
Carlo methods, due to the low probability of sampling such events. In this
paper, we propose a framework for rare-event simulation. Our framework
uses a normalizing flow based generative model to learn optimal impor-
tance sampling distributions, including conditional distributions. The model
is trained using standard gradient descent techniques to minimize the KL
divergence between the model density and a function that is proportional
to the target density. Empirical evaluations in several domains demonstrate
that our framework is able to closely approximate complicated distributions,
even in high-dimensional (up to 1, 000-dimensional) rare-event settings. Simul-
taneously, our framework demonstrates substantial improvements in sample
efficiency compared to standard Monte Carlo methods. Given these properties,
we believe that combining our framework with Monte Carlo based methods
for decision making under uncertainty is a fruitful avenue for future research.

Supplementary information. The source-code of our framework and
the examples is publicly available at https://github.com/hoergems/rare-event
-simulation-normalizing-flows.
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